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RELATIONS BETWEEN PROCESS OF CUTTING
AND UNIQUENESS OF SOLUTIONS

KENJI ISHIHARA*

SYNOPSIS

When an accurate stress analysis is to be made for excavation problems, it is desirable-
to make a step-by-step calculation by simulating the actual steps of excavation procedure.
In this connection, there arise some fundamental questions as to whether the solutions are-
all identical when the order of cutting is changed, and whether the solution for multi-
stage cutting equals that for a single-step cutting. To check the uniqueness of the solution
for these different methods of cutting, the uniqueness proof was investigated by following
the conventional method of approach which has been used extensively in the theory of”
elasticity and plasticity. The well-known theorem of virtual work was applied to the
proof together with the stress-strain relationship of the material. It is shown that the
uniqueness depends strongly upon the material properties, and that the sufficient condition
for the uniqueness to be established is that the material is linear, time-independent and.
elastic throughout the cutting process.

1. INTRODUCTION

When a large-scale excavation is made in the field, it can not usually be done overnight..
It is made on a step-by-step basis by following a certain process which is determined in:
each case by considering the economy and the safety of the construction. Amonga number
of conceivable methods which can lead to a given final design section of the cut, the only
one process that can be considered the best is chosen. Corresponding to each conceivable
construction process, the stress and the displacement in the surrounding ground change-
from one step to another. One construction procedure will produce a pattern of stress.
path and a different stress path will be formed when some other procedure is taken up.
Therefore, there are an infinite number of stress paths corresponding to all the conceivable
constructuion procedures. When the behavior of ground soils is such that the stress
and displacement in the final design cross section are determined uniquely irrespective of -
the history of the stress change, it may be permissible to calculate the stresses and dis-
placements at one time for the final configuration without tracing the intermediate paths.
When the soil is assumed to be elastic and the change in the boundary condition is specified
in the form of change in load or surface deformation without any change in the boundary
configuration, the superposition principle in the linear elasticity proves that the solution.
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‘is determined uniquely irrespective of the stress path through which the final state is reached.
"The problem involving determination of the stress and surface deflexion of an elastic soil
ground loaded on some area of the surface is one example of this type of problem. How-
-ever, when the boundary condition is specified in terms of the change in the boundary shape
as is usually the case with cutting practice, path-independence of the solutions seems to
be left open to question, even though the material is elastic. If path-dependence is actually
the case even with an elastic soil, the final state of stress and deformation is dependent
upon the stress-path through which the final shape is reached and the multiplicity of the
solutions results corresponding to the conceivable construction procedure. This means
that the final behavior of ground is to be assessed by simulating every step of construction
procedure as closely as possible in the program of computation, because otherwise no de-
finite solution is obtained. Therefore, a fundamental question arises whether the solution
for an elastic ground is ever path-dependent or not, when the process of excavation is
changed. When the soil can be considered elastic, the path-independency seems to be
true from the study of Goodman and Brown.'® However, they did not furnish the definite
proof of uniqueness of the solution. In this paper, the question of uniqueness will be
-considered from a general point of view, using the virtual work theorem and the

uniqueness for some particular material properties such as elasticity, pore elasticity and
plasticity will be examined.

2. REVIEW OF THE PREVIOUS WORKS

Investigation on the behavior of a ground due to excavation was initiated in connection
‘with evaluation of stresses and displacements around a hole of a tunnel. Earlier attempt
for this problem was made back in 1920’s by H. Schmit” and N. Yamaguchi®, who
succeeded in determining stress and displacement fields due to gravity around a circular
‘hole located far down from the ground surface. Following these contributions, a number
of investigators such as Z. Anzo,* R. D. Mindlin* and Yi-Yuan Yu® extended the theory
further to take into account the effect of ground surface or to include various configura-
tions of tunnel openings other than a circular hole. Among them N. Yamaguchi was
the first to introduce the concept of superposing two kinds of stress fields to make the
boundary surface of a tunnel free from stress: the first one is due to existing stresses and
the second one is an additional field which is equal in magnitude but opposite in sign to
the existing stresses on the wall of tunnel hole.  Since the latter stress fields are superposed
to make the existing fields cancel on the boundary, it can be considered as an incremental
field which is caused merely by removal of the mass, i.c., excavation. This method has
an advantage over other methods in that the added stress field can be treated separately
from the existing one. To be more specific, it can be applied even for such cases where
the deformation characteristics which a material exhibits during creation of the existing
stress is different from those which it exhibits during subsequent distrubance due to ex-
-cavation. In general, the existing stress fields have been formed after a long history of
tectonic movement of rocks or after gradual consolidation of soft soils, whereas excavation
is generally made in a few months which are by far shorter than the period during which
the existing stresses were formed. The stress-strain relationship which a material exhibits
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during these two major stress changes is, therefore, different in general.

Application of this method to the behavior of ground or slopes due to open cutting:
was delayed until quite recently, because of the analytical difficulty in handling the complex
shapes of excavated boundaries. Now that the development of high-speed electronic
digital computers has made it feasilbe to carry out a great deal of computation on the
basis of the finite element method or lumped-parameter method, a number of problems.
ever considered difficult can now be solved without difficulty. An analysis along this.
line was presented by W. Finn® to predict elastic behaviors of slopes due to cutting.
E. Dibiagio” presented useful results of computation for rectangular open-cuts in elastic
grounds by using the method proposed by Yamaguchi. Different cases were considered,
changing the geometry of cuts, the elastic modulus of soils, and the values of initial stresses.
C. B. Brown and I. P. King® presented results of their works concerning the shear stress
distribution within cut-down slopes, pointing out the importance of simulating excavation
procedures in computing behaviors of slopes due to cutting. By means of a similar method
T. Kawamoto® analyzed the behaviors of slopes consisting of anisotropic rocks. The
changes in stress and displacement as the rock loses its strength gradually with time were
studied. J. M. Duncan and P. Dunlop'® centered their attention to the effect of initial
horizontal stresses on the subsequent deformation of cuts made in stiff-fissured clays.
A considerable amount of computation was performed using the finite element method to
interpret various failure case histories in terms of the computed values. All the works
mentioned above were done on the basis of the assumption that the soil or rock can be
considered as a linear elastic material. More recently the problem of loosening of the
wall and ceiling in a rock tunnel as excavation proceeds was investigated by M. Hayashi,'”
by successively tracing the change in stress which is caused by the development of cracks
within rocks. Successive development of a plastic zone within soft clays which can occur
as the ground is excavated without bracing was analyzed by T. Kokusho,' on the assump-
tion that the soil can be approximated by an elastic-perfect plastic material.

All these works except the last two have been done on the basis of the tacit assumption
that the solution for a final design section is uniquely determined, no matter what method
of cutting may be employed. Since the uniqueness of the solution as explained in Intro-
duction has not been studied in detail, it seems necessary to look back into this fundamental
question again to give a sound basis for the cutting problem as a whole.

3. SYSTEM OF BASIC EQUATIONS AND BOUNDARY CONDITIONS
FOR THE PROBLEM OF CUTTING

When a body under consideration is subjected to disturbance due to change in the
boundary shape, the assignment of boundary conditions is obviously different from what
is done when there is no boundary alteration. Therefore, it is necessary first to know
how the boundary condition should be specified for such a problem. Before proceeding
to the question of process of cutting, a fundamental aspect of the boundary value problem
will be considered in this section. In order to make the illustration simpler, two-dimen--
sional plane strain problem will be taken up hereafter throughout this paper.
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a) after cutting b) before cutting ¢) change due to cutting
Fig. 1. Change in force system caused by cutting

(1) Equations for the initial state of stresses.

Assume that the entire body 7z + 7, is initially in equilibrium, as shown in Fig. 1b,
with the gravity forces and the external surface tractions 7,°, T,° on the part S, of the
boundary, and the surface displacement u,* and u,* on the part S,. The volume element
7o in Fig. 1b is going to be removed as a result of cutting. Since the behavior of the re-
maining part rr only is of major concrn to us, the equations which hold for this region
will be exclusively considered in the following.

When confining our attention to the region tg, the forces T,(4C), T,(AC) which are act-
ing on the body v across the interface ABC must be considered as boundary tractions.

. Hence, the equilibrium, compatibility and boundary conditions for the region bounded
by ABCD are written as follows:

do,’ ot

2y _
x + 3y + F, =0 (1)
97,0 9o, B
Gt G+ B =0
ou,’ ou,’ 1 7/ ou, ou,’
0 z 0 — Y o __ z Y
€ = ax ’ € = ay ’ Txy - 2 < ay + ax ) (2)
T.%, T, n S
” o } 3)
T;C(A C), Ty(AC) on SAC’
u’, u’ on Su 4)

where ¢.’, 6°; and 7}, are components of stresses and u,° and u,° are those of displacements
in the domain zz. From the principle of virtual work, the set of Equations (1), (2), (3)
and (4) can be incorperated into one single equation as follows:

ST (0.0, + 0,0+ 220,70 e = ST (Futt® + Fyu,")dz + SS (Tou0+ T,u,5)dS
R R T

+ SS [TAAC)u,0 + T,(AC)u, )dS + gs [Tt + T,u,*1dS )
AC u

In Eq. (5) the forces T, and T, acting on the boundary S, are related with the stresses o,
gy, and 7,, as follows:
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T, = 1,0, + N7y
(6)

T, = n,tey + n.0,

where n,, n, are the direction cosines of a surface element, taken positive when directed
outward. The left-hand side of Eq. (5) represents the stored energy in the interior of the
body 75, while the right-hand side expresses the total energy supplied externally by the
body force and the surface forces. It is important to note that Eq. (5) is exactly equivalent
to a set of equations given by (1), (2), (3) and (4). Therefore, instead of considering sepe-
rate equations individually, we can use one compact Eq. (5) to examine the physical nature
of the basic boundary value problem. It should also be kept in mind that the set of
Egs. (1), (2), (3) and (4) does not contain any inforation as to the stress-strain relation-
ship. Therefore, the equivalent Eq. (5) can be applied for any sort of continum body even
if no information is available regarding the material properties. For this reason, the
kinematic quantities e,’, e, . . . need not necessarily be associated with the strains which
are produced by the corresponding statical quantities ¢.°, ¢,° . ... In other words, com-
pletely fictitious kinematic quantities which have nothing to do with the corresponding
statical quantities can be used in Eq. (5), as long as the kinematic quantities satisfy the
conditions expressed by Egs. (2) and (4). It is for this reason that Eq. (5) is usually
called the theorem of virtual work.

(2) Equations for the post-cut state

Now, we will consider the set of equations which must be satisfied after the block z, -
shown in Fig. 1b is detached from the block z,. The incremental changes in stress and
displacement produced by the change in the boundary shape will be denoted by 4a,,
do,, 47, and du,, du,, ... de,, de,, ..., respectively. In this state the initial stresses
0, a0 ... plus the increments do,, 4o, ... constitute the total stress system which must
satisfy the equilibrium equation. Likewise the total strain and displacement system
e + de,, e + de,, ..., u,' + du,, u,® + du, ... must satisfy the compatibility equa-
tion, and we have

(s’ + da,) n o(h, +4d7s) L E =0
0x ay o
0 0
o(rdy + dtuy) " d(a, + da,) +F,=0
ox ay
0 0
e’ + de, = M, e, + de, = o(uy’ + du,)
o » ®)
: _ 1 ( o + dus) | Oy + Au,,)) }
Toy + drey = ) 3y + 3%

As far as the boundary conditions are concerned, the stresses on the boundary ABC are
now equal to zero. It is to be noticed that on the boundary S, the external traction force
does not change and, on S,, the given displacement remains as it was before the cut was
made. Therefore, the boundary conditions now become
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T, T, on Sr )
us, u,’ on Su (10)

It should be kept in mind here that the boundary conditon (9) can not be satisfied in
case nowhere are the boundary conditions specified in terms of surface displacements.
We will exclude such an exceptional case from the following discussions. If the basic
equations (7) and (8) and the boundary conditions (9) and (10) are expressed in terms of
the virtual work theorem, it follows that

STR[("”O + de.)(o." + do.) + (e, + de)(o,” + do,)+2(5, + dra) (7S, + dry)lde
~ STR[F”(u”’O + du,) + F,(u, + du,)]dr
+ SST[T;(u,ﬂ + dw) + T, (w0 + 4u,)]dS
+ Ssu[u;(Tz + AT,) + u(T, + AT,)1dS an
Now, subtracting Eq. (5) from Eq. (11) we get
STR[AU,Ae, + do,de, + 24z, dr,Jdr + STR[e,Mo, + e, + 2%, drylde
+ STR[GEOAeﬁ + a0 de, + 220, Ay, Jde
_ STR[FxAu,, + Fdu)dr + LT[T;Aux + Ty dulds
+ SSu[u;ATx + upAT,)dS — SSAC[Tx(AC)uxO + T(AC)u1dS (12)

The second term of the volume integral on the left side of Eq. (12) is transformed into a
surface integral by using the divergence theorem of Gauss as follows:

[, [dowe + dose + dearuflds = | _[ 4o L Z,oyau,, y zy(Gau, ., e
R

L 0do, | 047y , (047, 04,

B Sm[( ax T ay )u” +( % T 3y > 0] T+SS[AT*u”O+AT”u”0]dS (13)
where AT, = don, + drp,, AT, = dryn, + don, (14)

The last term in the right side of Eq. (13) must disappear on the boundary S, because the
surface traction is assumed unchanged during cutting. On the boundary S, ©,° and u,°
must be u,* and u,’, respectively, from Eq. (4). On S,¢, 4T, = — T(AC) and 4T, =
(AC). Therefore, the last term becomes
SS[A Tou? + AT, du,1dS = SS [4,° AT, +u,* AT,]dS — Ss [TAAC)u+ T,(AC)u, 1S
% AC

(15)
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In a similar way, the volume integral in the third term on the left side of Eq. (12) is trans-
formed as

,0du 004du 04u, ddu
. 0 0 _ z Y 0 z Y
STR[Gx de, + g, de, + 25, Ay, Jdr = g R|_ 2 ox +a’ oy _H.’”’( oy + ox ﬂdf

do,’ | 0ty oS, 0do
T STR[(—G; a;f’)"”ﬁ( o 3y = >Auy]d‘r+§ [T.°du.+ T,0 du,)dS (16)

The last term on the right side of Eq. (16) disappears on S., because the displacement is
assumed confined there during cutting. On Sy, T.' = T,°, T, = T,* and on S,¢, T =
TA(AC), T,) = T(AC) from the boundary conditions (3). Therefore, the last term
becomes

SS[TZ"AuZ + T04u,)dS

_ Ss [T, du, + T, du,]dS + Ss [TAAC)du, + T,(AC)du,}dS (17)
T AC
In deriving the above relation, the compatibility relations given by
_ 0du, _ 0du, _ 1/0du,  0d4du,
de, = ox ’ dey, = oy ’ dyey = 2( 0x 0y > (18)

were used, because the Relation (18) is a direct consequence from Egs. (2) and (8). Insert-
ing Eqgs. (13) and (16) into the Relation (12) together with Egs. (1), (7), (15), and (17),
one obtain,

ST [do.de, + do,de, + 24z, d7,,]dr = — L TAAC)du, + T(AC)du,dS  (19)
R AC

The above equation is the expression of the virtual work theorem for the incremental
change in stress and strain, in the domain z, which is caused by the removal of a part of
the pre-stressed body. Inlooking at the equation, it should be emphasized that the induced
stress and strain increments have nothing to do with the boundary tractions T7;°, T,* on
Sy and the boundary displacements u,°, u,* on S, which are still being applied during
cutting. Inother words, the incremental stresses and strains should be determined with the
modified boundary conditions in which the surface tractions being equal in magnitude and
opposite in sign to the initial forces T,(4C), T,(4AC) are imposed along the boundary S,
and with the surface traction and the displacement vanishing on S, and S,, respectively.
Another point to be noted is that the only quantity in Eq. (19) which is connected with
the previous history of loading is the surface tractions T,(4C) and T,(4C). In other
words, the effect, on the subsequent incremental change, of the previous history of loading
is taken into account only through the initial stresses along S,,. It does not matter
how the initial stresses have been reached through the complicated history of loading in
the past. A single or a sequence of elastic, plastic, viscoelastic, or poroelastic process
may have contributed to the formation of the current state of stresses. The only require-
ment that the initial stress system must fulfil is to satisfy the equations of equilibrium,
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compatibility and appropriate boundary conditions as indicated by Egs. (1), (2), (3)
and (4). In dealing with cutting problems in a natural soil deposit or rock foundation,
it is almost impossible to know the existing stresses by tracing the past history of loading.
Fortunately, we need not try to know the history all through. All we have to do is just
to know the existing stresses. This can be done by direct measurement of earth pressure
coefficient at rest or some other values, in-situ or in the laboratory.

4. PROBLEM SETTING

Consider a body as shown in Fig. 2. The entire mass bounded by AKFJIHG is initially
in equilibrium with gravity forces F,, F,, the external forces 7,°, T,* on the boundary
Sr, and the surface displacements u,*, u,* on S,. Suppose that a cut is to be made step-
by-step until the final configuration ABCDEFK is reached. The initial state is disturbed
by successive removal of pieces of masses which are denoted by 1,2, ... nin Fig. 2. The
number of ways in which these masses are removed step-by-step is theoretically n! =
nn— 1)(n —2)...3-2-1. In considering the effect of excavation processes, there
arise two questions: the one is whether the exchange of the order of cutting is essential
and the other question is if multi-stage cutting can be replaced by a single one-step cutting.
When attempting to examine these questions, there is no need to consider all of the pos-
sible ways of cutting. It is sufficient to see the effect only for two arbitrarily chosen
masses. The reason for this is as follows. As far as the first question is concerned, it is
apparent that the result obtained for two arbitrarily selected masses can be applicable to
all other combinations of cutting order and it is not necessary to consider all of them.
The second question can be reduced, as follows, to the problem in which only two masess
are involved. Consider the n-th and (» — 1)th blocks in Fig. 2. If it is proved that the
simultaneous one-step removal of both masses yields the same answer as two-step separate
removal of these masses, there is no need to separate them. The two masses can be jointly
considered as one mass. The number of masses to be separately considered is then re-
duced by one, totaling now (n — 1). Therefore, it follows that the solution obtained by
n-step removal of the soil masses is identical with what is obtained by (n — 1) step cut-
ting. By repeating this reasoning, we can eventually reduce the number of cutting to one.

Fig. 2. A simplified model of excavation sequence
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Thus, it can be said that the final solution for a cut obtained by successive removal of
n-masses of soils is identical with that which is obtained by removing the entire blocks
altogether at one time, if the solution for simultaneous removal of two arbitrarily selected
masses is shown to coincide with that for separate removal of these two masses. It is,
therefore, obvious that the proof of uniqueness for n-sequence of cutting can be reduced
to that for two-step cutting.

5. VIRTUAL WORK EQUATIONS FOR ONE AND TWO-STEP CUTTING

Let us consider two masses shown in Fig. 3, in which parts =, and =, of the volume =
are going to be cut off eventually. There are three ways the excavation is made. The
first method is to take off the volume r; first and then to cut the volume 7, next. The
second method is the reverse of the first. The third method is to remove the volume
7, and 7, altogether at a time. Now, if it is shown that the solution for the first removal
of 7, followed by removal of z, is identical with the simultaneous cutting of 7; and 7, it
naturally follows that the reverse case in which z, is cut first and then z; yields the same
solution as for the case of 7, to r, cutting, because the masses r; and z, are selected quite
arbitrarily without any restriction on its size or the relative position within the entire
mass. Consequently, the first question raised above concerning interchangeability of
cutting order can be automatically answered, if the proof is obtained as to the second
question concerning replaceability of two-step cutting by one-step cutting. Then, to answer
the whole question, it is sufficient to examine only two methods; two-step removal of 7,
and 7,, and simultaneous one-step removal of 7, and 7,.

D

Fig. 3. A model of two-step cutting

(1) Two-step cutting

Consider the change in stress and strain which occurs when the volume 7, is removed
from the body 7 as shown in Fig. 3. As proved before, the change in stress and displace-
ment in the volume 75 which is caused by the removal of 7, is equivalent to that which is
created by applying, on the boundary surfaces AB and BD, the forces which are of the same
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magnitude, but of opposite sign, to those initially existing there. At this time, the forces.
T.(BC) and T,(BC) which have acted along the interface BC change and their increments
will be denoted by 4T,(BC) and 4T,(BC). Hence, denoting the changes in stress by 4a./,
da), dt,,/, the changes in strain by de,/, de,/, 4r./, and the changes in displacement by
du,, 4u,/, the virtual work equation which holds for these changes is from Eq. (19),

ST [do./de, + do/de) + 247,/ dy,/ldc
R

—_ SS [TAB)du, + T,(AB)du,1dS + SS [4T.(BC)du, + AT,(BC)du,'1dS
AB BC

(20)

Since the volume z; being considered is bounded by the surfaces 4B and BC but not direct-
ly by BD, the effect of the removal of the initial stresses along the boundary BD does not
appear explicitly in Eq. (20). Instead, the effect is included implicitly in the changes
AT (BC)and 4T,(BC) which are necessary to keep the volume elements r, and 7 in contact
with each other along the interface BC.

Next, remove further the volume z,. The changes in stress and strain will be denoted
by 4s,”, 40/, 4z, and de,”, de,”, 47./’. The increments in displacement will be desi-
gnated by 4du,”” and 4du,””. In this case, the removal of the initial stresses is achieved
along the boundary BC. From the basic theorem demonstrated in Eq. (19) the vitrual
equation reads

|, [dorde + d0,76) + 285, 7 de

—_ SS [{T.(BC) + ATABC)}du,” + {T,(BC) + AT,(BC)}du,")dS @1)

Eq. (20) relates the stresses dg,’, 4o/, 4z, with the boundary forces T,(4B), T,(AB),.
AT(BC), A4T(BC), through equilibrium. The strains de,’, de,/, dy./ in Eq. (20) are
related with 4du,/, 4du,/ through the compatibility condition. Since any equilibrium
stress system can be connected, through the virtual equation, with arbitrary strains satisfy-
ing compatibility, the stresses do./, 4g,/, 47,/ are combined with the strains de,”, de,”
Ay, as follows:

9

ST [do,/de,” + do/de) + 24z, Ay, dr
R

=\ [TAB) " + T, (4B dulas + | | [4T.(BO)u."+ AT(BC) A, \ds

22)

Similarly, the stresses do,”’, 40, 4,/ are combined with the strains de.’, de/, dr.,
through the following virtual work equation:
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STR[AG,/’Ae,’ + do'de) + 24z, Ay 1dr
=, [1:(BO) + 4T(BONw! + (Ty(BC) + AT(BONAYS @9
Adding Equations (20), (21), (22), and (23), we get
STR[AU,TAexT ¥ do,de,” + 2427, 477, Jde

. _SS [TAAB)4u,” + T,(AB)du,"1dS— SS [T.BC)4u,” + T,(BC)du,"]dS
AB BC

_ SSAC[Tx(AC)AuJ + T(AC)du,"1dS 24)
where
do,” = do, + do, do,) = do) + do), 47, = A7,/ + A7,/ (25)
de,m = de, + de,, de,” = de, + de)’, 4y, = 4y, + dr.)" 26)
du,” = du) + du”, du,” = du, + du)”,
Eq. (24) is the virtual work equation for the final solutions 4¢,”, 40,7 ..., de,”, de,” ...

which are obtained through two successive steps of cutting.
(2) Omne-step cutting

From the derivation of Eq. (19), it is apparent that Eq. (19) itself is the virtual work
equation for the stress and strain changes which are achieved when the volumes 7, and
7, are removed altogether at a time. The notations 4o,, 4o,, 4z, and de,, de,, 4y, will
be used to indicate the changes occurring as a result of one-step cutting.

Now, before proceeding to the uniqueness proof, it is preferable to have the virtual
work equation which combines the statical quantities 4dg., 4o,, 47,, obtained by one-step
cutting with kinematical quantities de,”, de,”, 4yI, obtained by two-step cutting. With
reference to Eqgs. (19) and (24), it is written as

ST [do.de,” + da,de,” + 24r,,4¢7,]de
R
__ SS [TAAC)du? + T(AC)du,")dS @7)
AC
‘The proof that Eq. (27) is valid can be demonstrated as in the case of Eqgs. (13) and (16).
‘Similarly, the virtual equation for the stress system 4o,”, 40,7, 47, and the strain system
de,, de,, dr,, is obtained with reference to Eqs. (19) and (24) as follows:

S do,7de, + dojde, + 247, Ay, )de
TR

_ SS [TAAC)du, + T(AC)du,JdS (28)
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6. UNIQUENESS PROOF

The uniqueness proof that the stresses and strains obtained by one-step cutting are
identical with those obtained by two-step cutting will be made in a way similar to that which
‘has been done in the theory of elasticity’® and incremental plasticity.’®:*® In these theo-
ries where no alteration in the boundary shape is involved, the uniqueness proof ordinarily
follows a standard pattern as outlined in the following. Two sets of solutions 4o, de;;
and do7;, def; are assumed which satisfy the traction boundary conditions 4T; and
AT;™ on Sy, and the displacement boundary conditions 4u; and du;” on S., respectively,
where do;; and Je;; denote stress and strain tensors, respectively. The difference between
the two assumed states is substituted in the virtual work equation as follows:

S (AO',;]' — Ao,-Tj)(Aei,- il Aez‘])df
_ SS (AT; — AT,7)(du; — du")dS + SS (AT: — AT dus — duydS — (29)
T u

Since the boundary conditions are identical for two solutions, i.e., 4T; = 4AT;” on S,
and du; = 4du;,” on S,, the right-side of Eq. (29) becomes zero.

S (dos; — doT)(des; — deT)de = 0 (30)

If the material under consideration is assumed to be elastic, it is easily shown that the
integrand in the left-side of Eq. (30) is always positive except for the case dol; = do¥
and (or) de;; = del;. Inasmuch as the integral must be zero as indicated by Eq. (30),
it necessarily follows that the only solution which satisfies Eq. (30) is de;; = de?; and
do;; = 4ol;. Thus, two assumed sets of solutions are shown to be identical with each
other, indicating the uniqueness of the solutions.

From the arguement outlined above, it is known that the uniqueness proof consists pri-
marily of two steps.

Step 1. The product between the differences in stresses and in strains which are going
to be compared with must be shown to be zero as indicated in Eq. (30).

Step 2. For the assumed material properties, if it is shown that the product is always
positive except for the case where two solutions are identical, the uniqueness proof is
complete. On the contrary, if it is shown that the product can be equal to zero, even
when two solutions are not equal, the uniqueness is not guaranteed.

The uniqueness proof for the present problem will also be made in two-steps as outlined
below.

Step 1. The stress-strain system do,, do,, dz,,, de,, de,, 4r,, obtained in one-step
cutting is going to be compared with the system 4¢.7, 40,7, 47%,, de,”, de,S, 47T,
which is reached through two-step cutting. To this end, the integral I as follows will
be considered.
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1= S: [do,, — do,7)(de, — de,7) + (do, — da,7)(de, — de,?)
R

+ 2(dray — A7) (dyey — Ari,)]dc (31)
If Egs. (19), (24), (27) and (28) are substituted into (31), it immediately follows that:
I=0 32)

Step 2. The above relation was derived without referring to any information regarding
the stress-strain characteristics which the material would show during the process of
cutting. In other words, the relation can apply for any material properties, whether it
is elastic or plastic. Without specifying the behavior of the material here, it is impossible
to know further if the two solutions are identical or not. If the information regarding
the stress-strain characteristics of the material is taken into account in Eq. (32), it becomes
possible to prove the uniqueness of the two solutions. In what follows, consideration
will be made for various types of material propertics. To make the illustration easier
and simpler, let us consider the partiuclar case where uniaxial deformation occurs uni-
formly throughout the volume z. In this case, do,,, 40,7, and dz,,, 477} are put equal
to zero and Eq. (32) becomes

I, = (4o, — do,7)(de, — de,7) = 0 (33)

In Eq. (33) the quantity do,” is the summation of 4s¢,” and do,” as defined in Eq. (26).
Now the partition ratio

’

e =m (34)
will be defined for later convenience. On the basis of Eq. (33) the uniqueness check will
be made for several kinds of materials.

(1) Linear elastic body
The stress-strain relationship which holds during the process of one-step cutting and
two-step cutting is assumed identical throughout. Then, for the uniaxial extension

(removal) of the soil, the stress-strain relationship is
1—? 1—?

T T
5 do,, de" = 5 do, (35)

where E denotes young’s modulus and v is Poisson’s ratio.
Introducting Eq. (35) into Eq. (33), it follows that
j— 1 — Dz. Ty — E

I, = E (Aa,,—da,g)_l__p2
From the inequality of the Expression (36) it follows that the value I, can satisfy the Rela-
tion (33), only when 4o, = 4o,” and de, = de,”. It is also possible to show that the same
inequality as that shown by the Expression (36) can be obtained for a more general case
where 4o, and 4z, are no longer equal to zero. Therefore, it can be concluded that the
uniqueness is guaranteed for the simple case described above. To be more specific, the
solution obtained by two-step cutting is exactly the same as that obtained by one-step

de, =

(de, — 4,7 = 0 (36)
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cutting, as long as the linear stress-strain characteristics exhibited during one-step cutting
hold also throughout the process of two-step cutting. From this conclusion and the
reasoning in Sec. 2, it follows that the addition of several incremental solutions obtained
by multi-step cutting must be the same as those obtained by carrying out the cut at a time,
if the soil response is elastic throughout the cutting process. It can otherwise be stated
that the way or the order of cutting is immaterial and the same result can be obtained whi-
chever way is traced in reaching the final configuration of the cut.

(2) Linear poroelastic body

When the soil is saturated with water, the change in stress is generally accompanied by
the drainage of water. If the deformation is of concern at the time immediately after
removal of the soil, the deformation is forced to occur without volume change, because
there is not yet enough time for the pore water to drain out. This kind of deformation
will be referred to as ‘“‘undrained deformation”, or ‘‘short-time deformation”. The
stress-strain relationship for this condition may be defined by

2
e, = —2 4o, 37)

where v is Poisson’s ratio being close to 1/2, because of no volume change. On the
contrary, if the solution is sought for the case a long time after the cut, the pore water will
have drained out by then. The situation a long time after the cutting will be referred to
as “drained deformation” or “long-term condition”. For this condition, the stress-
strain relationship may be defined differently as

1 _ IJ,Z

de, = £ do, (38)

Where o/ is less than 1/2. In the above arguement, it was assumed that the Young’s modu-
lus for the drained condition is the same as for the undrained condition, but the Poisson’s
ratio is different for each case. It is possible to make cutting in either drained or undrained
condition. Since the general characteristics can be seen by a simple example, the following
case will be examined thoroughly.

Suppose that the second-step cutting is made after a long time has elapsed since the first
cut was made. If the behavior of the ground is of concern just after the second-step cut-
ting, the stress-strain relationship for the drained condition must be used for the first-
step cutting, while the undrained stress-strain relationship has to be used for the second-
step cutting. Then, we have
11—, 1—2

" —
5 de), de)’ = E

de) =

do,"

de,T = de, + de) = %[(1 —v)m + (1 — v))(1—m)]e.” (39)
Now, if the solution for the case as assumed above is to be compared with those for the

one-step cutting which is made undrained all through, the stress and strain for the latter
case is related by
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1 -2

de, = 5

4o, (40)

Substituting Eqgs. (39) and (40) into Eq. (33), we get

do, — do,T

I, = — 5 [(1 —v)do, — {(1 — v*)m + (1 — v*) (1 — m)}da,] 41
In order that 7, in Eq. (41) is non-negative, the condition either v = v/ or m = 0 must be
satisfied, otherwise 7, could be negative. This indicates that there could be a chance,
other than 4o, = 40,7, which can make the value 7, equal to zero. This is in contradic-
tion to the uniqueness of the solution. Therefore, it can be concluded that the solution
obtained by the two-step cutting, drained to undrained, is different from those obtained
by one-step undrained cutting. Several other mixed program of cutting is also feasible
by combining the drained and undrained processes in two successive steps of cutting.
From the similar reasoning as above applied to these mixed scheme, it is easy to realize
that different solutions are obtained if the soil material exhibits different deformation
characteristics in each step of cutting. v

Poroelastic consolidation process essentially involves a time-dependent deformation.
Complete discussion of the uniqueness for such a deformation process is out of the scope
of this paper.

(3) Incrementally plastic body _

Plastic stress-strain relations for work-hardening materials are strongly path-dependent.
According to this theory, material constants which relate linearly further incremental
changes in stress with those in strain depend generally upon the current state of stresses.

The stress-strain relationship to be used for future incremental changes in stress and
strain changes depending upon the prsent state of stress from which the deformation
starts. Hence, in the case of two-step cutting, the stress-strain relation which the material
shows at the first cutting is generally different from that at the second step of cutting.
Consequently, the excavation involving multi-stage processes of cutting will show a dif-
ferent behavior of the ground if the cutting is made differently even though the final
configuration of the cut is the same. It is also said that the exchange of the order of
cutting does produce different solutions, because of the difference in the stress-path.

7. CONCLUSIONS

In connection with the stress analysis for the excavation of the ground, the uniqueness
of the solution with respect to changing process of cutting was investigated. As the
results of the study using the virtual work theorem, it is confirmed that the solutions
obtained by the different order of cutting are all equal when the ground consists of
a time-independent linear elastic material. On the basis of the uniqueness proof it was
further shown that the multi-stage cutting process can be simulated by a single step cutting
as long as the material is linearly elastic. On the contrary, if the material exhibits time-
dependent, or plastic properties, the uniqueness can not be guaranteed. In this case,
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the final state of stresses can not be obtained unless the complete history of loading program
is specified.
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