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ABSTRACT

The purpose of this paper is to develop a finite element method for consolidation follow-

ing undrained deformation under the following assumptions: Soil is inhomogeneous, -
anisotropically elastic with respect to the effective stress, and saturated by incompressible
water; deformation of soil does not depend on pore water pressure but on the effective
stress; water flows through soil according to Darcy’s law. The paper is of a theoretical
nature, ;
- The finite element method previously developed by Sandhu and Wilson (1969) and
Yokoo, Yamagata, and Nagaoka (1971) is shown to be inapplicable to problems of
consolidation following undrained deformation because of the inherent continuity require-
ment of water head. A new variational principle for consolidation is derived in which
water head may be piecewise continuous, and the finite element technique is applied to
the principle in order to develop an effective numerical method for the problems.

Key words: clay, computer application, consolidation, deformation, effective stress,
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INTRODUCTION

Elastic and elastic-plastic problems in soil mechanics have frequently been analyzed
numerically by the finite element method which has been developed for the stress analysis
of a nonporous solid. Most of the problems were analyzed in terms of total stress and
a few in terms of effective stress and pore water pressure. Since the mechanical behavior
of a saturated soil can be interpreted more clearly in terms of the effective stress than the
total stress, finite element analyses in terms of effective stress are apparently important.
The following four analyses in terms of effective stress can be found.

Christian (1968) analyzed undrained elastic deformation of saturated isotropic soil.
The variational principle which he developed to derive the governing equation of finite
element solution can be obtained by modifying Herrmann’s variational principle (1965)

* Professor, Architectural Engineering, Kyoto University, Sakyo-ku, Kyoto.
** Professor, Architectural Engineering, Kansai University, Suita, Osaka-fu.
**% Assistant, Architectural Engineering, Kyoto University, Sakyo-ku, Kyoto.
Written discussions on this paper should be submitted before October 1, 1972,

NI | -El ectronic Library Service



The Japanese Geotechnical Society

38 YOKOO ET AL.

for elastic deformation of nonporous incompressible solid.

Sandhu and Wilson (1969) and Yokoo, Yamagata, and Nagaoka (1971) analyzed con-
solidation problems. The variational principle equivalent to the governing equations in
consolidation problems was developed and, by application of the direct method to the
principle, the governing equation of finite element solution was derived.

Christian and Boehmer (1970) formulated mixed type of finite element and finite differ-
ence methods in consolidation problems. The direct method was applied to a variational
principle equivalent to the equilibrium equation and the elastic stress-strain relation, but
finite difference technique was applied to the relation between volume change of soil and
hydraulic gradient. Because of the nature of the finite difference technique, fictitious
elements outside the region occupied by soil must be introduced.

In the present paper, the finite element method developed by Sandhu and Wilson (1969)
and Yokoo, Yamagata, and Nagaoka (1971) is shown to be inapplicable to problems of
consolidation following undrained deformation, i.e., problems of soil deformation under
piecewise continuous load with respect to time, and a new finite element method effective
in the problems is developed. The former method is effective only when applied load is
continuous with respect to time, while the latter method is effective when applied load is -
either continuous or piecewise continuous with respect to time.

NOTATIONS AND DEFINITIONS

The standard indicial system with respect to the rectangular Cartesian reference frame
is employed: Repeated subscripts imply summation, Kronecker’s delta is denoted by
d;,, differentiation with respect to space is indicated by subscripts preceded by comma and
differentiation with respect to time by superposed dots, no distinction is made between
covariant and contravariant components of tensors. Spatial coordinate vector is denoted
by x, and time by 7.

The region occupied by saturated soil is denoted by R and its boundary by B. Surface
traction T; and displacement of soil #; are prescribed on B and B,, respectively; normal
component of water velocity relative to soil # and water head # are prescribed on B, and
B,, respectively, where

B:BT+Bu:Bv+Bh (1)

The region R is divided into M elements. The region and the boundary of the m-th ele-
ment are denoted by R” and B™, respectively. The boundaries B;™, B,™, B,”, and B,
are the portions of B™ belonging, respectively, to By, B,, B,, and B,. The interelement
boundary of the m-th element is denoted by B,”. The boundaries B;™ and B,™ are divided
into N™ subsets B;™ (n = 1,2,..., N*) and P™ subsets B, (p = 1,2,...,P™) (cf. Fig.

1.
R= 2,;3 R™ (2)

B™ = B;™ + B,™ + B/™ = B, + B," + B/™ 3)
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R™

the m-th element

the entire region

Fig. 1. Division of region into finite elements

By = Z B, (4) B, = Z B,™ (5)
B, =} B ©) B, = 3. B," @)
BI.m = Z B, (8) By, = Z B,"? (9)

where >3, >, and >, indicate the sum of M, N™, and P™ terms. When the subboundary

" P
B,™ is a common boundary of the m-th and m/-th elements and a quantity A4 is defined in

R™ and R™, the quantity belonging to R™ and determined on B, is denoted by A™
and the quantity belonging to R™ and determined on B, by A",

The following continuities and differentiabilities with respect to space are required.
Displacement vector of soil u; is continuous in R and its derivatives up to the second order
with respect to space are continuous in R™ and may be discontinuous across B;™. Water
head & and its derivatives up to the second order with respect to space are continuous
in R™ and may be discontinuous across B;”. Normal component of water velocity rela-
tive to soil v defined on B,” and B,™ is continuous on B;™ and B,™?, respectively, and
piecewise continuous on B;™ and B,™, respectively. When the subboundary B,™ is a
common boundary of the m-th and »7/-th elements, v belonging to the m-th element and
»'™") to the m/-th element satisfy the following continuity equation (cf. Fig. 2).

pim + ™) = 0 on B,m» (10)

Elasticity tensor of order four with respect to effective stress and permeability coefficient
tensor of order two which are functions of x are denoted by E;;;; and k;;, respectively,
where Latin subscripts take the values 1, 2, 3 and denote components of tensor with
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the m-th
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element

Fig. 2. Normal component of water velocity on interelement boundary

respect to rectangular Cartesian reference frame. The tensors have the following sym-
metric properties.

Eijlcl = Ejikl = Eklij (1 1)
k,,'j - qu; ‘ (12)

The quantities E;;y;, k;5, and their first partial derivatives are continuous in R™ and may
be discontinuous across B;™. The prescribed boundary values 7; and # are piecewise
continuous on B,™ and B,™, respectively, and #; and 4 continuous on B, and B,, respec-
tively.

The quantities u;, h, v, T;, @i;, 9, h, and the first partial derivative of u; with respect
to time #; are continuous for ¢ > 0 and may be discontinuous at ¢ = 0.

Constant unit weight of water is y. The outward unit normal vector on the boundary
of an element is denoted by n;. ;

An integral {,...dx is the integral over the set 4 with respect to the variable x. For
example, {z...dx is a volume integral and §5...dx is a surface integral.

For functions Y and Z of space and time, Y * Z implies convolution and is defined by

the following equation (e.g., Churchill, 1958).

Y(x, 1) * Z(x, £) = StY(x, t — OZ(x, O)de (13)

VARIATIONAL PRINCIPLE

The following assumptions are made: Soil is inhomogeneous, anisotropically elastic,
and saturated by incompressible water; deformation of soil does not depend on pore water
pressure but on effective stress; water flows through soil according to Darcy’s law.

Relaxing continuity requirements on stress and water velocity, the governing equations
for consolidation (Biot, 1941, 1955) can be rewritten as follows. For # =0
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(Esjiatin., — 7hij), ; = 0 - in R™ (14)
u;,; = (kiz * hy ), ; inR™ (15)
{n{Eijrin,r — 7h0i)}™ + {ni(Eijuastn,s — rhd;)}™” =0 on B/™ (16)
i; = u; ' on B,™ (17
T; = n(E;juiue,; — 1hi;;) on B,™ (18)
and for t > 0
P L ptm) — () on By (19)
v = — nki;h, ; on B;™", B,™* (20)
Bm — pn — 0 on By 1)
7 = — mki;h, ; on B,™ (22)
h=h on B,™? (23)

Equation (14) is the equilibrium equation in terms of displacement of soil and water
head, Eq. (15) the relation between volumetric strain of soil and water head (Yokoo, Ya-
magata, Nagaoka, 1971). On the interelement boundary B;™", Eq. (16) expresses equi-
librium of surface traction, Eq. (19) continuity of normal component of water velocity
relative to soil, Eq. (20) the relation between normal component of water velocity relative
to soil and water head, and Eq. (21) continuity of water head. Equations (17), (18), (22),
and (23) are the prescribed boundary conditions. Equation (19) which is assumed to hold
in the second section is written again here to emphasize continuity of » in the variational
principle stated below.
For t = 0, Eq. (15) is reduced to

wi ;=0 in R™ (24)

Equations (14), (16), (17), (18), and (24) are the governing equations for undrained

deformation.

Hence, Eqs. (14)-(23) are the governing equations for consolidation following un-
drained deformation. -

The variational principle equivalent to the governing equations for consolidation follow-
ing undrained deformation is as follows: For the functional //, defined by

1 1
I, =% ”Rm<_ —Q"Eijklui,j *Up, + *2‘7’/0;5 *hy ;% hy 5+ rh* uu) dx +

m

|, WTowde | pensode +
BT By

+§ mr*h*,;dxﬂ mr*(h—li)*vdx} | (25)
By Bp

with side conditions (17) and (19),
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oll, =0 (26)

(Proof) The first variation of /I, becomes, by the divergence theorem,

oll, = 3; <g m[(Eijklulc,l - Th5ij), i * ou; + T{ui,i — (kij * B, j): i} * Ohldx +

m

+ T; — n{(Eijuitty,; — 7hd;;)} * dudx +

[
+ LM & (5 -+ nikssh, ;) * Ohdx -+
+ SBh [y (b —h) * 00 - 7 % (v + nikagh, ;) * Sh)dx +
+ S — n(Esguittn,s — 7hoss) * 6us + 7 % h % p +
n

x (0 + mkash, 5) * 5h}dx>
=0 ' 27

By the fundamental lemma of the calculus of variations which include convolution (Gurtin,
1964), satisfaction of Eq. (27) for each ou;, 0h, and dv which satisfy

ou; =0 on B,™ (28)
dv'™ 4 Gy =0 on B,™ (29)

is equivalent to Egs. (14) to (16), (18), and (20) to (23).

If, in addition to Egs. (17) and (19), Egs. (21) and (23) are set as side conditions, func-
tional (25) is reduced to the following functional developed by Sandhu and Wilson (1969)
and Yokoo, Yamagata, and Nagaoka (1971).

1, =3 {SR”L(“ %’Eijklui,j * Ui, + “;:"Tk«;j *hyi*hyj+ yh* ui,i>dx +

+S mTi*uidx—kS mr*h*ﬁdx} (30)
By By

The admissible function 4 in functional (25) may be discontinuous across B;™, but 4
in functional (30) is continuous across B,™. The importance of discontinuity of 4 across
interelement boundary in the finite element analysis of consolidation following undrained
deformation is discussed subsequently.

FINITE ELEMENT FORMULATION

To the variational principle developed in the preceding section, the direct method (e.g.,
Kantorovich and Krylov, 1958) is applied in order to derive the governing equation of
approximate solution.

Functional (25) can be rewritten by using matrix representation as follows:
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II, = % <8Rm(" —;—_{ei}T[Eij] * {e;} + %’r{h, oY * [kag) = {hy 5} + rh* u,i,i)dx +

4&3ﬂﬁpﬂ@k+ger*mm+.
T

By

+ 0, reheede e D]y t— e ods) (31)

Bp

The column vector {u;} is the displacement vector of soil, {¢;} the reduced strain tensor
determined by appropriate space differentiation of u;, {4, ;} the hydraulic gradient vector,
and {7} the prescribed surface traction vector. The symmetric matrix [E;;] is the reduced
elasticity tensor with respect to effective stress, i.e., [E;;]{e;} is the reduced effective stress
tensor, and [k;;] the permeability coefficient tensor. The superscript T denotes transpose
of a matrix. _

A column vector {¢™(¢)} is the set of components of displacement vectors of soil at all
nodal points belonging to the m-th element. A column vector {¢%(¢)} is the set of para-
meters which determine normal component of water velocity relative to soil on the
g-th subset of Y (B;™ -+ B,™) (cf. Fig. 2). When the g-th subset is B, or B,™” of the m-th

element, {¢?(¢)} is written as {¢™*(¢)} or {¢™?(t)}. When the interelement boundary B,™"
is a common boundary of the m-th and »/-th elements, i.e., B, = B,™'™’,

{2} = {m (@)} = {g™™' ()} (32)

A column vector {w™(¢)} is the set of parameters which determine water head in the m-th
element. A column vector {¢(¢)} is the set of components of displacement vectors of soil
at all nodal points belonging to the entire region R. A column vector {¢()} is the set of
parameters which determine normal component of water velocity relative to soil on
% (B;™ - B,™). The column vectors {¢™(¢)} and {¢%¢)} can be expressed by {¢(¢)} and

{0()} throﬁgh transformation matrices [@™] and [¥'?] as follows.

{gm()} = [} (33)
{g"@} = ¥ {¢@)} or '
{gm@)} = [T o} {g™* @)} = [¥™1{$()} (34)

Shape functions of the m-th element for displacement of soil and water head are denoted
by [a"(x)] and {d"(x)}.

{us} = [a"(){g™(O} in R™ | (35)
h = {d"(x)}"{w™(1)} in R™ (36)

Shape functions for normal component of water velocity relative to soil on B;™* and B,™?
are denoted by {c™"(x)} and {c™?(x)}, respectively.

v = {c™(x)}*{o™(2)} on B;™ and
v = {c"(x)}"{¢"*(1)} on B,™” (37
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The shape functions [a™(x)], {c""(x)}, {c"?(x)}, and {d™(x)} must be such that {u;}, 4, and
v determined by Eqs. (35), (36), and (37) satisfy the continuity and differentiability require-
ments with respect to space described in the second section. Two requirements are
especially emphasized: The displacement {u;} so determined must be continuous across
the interelement boundary B;™"; when the g-th subset of Y (B,™ -+ B,™)is B, and B, ™,

i.e., the g-th subset is the common interelement boundary of the neighboring m-th and
m’-th elements (cf. Fig. 2), o™ determined by Eq. (37) and »'™" determined by

v = {c" (O} {¢"" (O} on B, (38)
must satisfy
'™ + 9" =0 on B;™" \ (39)
i.e., by Eq. (32)
{em(@)} = — {e'(x)} on B/"" (40)

The water head A determined by Eq. (36) may be discontinuous across the interelement
boundary B;™ and the components of column vector {w™(¢)} are only used in the m-th

€lement. :
Using Egs. (33), (34), (35), and (37),
{us} = [A"(x){ ()} in R™ (41)
[4"(x)] = [a"(0)][P"] (42)
v = {C™(x)}*{¢()} on B,™ and
v = {C™ ()} {¢(1)} on B,"? (43)
{C™(x)} = [¥™]"{c""(x)} and
{Cm7(x)} = [ {c*(x)} (44)
By appropriate space differentiation of Egs. (36) and (41),
{ei} = [F"(x){g(D} in R™ (45)
us,; = {G™(x)}{B()} in R" (46)
{h, i} = V"R o™@)} in R™ 47

Using these matrix representations,

2 <SRM<_ %{si}T[Eij] *{es} + ‘é‘?’{h, oY * [kagl * {hs 5} + 1h ui,i)dx +

m

+§ m{Ti}T*{u,;}dx+§ _pxhxadx +

Bp By

_|_ZS mnr*h*vdx—l—zx mpy*(h——ﬁ)*vdx>
% Br ? Bp
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= — S0y o | P @rE @@ - 50) +
+ 5 D@ <7 | @@ @l « 0 @) +
+ T o7 | NG @Y ds « (30} + |
+ T, Wi OF LA = (90} +

+ 127 | o nldnGyds « for@) +

+§, {om(} * 2y SBIM {d @ Cm @)} dx + {¢(0)} +

+ Sy« 7|, @Her s » o) -

— 1B B 7|, A DG dx = {90}

= — {POFILL (O} + 5 T {am @) *[0"] * ")} +
+ S0 OFIS] * (90} + VO * ($0) +

+ SHam @)+ 775 (90} + 5 on @) * 1+ (W0} —

— 1+ (YO * (90} (48)

where
=3 | P rE e | “9)
(0 =7| W@ (50
57 =7 | @ @yds | G
O =3, (TG s (52
=27, L@eiemera+ 2|, e@icm@ia 6
ot =1\, (@, nax (54
O =T 57|, i, ax | (55)
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Since 1/2(E;;uus,;ur,:) and 1/2(kijh,:h,;) are positive and negative definite, respectively,
symmetric matrices [L] and [Q™] are positive and negative definite, respectively. Substitu-
ting the known #; on B, into {¢(t)} of Eq. (48), functional I; can be obtained. Column
vector {¢(¢)} can be divided into the unknown column vector {¢,(¢)} and the known column

vector {¢,(2)}.
{0} = ( """ ] (56)

In accordance with the rearrangement of {#(¢)}, matrices [L] and [S™] and vector {U(z)}
are rearranged and Eq. (48) is rewritten in the following form which is functional 77,.

1[0 T[ Ly le} {szil(t) .
6o ) | Lov: Lo | | 6a(0)
1 ) $1(2)
+5 %‘nl {o™(O} *[0™] * {o™(1)} + ; {o™(®)}[S™ - Sa™] * ¢ (t) +
X U())" ( a(2)
..... w e b S () * [V * {p(0)) +
{ Us(2) Pa(t) " .
+ 4} {o™@)}" * 1 W)} — 1= {Y@®)}" = {0} (57)
The first variation of 7, is
| . e
oll, = {0¢,()}" *| —[Lus - le]t' . t Tt LE [Si" " {o™(@®)} + {U(D)} ) +
‘ . $(8) ] -
+ 22 {do™(@)}" * ([Qm] #{o™0)} + [S1™ - Szm]{ ---- } +
" _ B(t)

+ [V ={g@)} + 1 = {W’”(t)}> +
+ {ag()}" * Q" {om@)) — 1+ {Y ()
=0 (58)
— [Lul{g(0)} + %} [S™)"{@™(#)} + (— [Lul{g:(6)} + {U()) = 0 (59)

[S:(65(1)} + [0"] * {w™(1)} + [V™] * {$(1)} +
+ (IS5 {m(r)} FLs{FmOP =0 (m=12...,M) (60)

et {om(0)} — 1+ {Y(@®)} =0 (61)

Since the column vector {w™(¢)} of the m-th element is independent of the column vectors
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of other elements, the sum sign 37 is taken off in Eq. (60). Equations (59), (60), and (61)

are the governing equations of finite element solution. For 7 = 0, Egs. (59), (60), and (61)
become

— [Luli$:O)} + 2 [S7){0™(O)} + (= [Lusl{$2(0)} + {U:(0)}) = 0 (62)

[S:"{e:.0)} + [S2"N{$:(0)} =0  (m=1,2,..., M) (63)
For ¢t > 0, Egs. (59), (60), and (61) become

— [Lul{¢()} + % IS {o™®)} 4 (— [Lil{¢2()} + {U()) = O (64)

[S:"H{g:(D} + [@"Hom®)} + [V"HoO} +
+ (S HgoO} + (W@ =0 (m=1,2,..., M) (65)
2 e} — {Y()} = 0 (66)

One of solution techniques for Eqs. (64), (65), and (66) is as follows:
In the time interval (¢, 7 + 4t)

tafso+ Ja) + giserfo(r b)) .
(e ) oo Ja)=o
s+ S} i@l Ja) vl o)

+ ([Szm]{giiz(t 4 é—dt)} n {Wm(z + —%At)}) 0 (m=12...M) (63

Zrer{on(e+ %At)} - {Y(t + %—At)} —0 (69)
[+ 540)} = 5t + 40} + (3.0 (70)
{1+ 5 0)} = 4@t + 40} — (90D o

Substitution of Egs. (70) and (71) into Egs. (67) and (68) yields
1
— Sl + 40 + D151 on(e 4+ S )} +

+ (= L) — et + a0} + {v(e +5a0)l) =0 (2
(SN + 40} + drgifon(t -+ 46|+ arv=ifg(s 4+ a0)) +

+ (- (S (1)} + At[Sg””]{gz§2<z‘ + %Ar)}} At{ Wm<z + —é—m)}) —0
m=1,2,..., M) (73)
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If {#:(2)} is known, {@.(t + 4t)}, {¢(t + $4¢)}, and {0™( + 34t)} can be obtained by
Egs. (69), (72), and (73).

WATER HEAD FIELD FOR UNDRAINED DEFORMATION
The governing equations for undrained deformation are Egs. (14), (16), (17), (18), and
(24). The variational principle equivalent to the equations developed by Christian

{1968) in case of isotropy can be extended to the following variational principle in case of
anisotropy: For the functional /7, defined by

1
Hz = Z {sRm('— "Z“Eijklui,juk,z -+ rhui,i>dx “+ S

m

m Ti U; dx }' (74)

Br
with side condition (17),

ol =0 75)
The continuity and differentiability requirements to the admissible function #; and the
given functions E;;.;, 7, T;, and @; are the same as given in the second section. Water head

h and its first partial derivative with respect to space is continuous in R™ and may be
discontinuous across B;™.

(Proof) The first variation of II; becomes, by the divergence theorem,

olly = 2] [SRM{(Ez‘jkzuk,z — 1hd;;),;0u; + ru;,.0h}dx +

m

-+ XB m{T’ —_— n,-(Ei,-kluk,z - 7h513)}5uzdx —
T

— S mny-(Eijkluk,l -— rhﬁw)ﬁuzdx]
Br
—0 (76)

By the fundamental lemma of the calculus of variations (e.g., Courant and Hilbert, 1953),
satisfaction of Eq. (76) for each du; and 6k which satisfy

ou; = 0 on B,™ ()

is equivalent to Egs. (14), (16), (18), and (24).

If [a™(x)] and {d™(x)} in Egs. (35) and (36) are employed as the shape functions for
u; and h to analyze undrained deformation and finite element technique is applied to
functional (74), Egs. (62) and (63) can be derived, i.e., the governing equations of finite
element solution at ¢ = 0 derived from functional (25) are the same as those derived from
functional (74).

If consolidation following undrained deformation is analyzed by the finite element
method developed by Sandhu and Wilson (1969) and Yokoo, Yamagata, and Nagaoka
(1971), shape function for water head {d"(x)} must be such that water head determined by

h={a"x)}{a"(®)} ~ nR" (78)
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is continuous across B;™, where {&™(¢)} is the set of parameters which determine water
head in the m-th element. When undrained deformation followed by consolidation is
analyzed, the same shape function as employed for consolidation must be employed for
undrained deformation, i.e., the shape function {d”(x)} must be employed for analysis of
the undrained deformation.

It is explained in the following that, when undrained deformation is analyzed, shape
function for water head must not be {d™(x)} but {d™(x)}, i.e., shape function for water head
such that water head is assured to be continuous across interelement boundary cannot be
employed.

If water head is piecewise continuous with respect to space in exact solution, it is ap-
parent that a better finite element solution cannot be obtained by imposing on water head
the continuity across interelement boundary. Even if water head is continuous in exact
solution, it cannot be insisted that a better finite element solution is obtained by imposing
the continuity, since water head determined by the finite element solution on which the
continuity is not imposed may be piecewise continuous and imposition of the continuity
narrows possible extent of finite element solution. This can be verified by the following
numerical examples.

A cylinder of saturated homogeneous isotropic elastic soil of length 4 m and radius
1 m sustains vertical load of 10 ton/m? on the top surface. The bottom surface is smooth
and no traction is applied on the cylindrical surface. With respect to effective stress,
Young’s modulus of soil is 2.0 X 10* ton/m? and Poisson’s ratio 1/3. Unit weight of water
7 is 1.0 ton/m®  Isoparametric element with eight nodes is employed (Ergatoudis, Irons,
and Zienkiewicz, 1968) (cf. Fig. 3). Finite element idealization is shown in Fig. 4.

r
o 0 o)
2 5 1]
t:::::::::; 1.0 J‘—1 0
E, g 6 8\
it 43 r7 4
1.0 ©
n

Fig. 3. Axi-symmetric isoparametric element

1. Example a.

The shape function for water head which assures continuity of water head across inter-
element boundary is employed first. The shape functions for displacement of soil and
water head in the isoparametric element are as follows:

The sets of coordinates » and z of eight nodes are denoted by {r} and {z}. The sets of
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10 ton/m?2
-T- {
o]
|
e
o«

4m Q—o——|

q g

Fig. 4. Finite element idealization

— m of cylinder
—1m —
axis of symrne{.ryi
horizontal displacement of soil u,, vertical displacement u,, and water head / at eight nodes

are {u,}, {u,}, and {h}. Two coordinates & and » are associated with the quadrilateral in
Fig. 3 and determined so as to give

p=—1 on side 12
=41 on side 43
E= 41 on side 23
§=—1 on side 14

The relation between the Cartesian coordinates and the & — 7 coordinates is

r=N1r1+N2r2—{—...+N8F3={N}T{r} (79)
zZ = N121 + N222 + e —[— Nng — {N}T{Z} (80)

and displacement of soil and water head are given by

u, = {N}"{u,} @81)
u, = {N}"{u} (82)
h = (N}'{h} (83)

where
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No = 1+ 88)(1 + 729 — (1 — 891 + 79)) —

— U +EE) =)  (=12,3,4) (34)
No=2( =& +7) (=57 (85)
Ne=—2(0—7)1+8) (=68 (56)
The quantities &; and 7, are nodal values of the & — » coordinates. If column vector
{¢™(1)} is set as :
{ur}
{p@} ={---- (87)
{uz}

shape function [dm(x)] is

ot TNuNy...;Nsy, 0, 0, ..., 0
[a (x)]_[ 0, 0, ..., 0, Nl,Nz,...,NJ

Column vector {&™(¢)} is identical with {4} and

(88)

g

displacement (cm)

0 5

0 5 10 15
’é ’g horizontal
b == displacement
e €9
g 85
R 1 (= 1
o 25
3
g

vertical displacement

—— exact solution

finite element
solution

finite element
solution

—D
e
fee

4

(a) water head (b) displacement

Fig. 5. Solution in continuous water head field
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{d"(x)} = {N} (89)

The calculated distributions of water head, vertical and horizontal displacement of soil
by shape functions [a™(x)] and {d"(x)} are shown in Fig. 5. The distribution of water
head is far from good approximation, though the distributions of vertical and horizontal
displacement of soil are good approximation.

2. Example b.

The shape function for water head such that the water head may be discontinuous across
interelement boundary is employed. The shape function for displacement of soil em-
ployed here is the same as in Example a. Column vectors {o™(?)} and {d"(x)} are

{wm(t)}T - [alz Qs, A3, Ay, A5, aﬁ] (90)
{d"(x)}" =1, r, 2,1 rz, 2] (1)

The calculated distributions of water head, vertical and horizontal displacement of soil
by shape functions [a"(x)] and {d™(x)} are shown in Fig. 6. The distribution of water
head as well as those of vertical and horizontal displacement of soil is good approxima-
tion.

Hence, the finite element method developed by Sandhu and Wilson (1969) and Yokoo,
Yamagata, and Nagaoka (1971) is only applicable to problems of consolidation under
continuous load with respect to time and inapplicable to problems of consolidation

mmexr\l
displacement (cm)
0 5
0 5 10 15

_ —~ horizontal
€ _E displacement
ol Lo
[J] C O

. < o C

.— exact solution: %1 | 8 g 1.
2 25
3
e >
Q=" OO . 24
| finite element
< solution
- vertical displacement
o 3
—— exact solution
! - 0 finite element solution
0O ,—"/—3_—""’ ) ,-~"‘/ 4
(a) water head : (b) displacement

Fig. 6. Solution in piecewise continuous water head field
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under piecewise continuous load with respect to time, i.e., problems of consolidation
followed by undrained deformation. The finite element method developed in this paper
is effective for either continuous load with respect to time or piecewise continuous load
with respect to time.

Sandhu and Wilson (1969) analyzed consolidation following undrained deformation by
the finite element method employing shape function for water head {d™(x)} such that water
head is assured to be continuous across interelement boundary. The numerical result
for consolidation a little after undrained deformation was shown but the result for un-
drained deformation was not.

NUMERICAL EXAMPLE

In order to examine the accuracy of finite element solution by Egs. (59), (60), and (61),
simple one-dimensional consolidation is analyzed. In Fig. 7, the vertical load of 10 ton/
m? is applied instantaneously on the top surface of a cylinder of saturated homogeneous

10 ton/m?2

0-8m

S . % Fig. 7. Finite element idealization
}‘__ o | of cylinder

. axis of symmetry,z

isotropic elastic soil of length 4 m and radius 1 m. Vertical displacement of soil on
the bottom surface and horizontal displacement on the cylindrical surface are zero. Dra-
inage is allowed only on the top surface. Elasticity coefficients of soil with respect to ef-
fective stress and unit weight of water are the same as in the example in the previous sec-
tion. The permeability coefficient is 1.0 X 1078 m/sec. The same isoparametric element
with eight nodes as in the previous section is employed and the soil cylinder is divided into
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three elements. The division is different from that in Fig. 4. Since preliminary analysis
based on the division in Fig. 4 indicated poor approximation because of abrupt change of
water head near ground surface, the division is modified so as to give good approxima-
tion to abrupt change of water head near ground surface.

Shape functions for displacement of soil and water head are given by Eqs. (88) and On.
Column vector {¢%(t)} employed here consists of one component b%(t) and shape func-
tions for normal component of water velocity relative to soil on B,™ and B,™?, {¢""(x)},
{c™ ' (x)}, and {c™?(x)}, are equal to 1 or — 1.

{gm ()} = {9 ™' ()} = b™"(2) (92)
{gm ()} = b™(¢) 93)
{em(x)} = — {c"™' ()} =1 %49
{em(x)} = 1 95)
ie.,
01
q
0.2 —— known solution closely approximating
exact solution
o finite element solution
04+
S
3
2064
§
RS
o
o
?.; 084
©
¢
(0]

time factor 02 04 06 08

Fig. 8. Average degree of consolidation
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degree of consolidation
0 02 04 06 08 10 08

————-
e

1~9 09 10 0910 091009 10
= ]

_. depth (m)

Fourier series solution

finite element
solution

/ I
! | — 5
B ﬂ
2| g E
318\ | & ]
\ \ < :
\ | \ o >
\ I
A \ A 1N
Fig. 9. Degree of consolidation
'™ = — p'™") = p"™(t) on B,™ (96)
v = b (t) on B, o7

Equations (59), (60), and (61) are solved by the step-by-step solution technique, i.e., by
Egs. (69), (72), and (73).

The average degree of consolidation is shown in Fig. 8. Dots show the numerical
solution obtained by the vertical settlement at point A in Fig. 7 and the solid line shows the
following value which closely approximates the exact value (e.g., Scott, 1963).

Jil (T < 0.2)
T
8 1,
I — >
1 e exp( e T) (T'=0.2)

where T is the time factor.
The degree of consolidation is shown in Fig. 9. The solid lines indicate the partial sum
of five hundred terms in the exact value (e.g., Scott, 1963)

& 2 o (M2 A
1—~mZ=]0Msm< 77 >exp( M?T)
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M= é—n‘(Zm 1)

where H is the length of the cylinder. The broken lines indicate the numerical solution
obtained from the water head distribution along AB (axis of symmetry) in Fig. 7. The
water head distribution along the other vertical line is almost the same as that along AB.
The inaccuracy in the lowest element at time factor zero seems due to fairly rough division
of the cylinder into finite elements. For T > 0.146, the solid and broken lines coincide.

The numerical solution by Egs. (69), (72), and (73) agrees fairly well with the exact
solution.

CONCLUSIONS

The numerical method developed in this paper is effective to analyze consolidation
following undrained deformation, i.e., soil deformation under piecewise continuous
load with respect to time.
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NOTATION

B = boundary of region occupied by soil
B, = boundary on which water head is prescribed
B, = boundary on which surface traction is prescribed
. = boundary on which displacement of soil is prescribed
B, = boundary on which normal component of water velocity relative to soil is
prescribed
B™ = boundary of the m-th element
B,™ = portion of B™ belonging to B,
B;™ = interelement boundary of the m-th element
B;™ = portion of B™ belonging to By
B,™ = portion of B™ belonging to B,
B,™ = portion of B™ belonging to B,
B,™ = the n-th subset of B,™
B,™ = the p-th subset of B,™
E;; = the reduced elasticity tensor with respect to effective stress
E;;;,, = elasticity tensor with respect to effective stress
R = region occupied by soil
R™ = region of the m-th element
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T; = prescribed surface traction
[a™(x)] = shape function for displacement of the m-th element
{c™(x)} = shape function for normal component of water velocity relative to soil on
BImn
{c™?(x)} = shape function for normal component of water velocity relative to soil on
B,™?
{d™(x)} = shape function for water head of the m-th element in piecewise continuous
water head field
{d™(x)} = shape function for water head of the m-th element in continuous water head
field
h = water head
h = prescribed water head
k;; = permeability coefficient tensor
n; = outward unit normal vector on boundary of an element
t = time
u; = displacement of soil
#; = prescribed displacement of soil
v = normal component of water velocity relative to soil on B,™ and B,™
v = prescribed normal component of water velocity relative to soil
x = spatial coordinate vector
[@™] = transformation matrix for displacement of the m-th element
[#'7] = transformation matrix for normal component of water velocity relative to
soil of the g-th subset of }] (B,™ + B,™)

7 = unit weight of water
0;; = Kronecker’s delta
¢; = reduced strain tensor of soil
{#()} = set of components of displacement vectors of soil at all nodal points belong-
ing to the entire region
{¢™(#)} = set of components of displacement vectors of soil at all nodal points be-
longing to the m-th element
{¢(1)} = set of parameters which determine normal component of water velocity
relative to soil on }; (B;™ + B,™) :

{¢%(2)} = set of parameters which determine normal component of water velocity
relative to soil on the g-th subset of Y, (B,™ + B,™)

{w™(#)} = set of parameters which determine water head of the m-th element in
piecewise continuous water head field

{@™(t)} = set of parameters which determine water head of the m-th element in con-
tinuous water head field

NI | -El ectronic Library Service



The Japanese Geotechnical Society

58 YOKOO ET AL.
REFERENCES
Biot, M. A. (1941), “General theory of three-dimensional consolidation.” J. Appl. Phys., Vol. {2,
pp. 155-164.

Biot, M. A. (1955), “Theory of elasticity and consolidation for a porous anisotropic solid.” J. Appl.
Phys., Vol. 26, No. 2, pp. 182-185.

Christian, J. T. (1968), “Undrained stress distribution by numerical methods.” Journal of the Soil
Mechanics and Foundations Division, ASCE, No. SM 6, Proc. pp. 1333-1345,

Christian, J. T. and Boehmer, J. W. (1970), “Plane strain consolidation by finite elements.” Journal
of the Soil Mechanics and Foundations Division, ASCE, No. SM 4, Proc. pp. 1435-1457.

Churchill, R.V. (1958), “Operational mathematics, 2nd ed.” McGraw-Hill.

Coutant, R. and Hilbert, D. (1953), ‘“Methods of mathematical physics.”” Interscience.

Ergatoudis, 1., Irons, B. M. and Zienkiewicz, O. C. (1968), “Curved, isoparametric, ‘quadrilateral’
elements for finite element analysis.” Int. J. Solids Structures, Vol. 4, pp. 31-42.

Gurtin, M. E. (1964), “Variational principles for linear elastodynamics.” Archieve Ratl. Mech. Anal.,
Vol. 16, No. 1, pp. 34-50.

Herrmann, L. R. (1965), ¢Elasticity equations for incompressible and nearly incompressible materials
by a variational theorem.” AIAA Journal, Vol. 3, pp. 1896-1900.

Kantorovich, L. V., and Krylov, V. 1. (1958), ‘“Approximate methods of higher analysis (translated from
Russian into Einglish by C. D. Benster).” Interscience.

Sandhu, R. S. and Wilson, E. L. (1969), ‘Finite-element analysis of seepage in elastic media.” Journal
of the Soil Mechanics and Foundations Division, ASCE, No. EM 3, Proc. pp. 641-652.

Scott, R. F. (1963), ‘‘Principles of soil mechanics.” Addison-Wesley.

Yokoo, Y., Yamagata, K. and Nagaoka, H. (1971), “Finite element method applied to Biot’s consolida-
tion theory.” Soils and Foundation, Vol. 11, No. 1, pp. 29-46.

(Received July 6, 1971)

NI | -El ectronic Library Service



