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EXACT EQUIVALENT MODEL FOR A LATERALLY-LOADED
LINEAR PILE-SOIL SYSTEM

JIUNN-SHYANG CHIoU” and CHENG-HSING CHENY

ABSTRACT

When using the substructure method for a pile-supported structure, it is common to adopt a simple element (equiva-
lent model) to simulate the load-deflection behavior of a laterally loaded pile. Conventionally, two kinds of equivalent
models, the uncoupled spring model and the equivalent cantilever model, are used to approximate the lateral pile-head
response of a laterally loaded pile. These equivalent models can not work equally-well for different pile arrangements
and loading conditions because the stiffness matrix (or flexibility matrix) of these equivalent models do not entirely
match that of the original pile-soil model. The response obtained will never give correct displacements and forces
simultaneously. To solve this problem, this study develops an exact equivalent model, in which an artificial lateral spr-
ing is added at the base of the cantilever to modify the fixed-base cantilever model so that it can completely represent
the pile-head behavior of a laterally loaded pile-soil system. For verification, comparison studies between the proposed
model and conventional equivalent models are conducted to show the effectiveness of the proposed model.

Key words: beam-spring Winkler model, equivalent cantilever model, equivalent model, laterally loaded pile, uncou-

pled spring model (IGC: E12/H1)

INTRODUCTION

In engineering practices, piles are often used as the
foundations for buildings, bridges, and other structures.
When modeling a structure with pile foundation, the sub-
structure approach is usually adopted. A single pile with
surrounding soils is first modeled as a substructure to
deduce the stiffness matrix corresponding to the nodal
degrees-of-freedom at the pile-head. This matrix can
describe the complete force-displacement relationship of
the pile-head response, and is usually called the pile-head
stiffness. Then for the structural modeling, the pile-head
stiffness can be added to the bottom of the structural
model to represent the original pile. This technique can
significantly simplify the modeling for a structure found-
ed on a large number of piles, because each pile can be
replaced by only a matrix.

The pile-head stiffness is a 6 X6 matrix in general.
When using the substructure technique for structural
modeling, it is usual to replace each pile by a simple ele-
ment to simplify the modeling. The vertical and torsional
stiffness components in the pile-head stiffness matrix only
have diagonal term (i.e., independent to others), and can
be directly represented by equivalent spring, respectively.
However, the lateral and rotational responses of a pile in
two horizontal directions, respectively, are coupled with
off-diagonal terms. For easy modeling in engineering ap-
plications, conventional analyses usually adopt two un-

coupled springs to respectively represent the lateral and
rotational stiffness of a pile. Since the influence of off-
diagonal terms can not be disregarded theoretically,
many researchers (e.g., Donovan, 1959; Gray, 1964,
Francis, 1964; Nair et al., 1969; Poulos and Davis, 1980;
Lam et al., 1998) have adopted various equivalent can-
tilever elements to model the coupled behavior of lateral
and rotational responses of a pile. However, those
equivalent cantilever models are not theoretically correct,
and will present different degrees of error under different
situations, such as different pile arrangements and load-
ing conditions. To address this problem, this paper pro-
poses a theoretically-equivalent cantilever element to
completely describe the coupled behavior of lateral and
rotational responses of a pile. Besides, case studies for
comparing the proposed model and other conventional
models are presented to investigate the applicability of all
models.

WINKLER MODEL FOR SINGLE PILE-SOIL
SYSTEM

The Winkler model (beam-spring model) is conven-
tionally used in engineering practices to analyze the
response of a laterally loaded pile. As shown in Fig. 1(a),
the pile is modeled by beam elements and the surrounding
soils are modeled by a series of independent lateral spr-
ings. Then the pile-head flexibility and stiffness matrixes
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Fig. 1. Full beam-spring model and equivalent models for single pile

can be deduced and expressed as Eqgs. (1) and (2), respec-
tively,
o — 6@( j;ﬂ) H (1)
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in which H and M are the lateral load and moment ap-
plied at the pile head, respectively; ¢ and 0 are the in-
duced lateral displacement and rotation at the pile head,
respectively; fi, foo and fxo are the coefficients of the pile-
head flexibility matrix; K., Ky and K,y are the coefficients
of the pile-head stiffness matrix.
For an infinitely long pile embedded in uniform soils,

the pile-head flexibility and stiffness matrixes can be ex-
pressed as Egs. (3) and (4), respectively (Chang, 1937):

1 1
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where ET is the flexural rigidity of pile, and §=4E,/4EI is
the characteristic coefficient of the lateral pile-soil system,
in which E; denotes the horizontal subgrade reaction
modulus and is equal to the product of the horizontal
subgrade reaction coefficient &, and the pile diameter D.

For a long pile embedded in Gibson soils with stiffness
increasing linearly with depth, the pile-head flexibility
and stiffness matrixes can be expressed as Eqgs. (5) and (6),
respectively (Poulos and Davis, 1980):

2.4 1.6
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in which #=3/n,/EI is the characteristic coefficient of the
lateral pile-soil system in Gibson soils, where #, denotes
the variation of horizontal subgrade reaction modulus
with depth.

[H} _ ( 1.077EIy° —0.99EIn )[5] ©)

CONVENTIONAL EQUIVALENT MODELS

For a lateral pile-soil system modeled by Winkler
model, the pile-head stiffness deduced as above is a full 2
X 2 matrix with off-diagonal terms to correlate the cou-
pled responses between the lateral displacement and rota-
tion at the pile head. The full 2 X2 matrix is not con-
venient to be incorporated into a conventional computer
code. Therefore, it is very common to adopt a simpler ele-
ment (i.e., the so-called equivalent model) to represent
the original pile-head stiffness. Many equivalent models
have been proposed in literature. The models commonly
used in engineering practices are briefly described as fol-
lows:

Uncoupled Spring Model

The uncoupled spring model, as shown in Fig. 1(b),
uses a set of uncoupled lateral and rotational springs to
simulate the pile-head stiffness of a lateral pile-soil sys-
tem, and neglects the coupling effects between the lateral
displacement and rotation at the pile head. In engineering
practices, the coefficients of lateral spring Ky and rota-
tional spring Ky are taken directly from the diagonal

‘terms of the single pile-head stiffness matrix of a lateral

pile-soil system, i.e.,

KH Kxx
= 7
Accordingly, the coefficients of Ky and Ky for a long

pile embedded in uniform soils can be obtained from Eq.
(4) and expressed as:

Ku] _[4EIR
) ~[2z] ®

Similarly, the coefficients of Ky and Ky for a pile em-
bedded in Gibson soils can be obtained from Eq. (6) and
expressed as:

{KH} _ [1.077EI)13} ©)

Ku| | 1.485EIn

It is noted that the coupling coefficients shown in Egs.
(4) and (6) have negative values. Therefore, the uncou-
pled spring model will under-estimate the pile responses
when subjected to a lateral load and moment at the pile
head.

Equivalent Cantilever Models

The uncoupled spring model disregards the coupling
effects between the translation and rotation at the pile
head. In order to model the coupling effects, an equiva-
lent cantilever is introduced to represent the lateral single
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pile-soil system, as shown in Fig. 1(c). This method was
developed by Gray and utilized by Donovan (1959) to
analyze pile groups in three dimensions. Francis (1964)
used a similar method to analyze a group-pile foundation
in two dimensions. Chai (2002) further applied this con-
cept to develop a method for assessing the local ductility
demand of a yielding pile-shaft when subjected to lateral
loading.
The flexibility matrix corresponding to the top node of

a cantilever when subjected to a lateral force and moment
can be written as

J —

e

| ]

where L is the length of the cantilever.
Accordingly, the stiffness matrix corresponding to the
top node of the cantilever is:

L L
3EI 2EI
L L
2EI EI

10)

12EI _ 6EI
H L’ L* |6
= 1
]~ ey amr [l v
L? L

Although Eq. (10) or (11) has non-zero cross-coupling
terms, the stiffness (or flexibility) matrix of a cantilever is
not exactly the same as the pile-head stiffness (or flexibili-

Table 1.
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ty) of the actual pile-soil system. In order to achieve some
degree of equivalence, two parameters in the cantilever
matrix, L and EI, can be adjusted to obtain the so-called
equivalent cantilever model.

Nuair’s Model

Nair et al. (1969) suggested adopting a cantilever with
an equivalent length L., in Eq. (10) to simulate the pile-
head flexibility of a lateral single pile-soil system. Since
only one parameter is used for equivalence, the simula-
tion will be limited to fit some terms of the pile-head flex-
ibility only. This formulation is actually an approximate
equivalency. Different criteria will yield different equiva-
lent length. Table 1 shows the equivalent lengths for the
cases of a pile embedded in uniform soil and Gibson soil
conditions, respectively. For example, to simulate a pile
embedded in uniform soils, different loading conditions
and different matching terms will yield L, =1.0/8 or L
=1.142/8. No unique equivalence can be achieved in this
formulation. The applicability of either equivalence will
depend on the loading pattern transmitted from the su-
per-structure to the pile itself. It is not convenient for en-
gineering analysis which usually consists of various load-
ing combinations. For simplicity and practical applica-
tion, Nair et al. suggested adopting L.,=1.0/8 for com-
plete embedment in uniform soils and L.,=1.85/n for
complete embedment in Gibson soils.

Equivalent length of cantilever model (By Nair et al., 1969)

Lateral support independent of depth (E,=constant)

M=0, H=0

M0, H=0

Equating deflection of cantilever
and pile at free head

Equating slope of cantilever and
pile at free head

Equating slope of cantilever and | Equating deflection of cantilever
pile at free head and pile at free head

Complete embedment (/=0)

1.0 1.142 1.0 1.0
Leg=— =— Leg=— Loyg=—~—
q ﬂ q ﬁ q ﬁ l q ﬁ
Partial embedment (/0)
T
1+B 2B+ 6B+ 6B +3\1/ 1+B ‘ 1+B
L= (T) ! ‘ Leg= (T) { L= (—B_) [ \ L= (T) !

Lateral support linearly increasing with depth

M=0, H=0

M=0, H=0

Equating deflection of cantilever

Equating slope of cantilever and
and pile at free head

pile at free head

Complete embedment (/=0)

Equating slope of cantilever and
pile at free head

Equating deflection of cantilever
and pile at free head

1.94
eq=T

1.712

1

Le

Partial embedment (/% 0)

Leq=12(1.623G*+1.75G + l/2)]“ﬂLeq= [3(2.435G*+3.35G + 1/3)]"1 ’

Loy=(1.75G+ 1)/ Le;=[2(1.623G*+1.75G + 1/2)]'4

Nair et al.’s note:
1. B=pi, G=nl and [ is free standing length.

2. These formulae are for long piles, that is, where 8L > 2.5 or L > 2.0, in which L is the pile length. Most practical cases fall within this catego-
ry. For short piles, the algebra is more complicated, but the principle remains the same.
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Table 2. Parameters for equivalent cantilever model from Lam’s model
Lateral support independent of depth (£, =constant)
Matching diagonal terms Matching translational and cross-coupling terms
1.224 1.0 1
Leg=—H— El,=0.612 EI Leg=— El,=—EI
q B q T8 13
Lateral support linearly increasing with depth
Matching diagonal terms Matching translational and cross-coupling terms
2.034 1.838
L= El,=0.755 EI = El,=0.558 EI
B B
Lam’s Model

Alternatively, Lam et al. (1998) suggested adopting a
cantilever with an equivalent flexural rigidity EI., and an
equivalent length L., in Eq. (11) to simulate the pile-head
stiffness of a lateral single pile-soil system. Obviously,
although two parameters have been adopted in their for-
mulation, they are still insufficient to simultaneously fit
all three (two diagonal and one cross-coupling) coe-
fficients in the corresponding stiffness matrix. Therefore,
they proposed two approaches for approximation. The
first approach is to match the two diagonal terms of the
pile-head stiffness matrix (Eq. (2)), which will result as:

Leg=1.732(K4)*5(Kx) ~%°
ETy=0.433(Ks9)"*(Kw)

(12-1)
(12-2)

The second approach is to match the translational and
the cross-coupling terms of the pile-head stiffness matrix
(Eq. (2)), which will result as:

Leq = Z(Kt?X)(Kxx)_l
ElLy=0.667(Kg) (Ky) ™

(13-1)
(13-2)

Table 2 shows the equivalent cantilever parameters for
a long pile embedded in uniform soils and Gibson soils
determined by the above formulae. Different criteria will
vield different equivalent flexural rigidity EI., and equiva-
lent length L.,. For applications, Lam et al. also recom-
mended adopting the first approach for the case of a pile-
extension foundation (i.e., single-pile foundation) and
the second approach for the case of a group-pile founda-
tion, in which the rotational stiffness of the pile group is
dominated by the axial stiffness of individual piles.
However, their first recommendation can not be justified
by the results of comparison studies shown in subsequent
sections.

EXACT EQUIVALENT CANTILEVER MODEL

The above discussions indicate that neither the uncou-
pled spring model nor the conventional cantilever models
can exactly represent the stiffness of a lateral pile-soil sys-
tem. They should be categorized as approximate equiva-
lent models because the stiffness matrix (or flexibility
matrix) of those equivalent models do not entirely match
that of the original Winkler model. The unmatched terms

Fig. 2. [Exact equivalent cantilever model

in the matrix would result in significant error in all terms
when inversing the matrix. Thus, whether the equivalent
process is based on the flexibility approach (Nair’s model)
or the stiffness approach (Lam’s model), the responses
obtained will not be good for both the displacements and
the forces simultaneously. Therefore, they can not work
equally-well for different pile arrangements and loading
conditions. Based on the above discussions, the objective
of this paper is to develop an exact equivalent model that
can exactly represent the pile-head behavior of a laterally
loaded pile-soil system.

In order to entirely match the pile-head flexibility (or
stiffness) of a lateral pile-soil system as shown in Eq. (1)
or (2), it is obvious that three parameters are required.
When the flexibility matrix of a cantilever (Eq. (10)) is
compared with that of the Winkler model in uniform
soils (Eq. (3)), it can be seen that the difference is limited
to only one term (i.e., the translational displacement) if
the equivalent length of the cantilever is set equal to 1/4.
It is therefore thought if a horizontal spring is artificially
added on the bottom of the cantilever (as shown in Fig. 2)
to compensate the observed difference between Eq. (10)
and Eq. (3), both systems will have the same flexibility
matrix all the time, i.e., an exact equivalent model can be
established.

On the basis of the above idea, when an additional
lateral spring with stiffness Kp is attached to the base of
the cantilever, the flexibility matrix (Eq. (10)) of the
equivalent cantilever becomes
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L 1 L% 1

81 |3EL, Ks 2EL,|[H
= : (13)
0 I3 Le J M
2El, El,

Notably, the above equation differs from Eq. (10) only
in the term corresponding to the coefficient of transla-
tional flexibility. The term of 1/Ky can be used to com-
pensate the smaller translational flexibility coefficient of a
fixed-base cantilever than that of a Winkler model.

For an infinite long pile embedded in uniform soils,
equating Eq. (13) to Eq. (3) will result in

Ly (1_ L (14-1)
3EL, Kz 2EIB

Ly | (14-2)
2El, 2EIf?

Lo _ 1 (14-3)
El, EIf

Then, the equivalent parameters L.y, Elq and Ky are
obtained as

1

Leg=— (15-1)
B

El,=EI (15-2)

Ky =6EIf (15-3)

Similarly, for a pile embedded in Gibson soils, let Eq.
(13) be equal to Eq. (5) and then the equivalent
parameters L., Elq and Ky are obtained as

1.839
Leq—— (16—1)
n
El,=1.057TEI (16-2)
Ky =2.28EIp (16-3)

More generally, for a pile embedded in arbitrary soil
profile, the equivalent parameters can be obtained based
on the actual pile-head stiffness matrix (i.e., Eq. (2)) by
using the following formulae:

K
Leg=2 K: (17-1)
K
EL,=2-_2(Det) (17-2)
KXX
3K«
Ks +(Det) (17-3)

3K Kop— 4K

in which (Der) is the determinant of the pile-head stiffness
matrix, i.e., KuKop— K.

Table 3 summarizes the above parameters for the
proposed equivalent model. This model is an exact
equivalent model for modeling a lateral pile-soil system.
Since all the stiffness coefficients of the equivalent model
are exactly the same as those of the pile-soil system to be
simulated, it can give correct responses for different pile
arrangements and loading conditions. Furthermore, it is
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Table 3. Parameters for proposed exact equivalent cantilever model

Lateral support independent of depth (£, =constant)

1
La=% ElL,=EI K =6EIf
Lateral support linearly increasing with depth

.839
Leq—l El.,=1.057ET Kp=2.28EIp’

n

General form
Ko Ky 3K
= El,=2-3-(D Ky=——2—(Det

Fa=2%, WSz P K k- a, (P

very important to notice that it is very simple and very
easy to be applied in most available computer codes.

COMPARISON OF EQUIVALENT MODELS WITH
WINKLER MODEL

In order to investigate the applicability of above-men-
tioned conventional equivalent models with the proposed
exact equivalent cantilever model, two simple cases as
shown in Figs. 3 and 6 are chosen for comparison stu-
dies. Figure 3 is the case of a single-pile foundation, and
Fig. 6 is the case of a group of two piles connected by a
rigid cap.

Single-pile Foundation

For the case of a single pile subjected to a lateral load
H and moment M at the pile head as shown in Fig. 3(b),
the following four equivalent models are used to calculate
the pile-head responses and compared with those of a
Winkler model (complete beam-spring model) as shown
in Fig. 1(a):

(1) Uncoupled spring model;

(2) Nair’s model with L.,=1.0/8;

(3) Lam’s model with El.;=0.612E] and L.,=1.224/

B; and

(4) Proposed exact equivalent cantilever model.

Assume that the pile is embedded in uniform soils and
£=0.3 for simplicity. The pile-head responses calculated
for all equivalent models are compared as shown in Figs.
4 and 5. In these two figures, the pile-head load is ex-
pressed by the load ratio M/H, and the pile-head
responses are expressed by the lateral displacement ratio
and rotation ratio which are the ratios with respect to the
corresponding response of a complete Winkler model.

From Figs. 4 and 5, it can be seen that the proposed ex-
act equivalent cantilever model gives lateral displacement
ratio and rotation ratio equal to 1.0 for all load ratios,
i.e., gives both responses exactly same as the original
Winkler model. However, the conventional equivalent
models will give different degrees of error depending on
the load ratio M/H. The uncoupled spring model will sig-
nificantly underestimate both the pile-head lateral dis-
placement and rotation. Nair’s model gives rotation ratio
equal to 1.0 for all load ratios, however underestimates
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the pile-head lateral displacement. Lam’s model sig-
nificantly overestimates both the pile-head lateral dis-
placement and rotation with a factor larger than 2.0.

Two-pile Foundation

A simple two-pile group is adopted herein as an exam-
ple of group-pile foundation. Consider a two-pile group
with spacing s and rigidly connected to a rigid pile cap, as
illustrated in Fig. 6(b). Assume the loads transmitted
from superstructure to pile cap are expressed as the later-

CHIOU AND CHEN
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(d) uncoupled spring model (e) equivalent cantilever model () exact equivalent cantilever model

Fig. 6. Case of two-pile group foundation

al load H; and moment M, at the base center of the pile
cap. For this case, the Winkler (beam-spring) model is
constructed as shown in Fig. 6(c), in which a vertical spr-
ing with coefficient K, is added to the tip of each pile to
represent the axial stiffness of pile because it will partici-
pate in resisting the moment applied at the pile cap. Ac-
cording to Fig. 6(c), the stiffness of the Winkler model
can be expressed as

(m) _[ SEIf’

where J; and 6, represent the pile-cap lateral displacement
and rotation of the pile group, respectively, and (1/2)K,s*
represents the contribution from the axial stiffness of in-
dividual piles to the rotational stiffness of the pile group.
For this case, assume that the piles are embedded in
uniform soils, #=0.3 and (1/2)K.s*=20Ky=40EIS. The
responses obtained from this Winkler model will be
adopted as the reference solution. The following four
equivalent models, as shown in Figs. 6(d) to (f), are chos-
en for comparison studies:

(1) Uncoupled spring model;

(2) Nair’s model where L.,=1/8;

(3) Lam’s model where El,=1/3EI and L.,=1/p;

and

(4) Proposed exact equivalent cantilever model.

The pile-cap responses calculated by using the equiva-
lent models are compared with those of a Winkler model
(beam-spring model) as shown in Figs. 7 and 8. Note that
the lateral displacement and rotation of each pile are
equal to those of pile cap since piles are rigidly connected
by the pile cap. From Figs. 7 and 8, it can be seen that the
proposed exact equivalent cantilever model gives exact
pile-cap lateral displacement and rotation for all load ra-

—4FIf? (51> amn

1
—4AEIR* AEIB+ ) K.s 2
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tios. However, the conventional equivalent models will
give different degrees of error depending on the load ratio
M,/H,. The uncoupled spring model gives poor predic-
tion for both the pile-cap lateral displacement and rota-
tion. Nair’s model gives rotation ratio equal to 1.0 for all
load ratios, however significantly underestimates the pile-
cap lateral displacement. Lam’s model gives the pile-cap
lateral displacement very close to the original Winkler
model, but overestimates by a little, the pile-cap rotation
for all load ratios.

Furthermore, according to the pile-cap lateral displace-
ment and rotation obtained from the equivalent models,
the pile-head reaction forces can thus be calculated and
compared with the results of the original Winkler model.
The pile-head shear force will be same as the original
Winkler model for all load ratios. The results of pile-head
axial force ratio will be identical to that of the pile-cap ro-
tation ratio because it is proportional to the pile-cap rota-
tion. As for the pile-head moment, the relationship of
pile-head moment ratio with respect to the M,/H, ratio is
shown in Fig. 9. The proposed exact equivalent cantilever
model gives exact pile-head moment for all load ratios.
The uncoupled spring model yields the pile-head moment
in the opposite direction. Nair’s model gives an exact
pile-head moment, but Lam’s model will overestimate the

1059

@)
). @

Pile-head moment ratio

! —#—(1) Uncoupled spring model
| —4(2) Nairs model (Leq=1/B)

"1t (3) Lam's model (Bleq=1/3EL Leg=1.0/8)
—&~ (4) Proposed exact cantilever model

MyH, (m)

Fig. 9. Pile-head moment ratio of equivalent models for iwo-pile
group ((1/2)K.s* = 20K )

g - - - -
= - [N SN TN
1| (1) {2 {30 {40

\\4/ \.\,/ \"/ \"/
E

P - - —
3 [ {5 )y { ) {8

\\’/ \\ ’/ \\’I
a x

/\\ /_\\ /‘\ "\
I | {9 {10) {11) {121
E \\’/ At N Nt
i

v
Ll

4
E ’
—

|
J

=

=
J UL
e

Fig. 10. Pile foundation for case study

pile-head moment as the load ratio M,/H, increases.

CASE STUDY

A bridge pier supported by pile foundation as shown in
Fig. 10is selected for the case study. The bridge pier with
a height of 5 m and a diameter of 2.5 m is subjected to a
lateral load of 8000 kN (x-dir) and a vertical load of
15000 kN at the pier top. The pier is supported by a rigid
cap with a height of 1.25 m underlain by 4 (x-dir) X 3 (y-
dir) piles. Each pile has a diameter of 1 m and a length of
30 m. The spacing of piles is 2.5 m. All piles are concrete
piles with Young’s modulus £=2.7 X 10" (kN/m?). It is
assumed that the soils are uniform with horizontal sub-
grade reaction modulus E;= 23000 (kN/m?) and each pile
has a vertical stiffness K, = 551000 (kN/m).

To analyze the structural response by using the Win-
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Fig. 11. Structural model of pier foundation by using Winkler springs

kler modeling, the global structural model can be estab-
lished as shown in Fig. 11. The pier and piles are modeled
by beam elements. The soils are modeled by spring ele-
ments. Each pile is assumed to be rigidly connected to the
rigid pile cap. Under the specified pier-top loading, the
structural responses including the pier-top displacements,
pile-cap displacements, and pile-head reactions are
shown in Table 5. Note that the horizontal displacement
and rotation of all piles are equal to those of the pile-cap
since the pile cap is assumed to be rigid and piles are rigid-
ly connected to the pile cap. It is also noted that the pile-
head moment and shear force of all piles are the same.

This problem can also be analyzed by using substruc-
ture approach. The piles are replaced by corresponding
equivalent models in the global structural model to solve
the structural responses. For the purpose of comparison,
four equivalent models as mentioned above are adopted
herein. For this case, the characteristic coefficient of the
single pile-soil system is f =4E,/4EI=0.257 (1/m). Table
4 lists the equivalent parameters of these four models. By
using the equivalent models, the amounts of elements are
significantly reduced and the global structural model
becomes much simpler. For example, Fig. 12 displays the
global structural model in which piles are replaced by the
proposed exact equivalent models.

The responses calculated by all four equivalent models
are compared with those obtained from the original Win-
kler model as listed in Table 5. It can be seen that the
proposed exact equivalent model will give identical
responses to the original Winkler model. However, the
responses obtained from other equivalent models are not
satisfactory. For the uncoupled spring model, the results
are very poor. For the Nair’s model, the pile-head reac-
tion forces are correct, but the horizontal displacements
of the super-structure are significantly underestimated.
At the pier top, the error is 21%. At the pile cap, the error
can be as high as 50%. For the Lam’s model, the horizon-

CHIOU AND CHEN

Table 4. Parameters of equivalent models

No. Equivalent model Equivalent parameters
| s ——
n Uncoupled spring j"’ =f1ﬁ%77 89618 (kN/m)
model Ku=2EIf | 680295 (kN-m/rad)
@ Nair’s equivatent Leg=1/8 3.8964 (m) o
cantilever model Equ =FE7 1.325 x 10° (kN_mZ)
3 Lam’s equivalent Log=1/8 3.8964 (m)
cantilever model El,=El/3 | 4.418x10° (kN-m?)
Lo,=1/8 3.8964 (m)
Proposed exact _ s 2
@ cantilever model L E]?ql— EI 1.325 % 10° (kN-m’)
Ky=6EIp? 134427 (kN/m)

Fig. 12. Structural model of pier foundation by using exact equivalent
cantilevers

tal displacements at the pier-top and the pile-cap are just
a little overestimated, however, the pile-head reaction
forces are not satisfactory, especially for the pile-head
moments where the error can be as high as 29%.

From the above case studies, it can be found that the
conventional equivalent models are not satisfactory and
the errors induced will be changed when the loading con-
ditions are changed. They are not suitable for engineering
applications. However, the proposed equivalent can-
tilever model can always yield the exact results.

DISCUSSIONS

When using the substructure approach to deduce the
pile-head stiffness for a pile-soil system, it is important to
recognize that it is applicable only for a linear or
equivalent-linear analysis. It is well known that soils are
intrinsically nonlinear. If it is aimed at tracing the histo-
ries of nonlinear soil responses, none of the presented
equivalent models can be applied and the complete beam-
spring model with nonlinear soil springs (i.e., nonlinear
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Table 5. Comparison of responses for all models
Item Winkler model | Uncoupled spring model Nair’s model Lam’s model Proposed model
settlement (m) 0.0029 0.0029 0.0029 0.0029 0.0029
Pler-top horizontal (m) 0.0235 0.0197 (—16%) 0.0186 (—21%) 0.024 (%) 0.0235
displacement ) .
rotation (rad) 0.00311 0.00294 (—5%) 0.00311 0.00317 (2%) 0.00311
settlement (m) 0.0024 0.0024 0.0024 0.0024 0.0024
Pile-cap ' horizontal (m) 0.0097 0.0074  (—24%) 0.0048 (—50%) 0.0098  (1%) 0.0097
displacement |
| rotation (rad) 0.00118 0.00084 (—29%) 0.00118 0.00124 (5%) 0.00118
| axial (kN) 1133 429 (—29%) 1133 1258 (5%) 1133
Pile 5
667 667 667
pile-head shear (kN) 667 667
moment (kN) — 898 569 (—163%) - 898 —1158 (29%) — 898
axial (kN) — 488 -2 (—29%) | —488 — 446 (5%) — 488
Pile 6 1
7 667
pile.head shear (kN) 667 667 667 ) 66 ‘
moment (kN) — 898 569 (—163%) —898 —1158 29%) | — 898
axial (kN) —2109 — 1874 (—29%) | —2109 —2150 (%) | —2109
Pile 7
7 667 667
pile-head shear (kIN) 667 66 667
moment (kN) —898 569 (—163%) | —898 —1158 (29%) —898
axial (kN) —3729 —3025 (—29%) | —3729 —3854 (5%) —-3729
Pile 8 S e
s 667
pile-head shear (kN) 667 667 667 667
moment (kN) —898 569 (—163%) — 898 —1158 (29%) — 898

Note: In computing the relative error of axial reactions for all equivalent models, the axial reaction of each pile is subtracted with average vertical

reaction force caused by applied vertical loads (— 1298 kN per pile)

p-y curves) has to be used. Alternatively, the technique of
equivalent linearization has very often been used in en-
gineering practices, such as the secant modulus method
suggested in the Design Specifications of Japan Road
Association (2002). The use of the equivalent cantilever
model for modeling the equivalent-linearized soil and pile
system will be very effective for engineering applications.

CONCLUSIONS

In order to simulate the load-deflection behavior of a
laterally loaded pile, the conventional equivalent models
such as the uncoupled spring model and cantilever
models can be categorized as approximate models. Be-
cause the stiffness matrix (or flexibility matrix) of those
equivalent models do not entirely match that of the origi-
nal Winkler model, they can not work equally-well for
different pile arrangements and loading conditions, and
sometimes will induce very large errors in the responses
obtained. This study develops an exact equivalent can-
tilever model, in which an artificial lateral spring is added
at the base of a cantilever to modify the fixed-base can-
tilever model. The stiffness matrix of the proposed model
can completely match that of the original Winkler model
and gives exact responses for all cases. This model is sim-

ple and very useful for engineering applications.
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