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INTRODUCTION

  AIthough  clays  rarely,  if ever,  exhibit  fully

recoverable  behaviour, they  do show  a  substan-

tially elastic  response  for a  certain  range  of  stress

paths. If the clays  are  approximately  isotropic

then  it is convenient  to express  the  elastic

properties  in terms  of  the  bulk and  shear

moduli.  Manyengineeringcalculationsrequire
values  ef  these  moduli,  especially  the shear

modulus,  which  can  be Idificult te measure

directly. It is therefore  useful  to establish

correlations  between the  shear  rnodulus  and

other  quantities, for instance the  mean  effective

stress,  overconsolidation  ratio  and  undrained

shear  strength.  It is the purpose of  this note

to examine  how  the  shear  modulus  of  a  clay

varies  with  pressure  and  overconsolidation

                                    ABSTRACT

  A  method  is described for expressing  the elastic  shear  modulus  of  a  clay  as  a  power  function
of  the applied  pressure and  the preconsolidation  pressure. The  method  has the advantage  that

it incorporates the concept  of  normalisation  of  clay  properties  with  respect  to pressure,  whilst

allowing  a  realistic  variation  of  the shear  modulus  with  overconsolidatien  ratio  to be described.
A  further advantage  is that,  since  the shear  strength  is often  expressed  in a  similar  manner,  the

rigidity  index C!su, which  plays an  important role  in many  geotechnical  engineering  analyses,

can  be expressed  as  a  power  function of  the overconsolidation  ratio.  The  new  method  is coxn-

pared with  some  existing  data showing  the variation  of  the stiffness  of  clays.
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                                           ratio,  and  hence also  deduce a  relationship

                                           with  the undrained  shear,strength.

ANALYSIS

  The  use  of  the term  
"elastic"

 is ambiguous

for highly nonlinear  materials  such  as  soil. In
some  contexts,  for instance dynamic loading
tests, it is used  to  refer  to the behaviour at
very  small  strains  (say less than  O.Ol%) for
which  very  small  hysteretic damping occurs

(e.g. Hardin  and  Black, 1968). In the  inter-
pretation of  some  monotonic  loading tests it
is used  only  for a  very  small  range  of  strain,

typically O,OOI%, for which  fully recoverable

behaviour is observed  (e.g. Jardine et al.,

1984). If the  definition of  elasticity  is restricted
to these  caseS  then  rather  complex  nonlinear
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  Written  discussions on  this paper  should  be submitted  before April 1, 1992, to the Japanese Society

  o{Soil  Mechanics and  Foundation Engineering, Sugayama  Bldg, 4F, Kanda Awaji-cho 2-23, Chiyoda-

  ku, Tokyo 101, Japan. Upon  request  the  closing  date may  be extended  one  month.



The Japanese Geotechnical Society

NII-Electronic Library Service

The  JapaneseGeotechnical  Society

SHEARMODULUS  OF

models  must  be used  to describe the  behaviour
at  slightly  larger strains.  A  third possibility
is to divide the  behaviour of  soils  into a  range

for which  the  strains  are  broadly small  and

recoverable,  although  in practice some  irre-
coverable  behaviour is observed,  and  a  range

for which  the  strains  are  larger and  irrecover-
able.  This type  ofapproach  is exemplified  by
the  Cam-Clay  type  of  plasticity model  in
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which  a  single  work-hardening  yield surface  is
employed  and  the  behavieur within  it is de-
scribed  as  

"elastic".

 Such  a  model  offers  the

benefits of  simplicity,  although  there  will  be
shortcomings  in the  description of  the elastic

behaviour. This last approach  is taken  in this

Paper.
  The  above  considerations  mean  that the

precise definition of  the shear  modulus  is
diMcult. Fig. 1 shows  three  possible definitions
which  are  in current  use.  The  initial gradient
of  the  T-r  curve  is given by Ge, Gso is the

secant  modulus  to 50%  of  the failure stress

Tmai  (similar definitions to other  proportions  of

Tmax  are  also  used)  and  G.. is the unload-

reload  modulus  (which depends on  the size

of  the unloading  loop). A  further modulus,

Gmax may  be obtained  frorn tests involving
very  small  amplitude  cycling,  e.g.  dynamic
tests (Gmai may  be different from Ge in eertain

circumstances).  Although  this Iast value  is
                  ttt
considered  as  representing  most  closely  the
actual  elastic  behaviour of  the clay,  each  of

the other  values  is relevant  to particular  en-

gineering applications.  The  following discus-
sion  applies  to each  of  the  above  definitiens
although  the  absolute  values  of  the moduli

defined in alternative  ways  will  differ widely.

  The  behaviour of  many  clays  conforms  broad-
ly to the  pattern described by the critical  state

type  of  model  (Schofield and  Wroth, 1968), in
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Fig. 1. Definitions of  shear  moduliY
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which  case  the elastic  swelling  lines are  straight

and  of  gradient  
-rc

 in VLIogip' space  (Fig. 2),
where  V  is the specific  volume  and  p' the

mean  effective  stress  (consolidation lines are

of  gradient  -2  in the  same  plot). The  incre-
ment  in volumetric  strain  w  (compressive
positive) may  then  be determined as:

     clv--dvV="vGippl--`KipLL  a)

where  K  is the bulk modulus.  This  implies
a  variable  bulk modulus  having  the  value

K=  VP'.  A  
minor

 
alteration

 
which

 has
     rc

various  advantages  (Butterfield, 1979; Wroth
and  Houlsby, 1980) is to assume  straight  con-

solidation  and  swelling  lines in logeV-logqp'
space.  If -rc* is the gradient of  the swelling

lines in this  plot (and -2*  the gradient  of  the

consolidation  lines) then  it follows that  the

increment in ･volumetric strain  is given by :

           dV  rc*dpt  ,ip,

            V=  pt 
[=

 K  (2)    dv=-

This  results  in a  bulk modulus  which  is truly

                                    P,
proportional to the mean  stress  since  K=  

rc*
 .

A!though this form of  relation  is preferable
to the  more  eonventional  approach,  it is not

examined  further here.

  The  approach  described abeve  represents  the

normalisation  of  a  soil  property (in this case

the  bulk modulus)  with  respect  to  stress  level

(represented by the mean  effective  stress).

This  type  of  normalisation  of  soil  properties

with  respect  to pressure is central  to  both

Critical State soil  mechanics  and  also  to the

SHANSEP  proeedure (Ladd and  Foott, 1974),

and  has proved a  valuable  aid  in simplifying

and  understanding  soil  behaviour. It is

reasonable  to expect  that  a  normalisation  of

the  shear  modulus  with  respect  to the  pressure

may  also  prove  useful,  and  therefore  the

variations  of  the value  of  the dirnensionless

quantity GrLt)' will  be investigated.

  It is important to note  that any  elastic  model

in which  the shear  modulus  depends  on  the

pressure,  but the  bulk modulus  does not

correspondingly  depend on  the  shear  stress,  will

result  in non-conservative  elastic  behaviour,

ANDWROTH

i.e. it will  not  be thermodynamically  accept-

able.  This point is discussed by Zytynski et

al. (1978) and  also  by Houlsby  (1985). Such

problem$  are  not  discussed further here, where

the  purpose is to investigate the trends  in

variation  of  the quantity  GLp'. However,  if
the  results  are  to be incorporated  into any

rigorously  formulated mathematical  model  then

some  further minor  modifications  to the theory

will  be necessary.

  Whilst maintaining  the normalisation  of  soil

properties with  respect  to pressure, the  ratio

Gle' need  not  be constant,  but could  for
instance be a  function of  overconsolidation

ratio.  This type  of  result  is in fact predicted
by Critical State theory  for the undrained

shear  strength,  for which  it can  be shown

($ee for example  Wroth,  1984) :

        [i:' ]=[ i"t ].,Rn (3)

where  su is the  undrained  shear  strength,  p.'
the  initial mean  effective  stress,  (suLpo')nc is the
strengthlpressure  ratio  for a  normally  consoli-

dated clay,  R  is the  initiar overconsolidation

ratio  defined as  (pc'ipe') and  A is a factor equal

   (2-rc)                               (2*-rc*)
to

 2 (which is also  
equal

 
to

 2. ).

The  quantity  pc' is the preconsolidation pres-
sure  defined as  the intersection of  the  swelling

line with  the  isotropic normal  consolidation

line (point B  on  Fig. 2 for a  soil currently  at

stress  point  A). The  formula above  provides

a  convenient  way  of  estimating  both absolute
values  of  undrained  strength,  and  also  trends

of  behaviour at  ditferent pressures  and  over-

consolidation  ratios.  It is well  supported  by
experimental  evidence  (Ladd et al.,  1977).

  Wroth  et al.  (1979) reported  that a  reasonable

fit to the  variation  of  G  for clays  could  be
obtained  by using  the  expression  :

    [ pG, ]==[ 
pG,
 ].,a+cnoge(R)) (4)

where  (GLp')nc is a  constant  for a given clay

and  C  is a  second  constant.  This  formula is
based on  data of  Webb  (1967) showing  an

approximately  linear variation  of  (Gle') with

the  parameter  V2, which  is defined as  (V+
2 legqp') (see Fig. 2) and  is linearly re]ated  to
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         Fig. 3. R"  versus  log (R)

Ioge(R). (Wroth (1971) originaHy  analysed

these  data using  eA:=  VA-1).
  In the light of  the  variation  of  su with

pressure an  alternative  expression

         [ ,G･ ]=[ ,G･ ].,R" (5'

is proposed. Fig.3showsaplotofR"  against

loge(R), and  demonstrates that  this approxi-

mates  closely  to a  straight  line for values  of

n  up  to about  O.7 and  overconsolidation  ratios

less than  about  10. The  new  formula is there-
fore expected  to be consistent  with  the same

data which  suggested  the original  variation

with  loge(R).

  The  new  expression  has certain  advantages,

for instance it implies :

 G=[  
pG,
 ].,p' R"=[  

pG,
 ].,p'`i-"'pc'" (6)

i.e. G  depends on  p' to the power  (1-n) and

pc' to the power  n.  Since G  may  reasonably

be expected  to increase with  p' for constant

p.' and  to increase with  pc' for constant  p'
this immediately suggests  on  physical  grounds
that  n  should  lie between O and  1. (No such
simple  argument  could  be used  to limit the
value  of  the parameter C).

  For sands,  Hertzian contact  theory  can  be

CLAY 141

used  to predict a  variation  ef  both bulk and

shear  moduli  as  power  functions of  pressure.

The  rnoduli  are  often  expressed  as  proportional
to p'M with  m=,O,5.  If any  similar  mechanism

is applicable  to clay  behaviour, then  by com-

parison with  Eq. (6), the value  of  (1-n) for
clays  may  also  be expected  to be about  O.5.

  The  second  advantage  of  the new  formula
is that by combination  with  the  expression

for the  undrained  shear  strength  one  may

derive a  simp!e  relationship  between G, su  and

R. Assuming that isotropic elasticity  is appli-

cable  during the  initial stages  of  an  undrained

shear  test, then  it follows thatp'  =po',  so  that  :

       [ sG. ]==[ 
,G.
 ].,RC"-ri' (7)

which  relates  G  directly to s., Since values
of  n  may  typically be about  O,5 and  A  about

O.75, the  exponent  (n-A) may  be expected

to be approximately  -O.25.  This  may  be
compared  with  the data from Ladd and  Edgers
(1972) (Fig. 4), assuming  that  some  low Gso
values  for normally  consolidated  specimens  are

essentially  due to additional  strains  caused  by

prastic deformation. The  A value  for Boston
Blue Clay is aboutO.8,  and  the  shear  modulus

variation  suggests  a  value  of  (n-A) of  -O.65,

i,e. n=O.15  (perhaps a  rather  low value)  and

[ ke ].,=2so.o.
  The  non-dimensional  parameter(Glsu)defined

by Vesic (1972) as  the  rigidity  index IL･ is

particularly  useful  since  it appears  in many

analyses,  for instance in the  cavity  expansion

Ils,Qosu

  300
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Ilig. 4. [ !iZO ] values  for Bosten Blue Clay,

    after  Ladd  and  Edgers  (1972)
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analysis  of  the pressuremeter test, pile instal-
lation or  cone  penetTation  test. Note that  for
a  simple  elsastic-perfectly  plastic soil  model

(G!s.) is related  to the  inverse of  the engineer-
ing shear  strain  to failure, so  that the  strain

to failure is predieted as  varying  as  R"-"},
i.e. the  soil  behaves in a  more  ductile manner
with  increasing overconsolidation  ratie  (al-
though  the  variatien  is rather  small).  In

practice this  trend  is not  observed  since,

especially  at  low overconsolidation  ratios,  con-

siderable  plastic strain  occurs  long before peak
$tress  is reached.

  Loudon  (1967) presents shear  test data in
the form  of  shear  strain  contours  for triaxial
tests at  different overconsolidation  ratios.  This
infGrmation is indirect evidence  of  the shear

medulus  variation  (although it confirms  the

non-linearity  of  the stress-strain  response).  The
data are  presented  (see Fig. 5) in terms  of  the

non-dimensional  parameters (gLpe') against

<PtLpe'), where  pe' is the  equivalellt  pressure,
defined as  the value  of  the pressure on  the

isotropic normal  consolidation  line at  the same

specific  volume  (point C  in Fig. 2 for a  soil

currently  at  stress  point A). It may  readily

be shown  that:

        R=[Ppc,' ]=[Ppe,' ]ti" (s)

The  shape  of  the  shear  strain  contour  may  be
deduced as  follows :

       q=3Ge=3[  pG, ].,p'R"e (g)

Substituting from  equation  (8):

  o･s

                          wO02
  O･4
                          oel

  a･3            
---L...

apt

 D･2  
"

  O･1

                 -u-   o
   o o: ot o･3 o･4 -s  D･s o7  e･e De  1-o

                      &
  Fig. 5. Shear  Btrain  contours  for kaelin, after

      Leudon  (!967)
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q

                                      pt

    Fig. 6. Predicted shape  of  shear  strain

        conto-rs  for (1-n/A)=O.375
             '

   [ pZ' ]=3[ 
iGb,
 ].,[ 

pP,',
 ](i-"'"'` ao)

So for e=:constant,  [ pg,, ] varies  with

[pPi ](i-"iri)' Taking typical values  of  A:r:O-8

and  n:=O.5  the  exponent  (1-n/A) is O.375, and
the predicted shear  strain  contours  are  as

shown  in Fig. 6. It can  be seen  that the

trends  of  behaviour observed  experimentally

are  broadly matched  by the  theory.

SUMMARY  AND  CONCLUSIONS

  Critical state  models  imply a  variation  of

the elastic  bulk modulus  in the form  KLt,'=
censtant=11rc*.  They  also  imply  a  variation

of  the undrained  shear  strength  in the  form
<sulvo')=::(suZpe')ncRri. In this note  it is further
suggested  that the variation  of  shear  modulus

may  be represented  by an  expression  (GZt}')=:
(Gip')ncR'i and  this  is supported  by experi-

mental  data, resulting  therefore  in the relation-

ship  (Glsu) =(Gfsu)ncR("'n)  which  may  be con-

venient  for estimating  values  of  shear  modulus

from the  relatively  easily  measured  undrained

strength.

NOTATION

C  =Censtant

e  =Voids  ratio  (=V-1)
G  =  Shear modulus

lr =:Rigidity  index Gjou
K  =rBulk  medulus
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m  =Exponent

n  :=Exponent

pt =Mean  effective  stress

Pc' =Preconsolidation  pressure

pe' =Equivalent  pressure

Po' =Initial  effeetiye  stress  in undrained  test

q =Deviator  stress

R  =Overconsolidation  ratio

sd  =Undrained  shear  strength

v  =  Volumetric  strain

V  =Specific  volume

Vl =Defined  as  V+2logop'

r =Engineering  shear  strain

rc =Gradient  of  swelling  line in V-logip'  space

rc* :=GradSent  of  swelling  line in logeV-logqp' space

2 =  Gradient of consolidation  line in V-logeP'
   space

Z" =Gradient  of  consolidation  line in logeV-!ogqp'
   space

A  =(2-rc)f2

T  =Shear  stress
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