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RELATIONS  BETWEEN  PROCESS  OF  CUTTING
      AND  UNIQUENESS  OF  SOLUTIONS

KENll IsmHARA*

                              SYNOPSIS

 When  an  accurate  stress  analysis  is to be made  fbr excavation  problems, it is desirable'-
to make  a  step-by-step  calculation  by simulating  the actual  steps  of  excavation  procedure.,
In this connection,  there arise  some  fundamental questions as  to whether  the solutions  are  

･

all identical when  the order  of  cutting  is changed,  and  whether  the solution  fbr multi-

stage  cutting  equals  that fbr a  single-step cutting. To  check  the uniqueness  of  the solution
fbr these diflerent methods  of  cutting,  the uniqueness  proof was  investigated by fbllowing
the conventional  method  of  approach  which  has been used  extensiveiy  in the theory of'

elasticity  and  plasticity. The well-known  theorem  of  vinual  work  was  applied  to the

proof together with  the stress-strain  relationship  of  the material.  It is shown  that the
uniqueness  depends strongly  upon  the material  properties, and  that the suMcient  condition

for the  uniqueness  to be established  is that the material  is linear, time-independent  and.

elastic  throughout  the  cutting  process.

                          1. INTRODUCTION

  When  a large-scale excavation  is made  in the field, it can  not  usually  be done overnight..

It is made  on  a  step-by-step  basis by fbllowing a  certain  process which  is determined in･
eachcasebyconsideringtheeconomyandthesafetyoftheconstruction.  Amonganumber'
of  conceivable  methods  which  can  lead to a given final design section  of  the cut, the only'

one  process that can  be considered  the best is chosen.  Corresponding to each  conceivable

construction  process, the stress and  the displacement in the surrounding  ground change

from one  step  to another.  One  eonstruction  procedure will  produce  a  pattern of  stress･

path and  a  diflerent stress  path will  be  fbrmed  when  some  other  procedure is taken  up.

Therefore, there are an  infinite number  of  stress paths cerresponding  to all the conceivable

constructuion  procedures. When  the behavior of  ground soils is such  that the stress
and  displacement in the final design cross seetion  are determined uniquely  irrespective of'

the history of  the  stress  change,  it may  be permissible to  calculate  the stresses  and  dis-

placements at  one  time fbr the final configuration  without  tracing the intermediate paths.
When  the soil is assumed  to  be elastic  and  the  change  in the boundary condition  is specified
in the form of  change  in load or  surface  defbrmation without  any  change  in the boundary 

'

configuration,  the superposition  principle in the linear elasticity proves that the solution,
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'is
 determined uniquely  irrespective ofthe  stress path through  which  the fina] state  is reached.

'The
 problem involving determination of  the stress and  surface  deflexion of  an  elastic soil

ground  loaded on  some  area  of  the surface  is one  example  of  this type of  problem. How-

ever, when  the boundary condition  is specified in terms of  the change  in the boundary shape
as  is usually  the case  with  cutting  practice, path-independence  of  the solutions  seems  to
be left open  to question, even  though  the material  is erastic.  Ifpath-dependence  is actually

the case  even  with  an  elastic soil, the final state  of  stress and  deformation is dependent
upon  the  stress-path  through  which  the final shape  is reached  and  the rnultiplicity  of  the

solutions  results corresponding  to the  conceivable  construction  procedure. This means
that the final behavior of  ground  is to be assessed  by simulating  every  step  of  construction

procedure as closely  as possible in the program of  computation,  because otherwise  no  de-
finite solution  is obtained.  Therefore, a  fundamental question arises  whether  the  solution
'fbr

 an  elastic ground is ever  path-dependent or  not,  when  the process of  excavation  is
changed.  When  the soil  can  be considered  elastic, the path-independency  seems  to be

 true  from the study  of  Goodman  and  Brown.i3) Howeyer, they  did not  furnish the definite

 proof of  uniqueness  of  the solution.  In this paper, the question of  uniqueness  will  be

 considered  from a  general point of  view,  using  the virtual  work  theorem  and  the

 uniqueness  for some  particular material  properties such  as  elasti¢ ity, pore  elasticity and

 plasticity will  be examined.

                  2. REVIEW  OF  THE  PREVIOUS  WORKS

  Investigation on  the  behavior of  a  ground due to excavation  was  initiated in connection
with  evaluation  of  stresses  and  displacements around  a  hole of  a  tunnel. Earlier attempt
for this problem was  made  back  in 1920's by H. Schmiti' and  N. Yamaguchi2),  who

succeeded  in determining stress and  displacement fields due to gravity around  a  circular

hole located far down  from the ground surface.  Following these contrjbutions,  a  number

of  investigators such  as  Z. Anzo,3) R. D. Mindlin`} and  Yi-Yuan Yu5) extended  the theory
further to take  into account  the eflbct  of  ground surface  or  to include various  configura-

tions of  tunnel  openings  other  than  a  circular  hole. Among  them  N.  Yamaguchi  was

the first to introduce the concept  of  superposing  two  kinds of  stress  fields to make  the
'boundary

 surface  ofa  tunnel  free from stress:  the first one  is due to existing  stresses  and

the second  one  is an  additional  field which  is equal  in magnitude  but opposite  in sign  to
the  existing  stresses  on  the  wall  of  tunner  hole. Since the Iatter stress fields are  superposed

to make  the  existing  fields cancel  on  the boundary, it can  be considered  as  an  incremental
field which  is caused  merely  by removal  of  the mass,  i.e., excavation.  This method  has
an  advantage  over  other  methods  in that the added  stress  field can  be treated  separately

from the  existing  one.  To  be more  specific,  it can  be applied  even  for such  cases  where

the deformation characteristics  which  a  material  exhibits  during creation  of  the existing
stress is different from those  which  it exhibits  during subsequent  distrubance due to ex-
･cavation.

 In general, the existing stress fields have been formed after a  long history of
tectonic movernent  of  rocks  or  after  gradual consolidation  of  soft  soils, whereas  excavation

is generally made  in a few months  which  are  by far shorter  than  the period during which
'the

 existing  stresses were  formed. The  stress-strain  relationship  which  a  rnaterial exhibits
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during these two  major  stress  changes  is, therefore, different in general.

  Application of  this method  to the behavior of  ground  or  slopes  due to open  cutting:

was  delayed until quite recently,  because of  the  analytical  diMculty  in handling the complex

shapes  of  excavated  boundaries. Now  that the development of  high-speed electronic

digital computers  has made  it feasilbe to carry  out  a  great deal of  computation  on  the

basis of  the  finite eiement  method  or lurnped-parameter method,  a  number  of  problems

ever  considered  diMcult can  now  be solved  without  diMculty. An  analysis  along  this

line was  presented by W.  Finn6} to predict elastic behaviors of  slopes  due to cutting.

E. Dibiagio'] presented usefu1  results of  computation  for rectangular  open-cuts  in elastic

grounds by using  the method  proposed  by Yamaguchi. Different cases  were  considered,

changing  the geometry of  cuts,  the  elastic  modulus  of  soils, and  the values  ofinitial stresses.

C. B. Brown  and  I. P. KingS} presented results of  their works  concerning  the shear  stress

distribution within  cut-down  slopes,  pointing out  the importance of  simulating  excavation

procedures in computing  behaviors of  slopes  due to cutting.  By means  of a similar  method

T. Kawamoto9) analyzed  the behaviors of  slopes  consisting  of  anisotrepic  rocks.  The

changes  in stress  and  displacement as the rock  loses its strength  gradually with  time were

studied.  J. M.  Duncan  and  P. DunlopiO} centered  their attention  to the effect of  initial

horizontal stresses  on  the subsequent  defbrmation of  cuts made  in stiffLfissured  clays.

A  considerable  amount  of  computation  was  perfbrmed  usjng  the finite element  method  to

interpret various  failure case  histories in terms of  the computed  values.  AII the works･

mentioned  above  were  done  on  the basis of  the assumption  that the soil  or  rock  can  be

considered  as  a  linear elastic material.  More  recently  the problem of  loosening of  the

wall  and  ceiling  in a rock  tunnel  as  excavation  proceeds was  investigated by M.  Hayashi,i')

by  successively  tracing the change  in stress which  is caused  by the development of  cracks

within  rocks.  Successive development of  a plastic zone  within  soft clays which  can  occur

as the ground  is excavated  without  bracing was  analyzed  by T. Kokusho,i2) on  the assump-

tion that the soil  can  be approximated  by an  elastic-perfect plastic material.

  All these  works  except  the Iast two  have been done on  the basis of  the tacit assumption

that  the solution  fbr a final design section  is uniquely  determined, no  matter  what  method

of  cutting  may  be employed.  Since the uniqueness  of  the solution  as  explained  in Intro-

duction has not  been studied  in detail, it seems  necessary  to look back into this fundamental

question again  to  give a  sound  basis fbr the cutting  problern as a  whole.

        3. SYSTEM  OF  BASIC  EQUATIONS  AND  BOUNDARY  CONDITIONS
                    FOR  THE  PROBLEM  OF  CUTTING

 When  a  body  under  consideration  is subjected  to disturbance due to change  in the･

boundary shape,  the  assignrnent  of  boundary conditions  is obviously  different from what

is done when  there is no  boundary alteration.  Therefbre, it is necessary  first to know

how  the boundary condition  should  be specified fbr such  a  problem. Befbre proceeding
to the question of  process of  cutting,  a fundamental aspect  of  the boundary value  problem
will  be considered  in this section. In order  to make  the illustration simpler,  two-dimen--

sional  plane strain  problem  will  be taken up  hereafter throughout  this paper.
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     a) after cutting  b) before cutting  c) change  due to cutting
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                  Fig. 1. Change in force system  caused  by cutting

(1) Eiczuationsfor the initial state ofstresses.
  Assume  that the entire  body  TR  +  To  is injtially in equilibrium,  as  shown  in Fig. Ib,
with  the gravity fbrces and  the external  surface  tractions 7Le, 71S on  the part ST of  the
boundary, and  the surface  displacernent u.S and  u,S on  the part S.. The  volume  element

To in Fig. Ib is going to be removed  as a result of  cutting.  Since the behavior of  the re-
maining  part TR  only  is of  major  concrn  to us, the equations  which  hold fbr this region
will  be exclusively  considered  in the following.

  When  confining  our  attention  to  the  region  TR,  the forces 71,(AC), 7}(AC)  which  are  act-

ing on  the body  TR  across  the interface ABC  must  be considered  as boundary tractions.
Hence, the equilibrium,  compatibility  and  boundary condltions  fbr the region  bounded
by ABCD  are  written  as  fbllows:

                      
Ooa.:O

 + 
OoTlv

 +4=o  )
                      6oT;:e+aea,,,o +4.,o  j (i>

           e.o-  
OeUIO,

 e,o=  
6oU;O,

 r:,=i(0ouyxe + 
Oouxore)

 (2>

7Ls, ns
71c(AC)･ 71r(AC)

uxSp uvS

ononongl.iSu

(3)

(4)
where  a.O,  aO.  and  TO., are  components  of  stresses  and  u.e  and  u,D are  those of  displacements
in the domain TE.  From  the principle of  virtual  work,  the set of  Equations (1), (2), (3)
and  (4) can  be incorperated into one  single equation  as  fo11ows:

I.R(axOexe+a,Oe,O+2rO.,r:,)cin =  I..(Fl,u.O+4u,O)dr+ Is.(z,su.e+ Tlasu.O)cLs

       +  j,..[71e(AC)uxe+ 71F(AC)uvO]as+ I,.[Z,u.s+ lleu,e]as (5)

In Eq. (5) the fbrces 7;, and  7le acting  on  the  boundary S. are  related  with  the stresses o.,

ou, and  T., as  fo11ows:
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L=  n.T.v  +  n.av  J

(6)

where  n., n,  are  the  direction cosines  of  a  surface  element,  taken positiye when  directed
outward.  The  left-hand side of  Eq. (5) represents  the stored  energy  in the interior of  the

body rR,  while  the right-hand  side expresses  the total energy  supplied  externally  by the

body force and  the surface  forces. It is important to note  that Eq. (5) is exactly  equivalent

to a  set of  equations  given by (1), (2), (3) and  (4). Therefbre, instead ofconsidering  sepe-

rate  equations  individually, we  can  use  one  compact  Eq. (5) to examine  the physical nature

of  the basic boundary value  problem. It should  also  be kept in mind  that the set of

Eqs. (1), (2), (3) and  (4) does not  contain  any  infbration as  to the stress-strain relation-
ship.  Therefbre, the equivalent  Eq. (5) can  be applied  fbr any  sort  of  continum  body even

if no  information is available  regarding  the material  properties. For  this reason,  the

kinematic quantities e.O, e,O . . . need  not  necessarily  be associated  with  the, strains  which

are  produced by the corresponding  statical quantities a.O, a,O....  In other  words,  cem-

pletely fictitious kinernatic quantities which  have nothing  to do with  the corresponding

statical quantities can  be used  in Eq. (5), as long as the kinematic quantities satisfy  the

conditions  expressed  by Eqs. (2) and  (4). It is for this reason  that  Eq. (5) is usually
called  the  theorem  of  virtual  work.

<2) Eiguations for the post-cut state

  Now,  we  will  consider  the set  of  equations  which  must  be satisfied  after  the  block re ･

shown  in Fig. Ib is detached from the block Tn.  The incremental changes  in stress and
displacement produced by the change  in the boundary shape  will  be denoted by tia.,

da,, dT., and  tiu., au,, ... zle., Ae,, ..., respectively.  In this state  the initial stresses

a.O,  a,e  . , . plus the increments da., da,, . . . constitute  the total stress  system  which  must

satisfy  the equilibrium  equation.  Likewise the total strain and  displacement system
e.O +  Ae., e,O +  Ae,, . . . , u.O +  Au., u,O -- tiu. . . . must  satisfy  the cornpatibility  equa-

tion, and  we  have

e(a.O +  Aa.)+O(TO.v+Arxv)
   OxO(TO.y

 +  zlTxv)+

  OyO(a,O

 +  Aa,)
Ox

+4=O

e.O +  de. =O(u.O
 +  Au.)

Oy
+4=o

eyO +  Aey =

Ox 
,

a(u.O +  Au.)

6(u,O +  Au.))

f

(7)

ro., +  drxg =  i5- ( +O(u,O
 +  Auv))

6y
(8)

Oy ax

As  far as the boundary conditions  are concerned,  the stresses on  the boundary ABC  are

now  equal  to zero.  It is to be noticed  that on  the boundary ST, the extemal  traction force
does  not  change  and,  on  S., the given displacement remains  as  it was  before the cut  was

made.  Therefbre, the boundary conditions  now  become
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                        T}s, 71s on  ST 
･(9)

                        u.S, uvS on  S. (10)
It should  be kept in mind  here that the boundary conditon  (9) can  not  be satisfied  in
･case

 nowhere  are  the boundary conditions  specified  in terms of  surface  displacements.
We  will  exclude  such  an  exceptional  case  from the  fbllowing discussions. If the basic

equations  (7) and  (8) and  the boundary conditions  (9) and  (10) are expressed  in terms of

the virtual  work  theorem,  it fo11ows that

    s      [(e,O +  Ze.)(o.O +  Aa,) +  (e,O +  Ae,)(a,O +  aa,)+2(rO., +  Arxv)(TO., +  dT.y)]dr
     TR

      ::: !..[4(u.O +  du.) +  &(u,o +  d.,)]dr

       +I            [z,s(u.e +  Au.) +  Tl,s(u,e +  Au,)]cLs
          ST

       +j,.[ux'(7le+di71,)+u.S(71,+tiTle)]cLS (11)

Now,  subtracting  Eq. (5) from Eq. (11) we  get

    I..[datAex +  davdev +  2Ar.yArxy]dt +  !.R[e.Odo. +  e,Ozta, +  2r:,dr.,]d:

       +  iTR[axOAex +  oveAev  + 2TO.,Ar.,]dr

      =  I..[4aum +  4du,]dr +  I,.[7lesau. + nsAu,],Ls

       +!,.[u.Sd  7L +  uvS`d Tle]dS 
-
 I,.,[7},(AC)u.O +  TL(AC)u,O]as (12)

The  second  term  of  the  volume  integral on  the  left side  of  Eq. (12) is transformed  into a
surface  integral by using  the  divergence theorem  of  Gauss as  fbllows:

  !..[daxexO +  da,e,O + ZIT.,r.;]dr =  !rR[Aa.OoUx"O +  Aa,aoUs;O +  AT.,(eoUJx,e +  
6oUx,O)]dr

    =  
-
 I ,.[(eoAxax  +  

OSxv)
 u.o +  (l2it{pa + 

Oodyoy)
 u,o]dr  +  I ,[A  rL u.o +  Azu.o]as  (1 3)

where  tf7le =zla.n.+AT.,n,,  zl7le=zlT.,n.+Aa,n,  (14)
The  last term  in the right side of  Eq. (13) rnust  disappear on  the boundary ST, because the
surface  traction is assumed  unchanged  during cutting. On  the boundary S., u.O and  u,O

must  be u.S and  u,S, respectively, from Eq. (4). On  SAa, d7} =  -  7}(AC) and  dTl, =

-
 1le(AC). Therefore, the last term  becomes

  I,[d7Lu.O+dlUdu,O]ctg=I,.[u.slf7L+u.ezi71]dS-I,.,[7}(AC)u.O+7L(AC)u,O]`tS
                                                               (15)
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In a  similar  way,  the volume  integral in the  third terrn on  the left side of  Eq. (12) is trans-
fbrmed as

  I..[axeAex +  ovOAe.  +  2r:,Ar.,]dT =  I..[a.o 
0oAxUx+a,o

 
OeAyUu+

 To.,(ao.dyUx+  
OoAxuv)]de

    =:  
-
 i..[(OoOIO +  

Oo'y:
 
u)Aer.

 + (aorxOxy+ {illSl'!)du,]dr + !.[7Lozlu. +  7}oAu,]cns (16)

The  last term  on  the  right  side of  Eq. (16) disappears on  S,,, because the  displacement is
assumed  confined  there during cutting. On  ST, 7LO ==  71,S, 7LO ==  7}S and  on  SAc, 71,O ==

71,(AC), 7'bO =  TL(AC)  from the boundary conditions  (3). Therefore, the last term
becornes

I,[71OAu. +  7}oau,]cLs

=  j,.[7LSAUx H- 7}SAuv]dS +  i,.,[71,(AC)Au. +  Tlo(AC)du,]ctS

In deriving the above  relation, the cornpatibility  relations  given by

       de. =  
Ood.Ux,

 Ae, 
--
 
-O-t.Ay"",

 dr.,=  S(O"odxor" +  
O,A.y"m)

were  used,  because the Relation (l8) js
ing Eqs. (13) and  (16) into the  Relation (12) together with  Eqs. (1),
one  obtain,

(17)

(18)

a  direct consequence  from Eqs. (2) and  (8). Insert-

                         (7), (l5), and  (17),

    I..[damdex +  Aavdev +  2ATxvtir.y]th ==  -  i,.,71,(AC)Au. +  7}(AC>Au,]dS (19)

The  above  equation  is the expression  of  the  virtual  work  theorem  for the incrernental
change  in stress and  strain, in the domain TR,  which  is caused  by the removal  ofa  part of
thepre-stressedbody. Inlookingattheequation,itshouldbeemphasizedthattheinduced

stress and  strain increments have nothing  to do with  the boundary tractions  7I,S, 7}S on

ST  and  the  boundary  displa¢ ements  u.`, u,S on  S. which  are still being applied  during
cutting. Inother words,  the incremental stresses  and  strains should  be determined with  the

modified  boundary conditions  in which  the surface  tractions being equal  in magnitude  and

opposite  in sign  to the initial fbrces 71,(AC), 7}(AC) are  imposed along  the boundary SAc,
and  with  the  surface  traction  and  the displacement vanishing  on  ST  and  S., respectively.

Another point to be noted  is that the only  quantity in Eq. (19) which  is connected  with

the previous history of  loading is the  surface  tractions 71,(AC) and  TL(AC). In other

words,  the effect, on  the subsequent  incremental change,  of  the previous history of  loading
is taken into account  only  through  the initial stresses  along  SAa. It does not  matter

how  the initial stresses  have been reached  through  the complicated  history of  loading in
the past. A  single  or  a  sequence  of  elastic,  plastic, viscoelastic, or  poroelastic process
may  have contributed  to the fbrmation of  the current  state  of  stresses. The only  require-

ment  that the initial stress system  must  fulfi1 is to satisfy the equations  of  equilibrium,
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compatibility  and  appropriate  boundary conditions  as indicated by Eqs. (1), (2), (3>
and  (4). In dealing with  cutting  problems in a natural  soil deposit or  rock  fbundation,
it is almost  impossible to know the existing  stresses by tracing the past history of  loading.
Fortunately, we  need  not  try to know  the history alr through.  All we  have to do is just
to know  the existing  stresses. This can  be done by direct measurement  of  earth  pressure
coethcient  at rest or  some  other  values,  in-situ or  in the laboratory.

                         4. PROBLEM  SETTING

  Consider a  body as  shown  in Fig. 2. The  entire  mass  bounded by AKFJIHG  is initially
in equilibrium  with  gravity fbrces FL, 4, the external  fbrces 7LS, T}S en  the boundary
ST, and  the surface  displacements u.S, u.S on  S.. Suppose that a cut  is to be made  step-

by-step unti!  the final configuration  ABCDEFK  is reached.  The initial state  is disturbed

by successive  removal  of  pieces of  masses  which  are denoted by 1,2, ...nin  Fig. 2. The
number  of  ways  in which  these masses  are  removed  step-by-step  is theoretically n!  ===

n(n  -  1)(n -  2) ... 3･2･1. In considering  the effect  of  excavation  processes, there

arise  two  questions: the one  is whether  the exchange  of  the order  of  cutting  is essential

and  the other  question is if multi-stage  cutting  can  be replaced  by a single one-step  cutting.

When  attempting  to examine  these questions, there is no  need  to consider  all of  the pos-
sible ways  of  cutting.  It is suMcient  to see  the effect  only  for two  arbitrarily  chosen

masses.  The  reason  fbr this is as  follows. As  far as  the first question is concerned,  it is

apparent  that the result  obtained  fbr two  arbitrarily  selected  masses  can  be applicable  to

all other  combinations  of  cutting  order  and  it is not  necessary  to consider  all of  them.

The  second  question can  be reduced,  as  fbllows, to the problem  in which  only  two  masess

are  involved. Consider the n-th  and  (n -  1)th blocks in Fig. 2. If it is proved  that the

simultaneous  one-step  removal  of  both masses  yields the  same  answer  as  two-step  separate

removal  ofthese  masses,  there is no  need  to separate  them. The  two  masses  can  bejointly
considered  as  one  mass.  The  number  of  masses  to be separately  considered  is then  re-

duced by one,  totaling now  (n -  1). Therefore, it fo11ows that  the solution  obtained  by

n-step  removal  of  the soil  masses  is identi¢ al with  what  is obtained  by (n -  1) step  cut-

ting. By  repeating  this reasoning,  we  can  eventually  reduce  the number  of  cutting  to one.

                   

zs

Flg. 2, A  simplified  model  of  excavatien  sequence
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Thus, it can  be said that the final solution  for a  cut  obtained  by successiye  removal  of

n-masses  of  soils  is identical with  that which  is obtained  by removing  the entire  blocks
altogether  at one  time, if the solution  fbr simultaneous  removal  of  two  arbitrarily  selected

masses  is shown  to coincide  with  that fbr separate  removal  of  these two  masses.  It is,
therefore, obvious  that the proof of  uniqueness  fbr n-sequence  of  cutting  can  be reduced
to that for two-step cutting.

      5. VIRTUAL  WORK  EQUATIONS  FOR  ONE  AND  TWO-STEP  CUTTING

  Let us  consider  two  masses  shown  in Fig. 3, in which  parts Ti and  T2 of  the volurne  T

are going to be cut  off  eventually.  There are  three ways  the excavation  is made.  The
first method  is to take off  the volume  Ti  first and  then to cut  the yolume  T2 next.  The
second  method  is the  reverse  of  the first. The third  method  is to remove  the volume

Ti and  T2 altogether  at  a  time.  Now,  if it is shown  that the solution  fbr the first removal

of  ri fo11owed by rernoval  of  r2 is identical vvith the simultaneous  cutting  of  Ti and  T2, it
naturally  fbllows that the reverse  case  in which  T2 is cut  first and  then Ti yields the  same

solution  as  for the case  of  Ti to T2 cutting,  because the masses  Ti and  T2  are selected  quite
arbitrarily  without  any  restriction  on  its size  or  the relative position within  the entire

mass,  Consequently, the first question raised  above  concerning  interchangeability of

･cutting order  can  be automatically  answered,  if the proof is obtained  as  to the second

questionconcerningreplaceabilityoftwo-stepcuttingbyone-stepcutting.  Then,toanswer
the whole  question, it is suMcient  to examine  only  two  methods;  two-step removal  of  Ti

and  T2, and  simultaneous  one-step  removal  of  Ti and  T2.

D

s

Fig. 3. A  model  of  two-step eutting

<1) TVvo-step cutting

  Consider the change  in stress  and  strain which  occurs  when  the volume  Ti is removed
from the body  T  as  shown  in Fig, 3. As proved befbre, the change  in stress  and  displace-
ment  in the  volume  TR  which  is caused  by the removal  of  Ti is equivalent  to that which  is
･created by applying,  on  the  boundary surfaces  AB  and  BD,  the forces which  are  of  the same
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magnitude,  but of  opposite  sign,  to those initially existing  there, At  this time, the  forces
7L(BC) and  7}(BC) which  have acted  along the interface BC  change  and  their increments
will  be denoted  by a7k(BC) and  A7}(BC). Henoe,  denoting the changes  in stress by Aa.',
Aa,', dr.,', the  changes  in strain by de.', ae,', Ar.,', and  the changes  in displacement by'
au.', du,', the virtual work  equation  which  holds for these changes  is from Eq. (19),

i  [da.'de.' +  da,rde,t +  2dTxvtArxv']dv
 rR

  i=-!,..[71F(AB)d"t'+T}(AB)AUv']as+!,.,[A7}(BC)du!+nlL(BC)Au,']ctS

                                                               (20)

Since the volurne  rR  being considered  is bounded  by the surfaces  AB  and  BC  but not  direct--
ly by BD,  the effeet of  the rernoval  of  the initial stresses along  the boundary BD  does not
appear  explicitly  in Eq. (20). Instead, the effect  is included implicitly in the changes

d7L(BC) and  A71,(BC) which  are  necessary  to keep the volume  elements  T2 and  TR  in contact
with  each  other  along  the interface BC

  Next, remove  further the volume  T2. The changes  in stress  and  strain will be denoted
by do.t', Ao.tt, Ar.," and  Ae.'t, Ae,tt, Ar.,tt. The  increments in displacement will be desi-･

gnated by du.t' and  Au,tt. In this case, the removal  of  the initial stresses is achieved

along  the boundary BC. From  the basie theorem  demonstrated in Eq. (19) the vitrual'

equation  reads

I  [zta.'rAe.tt +  tio,'tAe,rt +  2AT./tArx,tt]de
 TR

  =  -!...[{7}(BC>  +  A7}(BC)}Au=" +  {7}(BC) +  A7L(BC)}du,"]cts (21)

Eq. (20) relates the stresses Aa.', da/, dr.,' with  the boundary forces 7}(AB), 71,(AB),.

d71,(BC), A71,(BC), through  equilibrium.  The strains  Ae,', ne,', dir.,' in Eq. (20) are

related  with  du.', liu,' through  the  compatibility  condition.  Since any  equilibrium

stress  system  can  be connected,  through  the virtual equation,  with  arbitrary  strains satisfy-

ing compatibility,  the stresses Ao.t, Aayr, dT.v' are combined  with  the strains Ae.", de,n,,

Ar.v" as fbllows:

!  [da.'zte.t' +  Aa,tzte,n +  2AT.,tAr.,'t]dr
 Tft

  ==-!...[7}(AB)AUs"+7Lt(AB)Ztuu"]ctS+I,..[dT;e(BC)Au."+zll}(BC)Au,"]cts

                                                               (22)

Similarly, the stresses  Aa.tt, Aa,", dr.," are  combined  with  the strains Ae.L de,t, ar.,"
through  the foIlowing virtual work  equation:
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      !         [da.ttAe.t +  Aa,'tAe,' +  2Ar.,t'Ar.,']ck7
       rR

        =  
-
 I..,[{7L(BC) +  d7L(BC)}au.' +  {7L(BC) +  d7}(Bc)}Au,,](tg e3)

Adding Equations (20), (21), (22), and  (23), we  get

  !,R[Aax'dex' + Aa,TAe,' ÷
'
 2AT.T,dr.T,]dr

    :"  -i,..[7}(AB)AUx'  +  7}(AB)duvT]ctS-i,..[7}(BC)tiu.'  +  7}(BC)zlu,T]ds

    =-!...[1}(AC)duxT+n(AC)du,']ctS  (24)

where

      da.T =7. tda.r  +, da.rt, AavT =:  Ztoyr +  Aavtt, AT.Tv =  ztT,yt +  dT.vtt (25)

      de.T 
=
 Ae.' +  Ae.N, AevT =

 zleyt  +  zleyt', ltr.T, 
=
 Ar.vt + zir.ytt l

                                                                   (26)
      du.T=Au.r+ztu.tt, Auvr :::  duyt+Auyti, f
Eq. (24) is the  virtua]  work  equation  for the final solutions  aa.T, do.T ..., zie.T,  Ae,T ...

which  are  obtained  through  two  successive  steps of  cutting.

(2) One-step cutting

  From  the derivation of  Eq. (19), it is apparent  that Eq. (19) itself is the virtual  work

equation  fbr the  stress  and  strain  changes  which  are  achieved  when  the volumes  Ti and

T2 are  removed  altogether  at  a  time. The notations  Ao., Aa,, AT., and  Ae., zle,, zlr.. will

be used  to indicate the changes  occurring  as  a  result  of  one-step  cutting.

  New,  before proceeding to the uniqueness  proof, it is preferable to have the virtual

work  equation  which  combines  the  statical  quantities da., aa,, dT., obtained  by one-step

cutting  with  kinematical quantities de.T, de,', zlr.', obtained  by two-step cutting. With
reference  to Eqs. (19) and  (24), it is written  as

                I..[damAemT +  Aa,de,T +  2AT.,Ar.T,]d:

                 =:  -  i,.,[Tl:(AC)AuxT +  7}(AC)Au,T]ctS (27)
'The

 proof  that Eq. (27) is valid  can  be demonstrated as  in the case  of  Eqs. (13) and  (16).
Similarly, the virtual equation  for the  stress system  aa.', zfo,T, zlT.Tv and  the strain  system

.zte,, lie,, ar., is obtained  with  reference  to Eqs. (19) and  (24) a$ fbllows:

                I.RAam'zle. +  Aa.'de. +  2dTS,dr..]ctr

                  =-  I,.,[ TL(AC)Aux +  7;,(A C)du,]ttS (2s)
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                         6. UNIQUENESS  PROOF

  The uniqueness  proof  that the  stresses  and  strains obtained  by one-step  cutting  are

, identical with  those  obtained  by two-step cutting  will be made  in a  way  similar  to that which
has been done in the theory of  elasticityi`)  and  incremental plasticity.iS,i6} In these theo-
ries  where  no  alteration  in the boundary shape  is involved, the  uniqueness  proof ordinarily
follows a  standard  pattern as  outlined  in the fbllowing. Two  sets  ofsolutions  Zaii, Aeij
and  da:･i, Ae,T･j are  assumed  which  satisfy the traction boundary conditions  A7} and

A7}T on  ST, and  the  displacement boundary conditions  Aui and  duiT on  S., respectively,
where  daij and  Aeij denote stress  and  strain tensors, respectively.  The difference between
the two  assumed  states is substituted  in the  virtual work  equation  as  fo11ows:

!.(Ztaii 
-
 da,T･i)(dei,- -  zle:,)de

  =  I,.(d71 
"
 A7}')(]ui 

-
 dui')`rs +  j,.(d7} -  A7}')(Aui -  idu,T)ds (29)

Since the boundary conditions  are  identical for two  solutions,  i.e,, zl7} =  dT}f' on  ST
and  Aui ==  Aui' on  S., the right-side  of  Eq. (29) becomes zero.

I.(daiJ' -  Aa,T･j)(ded,･ -  de[･i)dg =  o (30)

If the material  under  consideration  is assumed  to be elastic, it is easily  shown  that  the
integrand in the  left-side of  Eq. (30) is always  positive except  for the case Ao,'･j 

--
 da,T･d

and  (or) deij =  de,'･i. Inasmuch as  the  integral must  be zero  as  indicated by  Eq. (30),
it necessarily  fbllows that  the  only  solution  which  satisfies  Eq. (30) is dew =  de:･i and

daij -- da,'-i. Thus, two  assumed  sets  of  solutions  are  shown  to be identical with  each

other,  indicating the uniqueness  of  the solutions.

  From  the arguement  outlined  above,  it is known  that the uniqueness  proof consists  pri-
marily  of  two  steps.

  Step l. The product between the diflerences in stresses and  in strains which  are  going
to be compared  with  must  be shown  to be zero  as indicated in Eq. (30).
  Step 2. For the assumed  material  properties, if it is shown  that the product is always
positive except  fbr the case  where  two  solutions  are  identical, the uniqueness  proof is
･complete.

 On  the contrary,  if it is shown  that the product can  be equal  to zero,  even

when  two  solutions  are  not  equal,  the uniqueness  is not  guaranteed.

  The uniqueness  proof  for the present problern will  also  be made  in two-steps as outlined
below.

  Step 1. The stress-strain  system  Aa., da,, dT.,, de., de,, Ar,. obtained  in one-step

cutting  is going to be compared  with  the  system  Aa.T, zta,T, Arl,, de.', Ae.T, ztr.Tv

which  is reached  through  two-step  cutting. To  this end,  the integral I as  fo11ows will
be considered.
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I =  I..[daxv 
-
 Aa.')(Ae. 

-
 de.') +  (tia, 

-
 da,T)(ze, 

-
 ne,r)

           +2(dTry rm ATf,)(Ztrev'dr.',)]dT (31)

If Eqs. (19), (24), (27) and  (28) are  substituted  into (31), it immediately fo11ows that:

                               I=O  (32)

  Step 2. [Ihe above  relation  was  derived without  referring  to any  infbrmation regarding

the stress-strain  characteristics  which  the material  would  show  during the process of

cutting. In other  words,  the  relation  can  apply  for any  material  properties, whether  it

is elastic  or  plastic. Without specifying  the behavior of  the  material  here, it is impossible
to know  further if the two  solutions  are identical or  not.  If the information  regarding

the stress-strain  characteristics  of  the material  is taken into account  in Eq. (32), it becomes

possible to prove  the uniqueness  of  the two  solutions.  In what  follows, consideration

will  be made  for various  types of  material  properties. To  make  the illustration easier

and  simpler,  let us  consider  the partiuclar case  where  uniaxial  defbrmation occurs  uni-

formly throughout  the volume  rR. In this case,  aa.,, da,T, and  zlT,,, ZT.T# are put equal

to zero  and  Eq. (32) becomes

                  4=(Aa,-na.')(de.-de.')=O  (33)

In Eq. (33) the quantity Aa.' is the summation  of  da.' and  da." as  defined in Eq. (26).
Now  the partition ratio

                           AA.a.=.' =:m  (34)

will be defined fbr later convenience.  On  the basis of  Eq. (33) the uniqueness  check  wi11'
be made  fbr several kinds of  materials.

(1) Linear elastic body

  The stress-strain  relationship  which  holds during the process of  one-step  cutting  and'

two-step cutting  is assumed  identical throughout. Then, for the uniaxial  extension

(removal) of  the soil, the stress-strain relationship  is

                dE. ==  
1-EV'

 da., dE.T=1-EV2  Aa.' (3s)

where  E  denotes young's modulus  and  v  is Poisson's ratio.

Introducting Eq. (35) into Eq. (33), it fbllows that

          Ih =  
1
 
ntE
 
"2

 (Aa. -  zta.')2 =  1 mE ., (ztE. -  liE.')2 )O  (36)

From  the inequality of  the Expression (36) it fbllows that  the  value  IZ, can  satisfy  the Rela-･

tion (33), only  when  zta. ==  da.' and  lfe. ==  zlE.T. It is also possible to show  that the same

inequality as  that shown  by the Expression (36) can  be obtained  fbr a  more  general case

where  Aa, and  nT., are  no  longer equal  to zero.  Therefbre, it can  be concluded  that the

uniqueness  is guaranteed for the simple  case  described above.  To  be more  specific,  the

solution  obtained  by  two-step  cutting  is exactly  the same  as  that obtained  by one-step
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cutting,  as  long as the  linear stress-strain  characteristics  exhibited  during one-step  cutting

hold also  throughout  the process of  two-step cutting. From  this conclusion  and  the

reasoning  in Sec. 2, it fbllows that the  addition  of  several  incremental solutions  obtained

by multi-step  cutting  must  be the same  as  those  obtained  by carrying  out  the  cut  at  a  time,

if the soil response  is elastic  throughout  the cutting  probess. It can  otherwise  be stated

that  the  way  or the order  of  cutting  is immaterial and  the same  result can  be obtained  whi-

chever  way  is traced in reaching  the final configuration  of  the  cut.

(2) Linear poroelastic bocly

  When  the soil  is saturated  with  water,  the change  in stress is generally accompanied  by

the drainage of  water.  If the deformation is of  concern  at the time immediately after

removal  of  the soil, the defbrmation is forced to oceur  without  volume  change,  because

there is not  yet enough  time  fbr the pore water  to drain out.  This kind of  deformation
will  be referred  to as  

"undrained
 defbrmation", or  

"short-time
 deformation". The

stress-strain relationship  for this condition  may  be defined by

                         dE. =:  
1
 
ME
 
U'
 zfa. (37)

where  v  is Poisson's ratio  being close  to lf2, because of  no  volume  change.  On  the

contrary,  if the solution  is sought  for the case a long time after  the cut,  the pore water  will

have drained out  by then. The  situation  a long time after  the cutting  will  be referred  to

as 
"drained

 deformation" or  
"long-term

 condition".  For this condition,  the  stress-

strain  relationship  may  be defined differently as

                         AE. =1-E"'2  Aa. (3s)

Where  v' is less than lf2. In the above  arguement,  it was  assumed  that the Young's modu-

lus for the drained condition  is the  same  as  fbr the undrained  condition,  but the Poisson's
ratio is different fbr each  case.  It is possible to make  cutting  in either  drained or  undrained

condition.  Since the general characteristics  can  be seen  by a simple  exarnple,  the fbllowing

case  will  be examined  thoroughly.

  Suppose that the second-step  cutting  is rnade  after a  Iong tirne has elapsed  since  the first

cut  was  made.  If the behavior of  the ground is of  concern  just after  the second-step  cut-

ting, the stress-strain  relationship  for the drained condition  must  be used  fbr the  first-

step  cutting, while  the undrained  stress-strain relationship  has to be used  fbr the second-

step  cutting.  Then, we  have

        AE.t= 
1
 
-EVt2

 da.t, dE.n ==  
1
 
'EP2

 Ae.tt

       A(.' =  AE.' +  dE"" =  zb[(1 
-  v")m  +  (1 -  v2)(1-m)]a.'  (39)

Now,  if the solution  for the case  as  assumed  above  is to be compared  with  those for the

one-step  cutting  which  is made  undrained  all through, the stress and  strain  fbr the latter

case  is related  by
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                               1-  va

                         dc. =

                                E  da. (4o)

Substituting Eqs. (39) and  (40) into Eq, (33), we  ･get

         Aa. -  Aa.'
    

IL=
 E  [(1-v')da.-{(1-v2t)m+(1-v2)(1-m)}Aa,'] (41)

                                                                  '

In order  that  I. in Eq. (41) is non-negative,  the condition  either  v ==  p' or  m  =:  O must  be
satisfied, otherwise  IL could  be negative,  This indicates that there could  be a  chance,

other  than  tia. =  Aa.T, which  can  make  the value  IL equal  to zero.  This is in contradic-
tion to the  uniqueness  of  the solution. Therefbre, it can  be concluded  that the  solution

obtained  by the two-step cutting, drained to undrained,  is different from  those  obtained

by  one-step  undrained  cutting.  Several other  mixed  program of  cutting  is also  feasible
by combining  the drained and  undrained  processes in two  successive  steps of  cutting.

From  the similar  reasoning  as above  applied  to these mixed  scheme,  it is easy  to realize
that different solutions  are  obtained  if the soil  material  exhibits  diffbrent deformation
characteristics  in each  step  of  cutting.

  Poroelastic consolidation  process essentially  involves a time-dependent  defbrmation.
Complete discussjon of  the uniqueness  for such  a defbrmation process is out  of  the  scope

.of 
this paper.

(3) Iitcrementally pkzstic bo`ly

  Plastic stress-strain relations for work-hardening  materials  are strongly  path-dependent.
According to this theory, material  constants  which  relate  linearly further incremental
changes  in stress with  those in strain depend generally upon  the current  state  of  stresses.

  The stress-strain relationship  to be used  for future incremental changes  in stress and
strain changes  depending upon  the prsent state  of  stress  from which  the deformation
starts. Hence, in the case  of  two-step cutting,  the stress-strain  relation  which  the material

shows  at  the  first cutting  is generally different from that at the second  step  of  cutting.

Consequently, the excavation  involving multi-stage  processes of  cutting  will  show  a  difi
ferent behavior of  the ground if the cutting  is made  differently even  though  the final
configuration  of  the cut  is the same.  It is also  said  that the exchange  of  the order  of

cutting  does produce  different solutions,  because of  the difference in the stress-path.

                           7. CONCLUSIONS

  In connection  with  the stress  analysis  for the excavation  of  the ground, the uniqueness
of  the solution  with  respect  to changing  process of  cutting  was  investjgated. As  the

results of  the study  using  the yirtual  work  theorem,  it is confirmed  that  the solutions

obtained  by the different order  of  cutting  are all equal  when  the  ground consists  of

a  time-independent  linear elastic  rnaterial.  On  the basis of  the uniqueness  proof  it was
further shown  that the multi-stage  cutting  process can  be simulated  by a single steP  cutting

as  long as  the material  is linearly elastic. On  the contrary,  if the material  exhibits  time-

dependent, or  plastic properties, the uniqueness  can  not  be guaranteed. In this case,
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the final state of  stresses can  not  be obtained  unless  the complete  history ofloading  program
is specified.
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