

# 8. プラズマ対向材料の水素リテンション特性

広畑優子,山内有二,日野友明 (北海道大学工学部) (1997年4月14日受理)

## Hydrogen Retention Properties of Plasma Facing Materials

HIROHATA Yuko, YAMAUCHI Yuji and HINO Tomoaki Department of Nuclear Engineering, Hokkaido University, Sapporo 060, Japan (Received 14 April 1997)

#### Abstract

Hydrogen retention properties of Li, B, graphite, B<sub>4</sub>C, SiC and W are described. The amount of hydrogen for Li, B, B<sub>4</sub>C or SiC is comparable with that of graphite. To reduce the hydrogen retention, Li or B is baked at a temperature that is less than that required to reduce the retention of hydrogen in graphite ( $\sim 800$  °C). It is also presumed that the required temperature for reducing the hydrogen retention in W is much lower than that of graphite.

Helium ion impact desorption for retained hydrogen in Li, graphite,  $B_4C$ , SiC or W is also presented. The reduction amount is as high as approximately 50 % for every material, under the condition with 5 keV helium ion energy.

#### Keywords:

hydrogen retention, lithium, boron, graphite, boron carbide, silicon carbide, tungsten, baking, helium ion impact desorption

#### 8.1 はじめに

プラズマ対向壁中の燃料水素の保持(リテンション) 量を把握することは、容器内のトリチウムインベントリ の評価および放電中の水素リサイクリングの制御におい て重要である.ITERでのトリチウムインベントリは、 プラント全体の約半分となっているので、この量を対向 材料の選択、放電洗浄やベーキングにより、今後いかに 低減化していくかが課題である.対向壁中の水素は、放 電中に熱脱離あるいは粒子衝撃脱離により放出され、水 素リサイクリングを増加させる.このため、Hモード放 電や低密度放電の達成を難しくする等放電モードに影響 を与えるので、水素リテンション特性を評価しておく必 要がある.

プラズマ対向材料として,等方性黒鉛や炭素繊維材料

(CFC)等のグラファイト[1], Li [2], Be [3], B [4,5], B<sub>4</sub>C [6], Si [7], W, Mo [8,9]等が使用されてきた. グ ラファイト材料の水素リテンション特性は比較的よく調 べられてきた[10,11]. また,他の材料についても他の 研究機関から報告されている.水素リテンション量は入 射水素イオンのエネルギー,角度(いずれも材料中に入 射するイオンの侵入深さに関係する),温度(入射イオ ンおよび粒子の吸収・拡散・透過に関係する)および材 料の性状(粒径,ポロシティ,密度,不純物)等により 異なる.したがってこれら対向材料の水素リテンション 特性を比較するためには,まず同一条件下での照射を行 い,保持量の測定・評価が必要となる.

水素リテンションについて多くのデータや解析がある が、本解説では材料間の比較を目的として、著者等が過

600

小特集

去数年間,同一条件下でグラファイト,Li,B,B<sub>4</sub>C,SiC, W に対して評価してきた水素イオン照射によるリテン ション特性について紹介する[12-15].まず,水素リテ ンション量の比較,水素リテンション量の加熱温度依存 性の比較を示す.ついで,Heイオン照射による水素リ テンション量の低減および熱脱離特性の変化について述 べる.これらのデータは,ベーキング温度あるいはHe 放電によるコンディショニングを検討する際,役立つも のと考えている.

## 8.2 水素リテンション特性の評価方法

水素リテンション特性評価を Fig. 1 に示す ECR (Electron Cyclotron Resonance) イオン源装置を用いて 行った. ECR イオン源で水素プラズマを作製し,引き 出し電極により 5 keV に加速したイオンをセクター型 電磁石を通して質量分離し  $H_3^+$ イオンのみを試料に照射 した. ここで, $H_3^+$ イオンを用いたのは, $H_3^+$ イオンが 生成するイオン種の約80%を占めているためである.し たがって,試料に入射する水素イオンのエネルギーは, 5 keV  $H_3^+$  (1.7 keV  $H^+$ )である.水素リテンション量は 照射温度によって異なるが,ここでは照射温度を室温と した場合について記す.

リテンションされた水素量を昇温脱離 (TDS) 法で測 った. 試料を一定速度 (50℃ /min) で室温から 1,000℃ まで昇温させ, 試料から脱離する水素を四重極質量分析 計で測定し, 質量分析計の感度係数と排気速度から脱離 水素量を求めた[16].また,TDSスペクトルよりリテ ンションされた水素の熱脱離特性を評価した.試料の加 熱を抵抗加熱法で行い,試料温度をアルメル・クロメル 熱電対でモニタした.なお,引き出し電圧を印加せず, 同じ圧力下で水素雰囲気に暴露させた試料のTDSスペ クトルを測定して,バックグラウンドとして評価した.

リテンションされた水素のヘリウム放電洗浄による低 減化を調べるために、同じ ECR イオン源装置を用いて シミュレーション実験を行った.水素イオンを照射した 後に、ヘリウムプラズマを作製して 5 keV の He<sup>+</sup>イオ ンを試料に照射した.その後、試料を昇温し水素の TDS スペクトルから試料中に残存するリテンション水 素量を評価した.

用いた試料は等方性黒鉛, Li, B<sub>4</sub>C, SiC, W である. B<sub>4</sub>C は母材の等方性黒鉛を, SiC は CFC (炭素繊維複 合材)を以下に示す反応を利用して B<sub>4</sub>C, SiC に転化さ せた材料である.

## $2B_2O_3 + 7C \rightarrow B_4C + 6CO$ SiO + 2C $\rightarrow$ SiC + CO

また,Liは電子線真空蒸着法でステンレス基板上に 堆積させた膜である.Li 膜は蒸着後一度大気暴露する ために,大気中の水や酸素をゲッタリングしており, AES (オージェ電子分光法)による表面分析の結果, 膜の化学組成は均一でほぼLi<sub>2</sub>Oとなっている.これは 室温における飽和ゲッタリング量に相当する[17].W



Fig. 1 ECR discharge apparatus for the evaluation of hydrogen retention properties.

プラズマ・核融合学会誌 第73巻第6号 1997年6月

Table 1 Projected ranges ( $R_p$ ) of hydrogen and helium, and atomic ratio of retained hydrogen to target atom, when the hydrogen fluence is  $5 \times 10^{18}$ H/cm<sup>2</sup>.

|                        | Projected range, R <sub>p</sub> ,<br>(nm) |                      | Atomic ratio,<br>H/Target atom* |
|------------------------|-------------------------------------------|----------------------|---------------------------------|
| Sample                 | 1.7 keV H <sup>+</sup>                    | $5 \text{ keV He}^+$ |                                 |
| Graphite               | 25                                        | 45                   | 2.40                            |
| B <sub>4</sub> C       | 25                                        | 45                   | 2.90                            |
| SiC                    | 25                                        | 67                   | 3.90                            |
| В                      | 25                                        | 45                   | 1.75                            |
| Li (Li <sub>2</sub> O) | 140(37)                                   | 250(66)              | 0.93(2.00)                      |
| W                      | 5.5                                       | 14                   | 1.96 - 5.18                     |

\*The number of hydrogen atoms is calculated based on the assumption that implanted hydrogen is uniformly retained in the projected range.

試料として2種類の多結晶タングステン板を用いた. Table 1 に各試料の 1.7 keV H<sup>+</sup> および 5 keV He<sup>+</sup> イオン の飛程を示す[18]. ここで,Li については Li および Li<sub>2</sub>O の飛程を示してある.実測値がない B<sub>4</sub>C,SiC や Li<sub>2</sub>O の化合物の飛程は,各構成元素の飛程の平均値を 飛程とした.

## 8.3 水素リテンション特性

## 8.3.1 水素リテンション量

Fig. 2にLiとWの水素リテンション量と水素イオン 照射量の関係を示す. リテンション量は照射量とともに 増加しその後飽和する. 照射量が少なく照射温度が低け れば、水素イオンの後方散乱係数[19]が大きいほどリテ ンション率は小さいことが予想される. W の 1.7keV H<sup>+</sup>イオンの後方散乱係数は0.3であり,最大で70%の 水素がリテンションされることになる. 図中の点線は水 素イオンが照射量に対して直線的にリテンションされる と仮定した場合のトラッピング率を示す.本研究の照射 量の範囲(>1×10<sup>18</sup> H/cm<sup>2</sup>)ではリテンション量は後方 散乱係数から見積もった量よりも小さく、入射イオン量 の2~5%のトラッピングとなっており、すでに飽和領 域に近づいているものと考えられる. これより Li では ほぼ5×10<sup>18</sup> H/cm<sup>2</sup> 以上で、W では8×10<sup>18</sup> H/cm<sup>2</sup> 以 上の照射量でリテンション量が飽和することがわかっ た. 他の材料では 5×10<sup>18</sup> H/cm<sup>2</sup> 程度の照射量で飽和 すると考えられる[20,21]. Fig. 3 は 1.7 keV の H<sup>+</sup>イオ ンを室温で 5×10<sup>18</sup> H/cm<sup>2</sup> 照射した時の各試料の水素 リテンション量を比較したものである. リテンションさ れた水素は炭素系材料(グラファイト, B<sub>4</sub>C および SiC) の場合、水素以外にも数10%の炭化水素(ほとんど



Fig. 2 Amounts of retained hydrogen for W and Li as a function of hydrogen ion fluence.



Fig. 3 Amounts of retained hydrogen for Li, B<sub>4</sub>C, graphite, SiC and W after hydrogen ion irradiation  $(5 \times 10^{18} \text{H/cm}^2, 1.7 \text{ keV}).$ 

CH4 [22])の形でも放出する. Liからは膜の組成が Li<sub>2</sub>Oとなっていることに起因して、水素よりも1オー ダ少ない量であるが水が放出した.ここで述べるリテン ション量は CH<sub>4</sub> および H<sub>2</sub>O として放出する水素を含 む. グラファイトの飽和リテンション量は約 7×10<sup>17</sup> H/cm<sup>2</sup>であり, Li および SiC もグラファイトとほぼ同 程度のリテンション量である. B<sub>4</sub>C は1.3倍ほど大きい が、グラファイトとほぼ同程度とみなせる[23]. Wの リテンション量は、この照射量ではグラファイトよりも 1オーダ程度ほど低い. 多結晶 W の飽和リテンション 量はWの種類によってファクタ2の違いが見られた. 表面分析の結果,使用した多結晶W板の表面近傍の不 純物濃度が異なっており、低エネルギー水素イオンの飛 程を考慮すると、リテンション量は表面の不純物濃度や ポロシティ[24,25]などにも大きく影響を受ける.本研 究で求めた飽和リテンション量は (1.0-1.7)×10<sup>17</sup> H/cm<sup>2</sup> であり、グラファイトの1/7~1/4程度となった.この結

小特集

果は DIII-D の DiMES での実機での比較実験結果とほ ぼ対応している[26].

同一エネルギーの水素イオンを入射しても水素の飛程 は材料によって異なる[19]. 材料間のリテンション量を 比較するために、注入された水素が飛程の深さ内に均一 に保持されていると仮定し、ターゲット原子数に対する リテンション水素の原子比(H/ターゲット原子)を概 算した (Table 1). ここで B のデータは基板電圧 500V でグロー放電させた時のB膜中の水素量から概算した ものである[27].グラファイト,B, B<sub>4</sub>C および SiC の H/ターゲット原子比はほぼ同程度である.これに比べ て Li はグラファイトの約半分となっている. W の飽和 リテンション量はグラファイトに比べて少ないが、水素 イオンの飛程が短いので原子比で比較すると W の水素 濃度はグラファイトと同程度かむしろ大きくなる場合も 考えられる.W中の水素の拡散係数が大きいので[28], 照射温度(炉壁温度)が高くなると W 内部への水素の 拡散が生じ、材料全体のリテンション量はグラファイト よりも大きくなる場合が予想される[25,29].

#### 8.3.2 リテンション水素の熱脱離特性

プラズマ対向材料中にリテンションされた水素がプラ ズマからの熱負荷によって脱離すると、燃料粒子の制御 も困難になりプラズマの放電モードも変わる。リテンシ ョンされた水素の熱脱離特性を TDS 法で調べた結果を Fig. 4 に示す. 室温で水素イオンを 5×10<sup>18</sup> H/cm<sup>2</sup> 照射 した後, 室温から 1,000℃まで 50 K/min で昇温加熱した. グラファイトでは400℃から水素が脱離しはじめ800℃に 一つのピークを持つ. 室温で水素イオンを照射すると、 グラファイト表面はアモルファス[30]になり, H は sp<sup>3</sup> 結合のCと結合し[31], C-C-H あるいはC=C-H 結合 で a-C:H (水素化炭素)のような状態になることが報告 されている[32]. また, 脱離の活性化エネルギーは 2.6 eV であることから[13], この脱離ピークは C-H 結合と して材料中にリテンションされた水素の脱離である。な お, CH<sub>4</sub> は H<sub>2</sub> よりも低温の約600℃で脱離する. B<sub>4</sub>C は100℃近傍の低温から脱離し始め、400℃と800℃近傍 に2つの水素の脱離のピークを有する.ジボラン (B2H6) と水素とのプラズマ CVD 法で作製した B 膜の水素の脱 離ピーク(400℃)[27]や, B 添加黒鉛における水素の 脱離温度の低温側へのシフト[33]等から、低温側で脱離 する水素は B-H 結合, 高温側はグラファイトと同様に C-H 結合の形でリテンションされている水素とみなせ る.SiC では600℃に鋭いピークと800℃にもピークが観 測された. a-Si:H (アモルファス水素化 Si) 膜の TDS



Fig. 4 Thermal desorption spectra of hydrogen for Li, B<sub>4</sub>C, graphite, SiC and W after hydrogen ion irradiation  $(5\times10^{18}\text{H/cm}^2, 1.7 \text{ keV}).$ 

測定によれば、Si-H 結合の水素は約600℃で脱離する [34]. したがって, SiC の TDS スペクトルの低温側の ピークは Si-H 結合の水素と考えられる. Li は200℃と 350℃に脱離ピークを持つ. Li の融点が180℃であるこ とから、低温側の水素は Li 中に固溶している水素の脱 離と考えられる[35]. 高温側の水素の脱離の活性化エネ ルギーを求めると 0.7 eV となり[15], LiH<sub>2</sub>の生成のエ ンタルピーにほぼ等しいことから[36], Li-H 結合の水 素の脱離とみなせる. Wの TDS スペクトルでは200℃ と400℃の脱離ピークが認められた.また,1,000℃近傍 で脱離率の上昇が認められた.リテンション量は多結晶 Wの種類によって異なったが、リテンションされた水 素の熱脱離特性(脱離ピーク温度,各温度における脱離 量の全リテンション量に対する比率)は同じであった. W中にリテンションされた水素は、もともと材料中に ある欠陥や照射によって形成される空孔やボイドなどの 欠陥中にリテンションされる[37-41]. 欠陥の種類[42] や大きさ[43]等によってデトラッピングエネルギーの違 いが生じ、複数の脱離温度が観測される.また、この欠 陥をアニーリングするには再結晶化温度以上(>1900 K)の温度が必要であり[43],したがって W の性状に よっても W のリテンション特性が変化する.

Fig. 5 は加熱温度に対する残留水素量の比を表したも のである.ここで加熱温度は昇温速度 50 K/min で昇温 させた時 (Fig. 4) の試料温度を示す.また,リテンショ ン量の比は室温における各材料の飽和水素リテンション 量を1.0として規格化したものである.これよりリテン ション量が半減する温度を求めると,グラファイトでは 約800℃となる.SiC ではリテンション水素が減少し始

#### プラズマ・核融合学会誌 第73巻第6号 1997年6月



Fig. 5 Annealing temperature dependences of retained hydrogen for Li, B<sub>4</sub>C, graphite, SiC and W. Here, the value at *RT* is normalized unity.

める温度はグラファイトより低く、半減温度も約650℃ となった. B<sub>4</sub>C では B-H 結合の水素の脱離が B 膜と同 じように低温で脱離するが、C-H 結合の水素がグラファ イトと同じように高温で脱離するので、半減温度は SiC と同じ約650℃となる. これよりグラファイト系材料で はいずれも C-H 結合の水素のために半減温度が高くな る. これに対して、W では400℃となりグラファイト系 材料に比べて数100℃も低温となる. Li では半減温度は さらに低くなり約200℃となる. これらのデータから、 壁のベーキング温度を350℃程度とすると、プラズマ対 向材料によっては水素リテンション量をベーキングのみ によりかなり低減できることがわかる.

## 8.3.3 ヘリウム放電によるリテンション水素量の低減化 リテンションされた水素は、熱的に脱離するだけでな く粒子負荷(衝撃)によっても脱離する[44,45].一方, 炉の運転にあたっては、内壁のクリーニングのためにへ リウム放電洗浄が行われる. このヘリウム放電洗浄によ っても水素リテンション量が低減化すると考えられてい る. ここでは He<sup>+</sup>イオンをプラズマ対向材料に照射し, 材料中のリテンション水素量がどの程度低減したかを調 べるとともに、He<sup>+</sup>イオン照射後の水素の熱脱離特性の 変化についても調べた. 1.7 keV の H<sup>+</sup>イオンをリテン ション量が飽和するまでグラファイト, B<sub>4</sub>C および SiC に照射 (5×10<sup>18</sup> H/cm<sup>2</sup>) し,引き続き 5 keV の He<sup>+</sup> イオ ンを照射した.その後,材料中に残存している水素量を TDS 法により測定した. ヘリウムイオン照射量に対す る水素リテンション量を Fig.6 に示す. 3つの試料と も He<sup>+</sup>イオン照射量とともに水素リテンション量が急



Fig. 6 Helium ion fluence dependences of retained hydrogen for B<sub>4</sub>C, graphite, SiC and W. Here, the value before helium ion irradiation is normalized unity.

激に減少し、その後、照射量1×10<sup>18</sup> He/cm<sup>2</sup>以上では 緩やかに減少した.リテンション量は3 試料とも照射前 の50~60%にまで減少した.この量はHe<sup>+</sup>イオンによ る材料のスパッタリングによる損耗(表面の後退)によ る水素の除去量よりも多い.したがって、He イオンに よる粒子衝撃によって水素が掻き出され、脱離しリテン ション量が減少したことを示す.また、ヘリウムイオン の飛程が水素イオン飛程よりも十分長いので、粒子衝撃 によるリテンション水素量の低減率は材料間で大きな差 はなかったものと考えられる.しかし、He<sup>+</sup>イオンの照 射量とともに水素リテンション量が減少しその後一定に なるのは、He<sup>+</sup>イオンによる新たなトラップサイトの創 成、水素の再捕獲[46]および水素のマイグレーションの 変化[39]のためと考えられる.

He<sup>+</sup>イオン照射後の H<sub>2</sub>の熱脱離特性を TDS 法で調べた. グラファイトでは He<sup>+</sup>イオン照射前に比べて脱 離率は減少するが,脱離のピーク温度は照射前とほぼ同 ー(800℃)であった. B<sub>4</sub>C では結合エネルギーの低い B-H 結合である低温側(400℃)で脱離する水素が大き く減少し, C-H 結合の高温側で脱離する水素も若干減少 した. SiC についても低温側の Si-H 結合(約600℃)が 大きく減少する反面,高温側(800℃)の脱離率はほぼ 照射前と変わらなかった. また,脱離のピーク温度は He<sup>+</sup>イオン照射前とほぼ同じであった. W では200℃の 低温側の脱離ピークが消失し,400℃の脱離ピーク強度 は若干減少したが照射量を増加しても大きく変化しなか った.本研究で用いた試料の He<sup>+</sup>イオン照射前後によ る水素の熱脱離特性の変化から,複数のトラップ状態が 小特集

存在する場合は低温側で脱離する水素がより顕著に掻き 出され減少するが,脱離温度は大きく変化しないことが わかった.

実際の炉壁に対する放電洗浄では He<sup>+</sup>イオンのエネ ルギーが低いので、粒子衝撃による搔き出し効果による 水素量の低減率はこの結果より小さくなると考えられ る. 今回示した実験では、ヘリウムの飛程が水素がトラ ップされている領域より長く、このとき水素量が半減し ていた.したがって、ヘリウムのエネルギーが低くても、 その飛程内で水素濃度の減少が期待できよう. また, 主 放電中においては、ヘリウムと燃料水素同位体イオンと が同時に材料に照射される. ヘリウムイオンで照射され た後の材料への水素イオン照射ではそのリテンション特 性も、ヘリウムイオンのエネルギーによって大きく異な り、リテンション量も増加するだけではなく減少する場 合もある.また、その熱脱離特性も大きく変わることが 報告されている[39]. これは He<sup>+</sup>イオンによる新たな トラップサイトの創成,水素の再捕獲[46]および水素の マイグレーションの変化によるものと考えられる.した がって, 主放電下におけるヘリウム粒子衝撃と水素リテ ンション特性の関係をプラズマ対向材の候補材に対して 系統的に調べる必要もある.

#### 8.4 まとめ

いくつかのプラズマ対向材料の水素リテンション特性 を紹介した. グラファイト, Li, B, B<sub>4</sub>C, SiC の室温照射 下での水素濃度は、ほぼ同程度であった、しかし、保持 された水素の熱脱離特性は、これらの材料間でかなり異 なっていた. Liの脱離ピーク温度は約200℃と350℃で あった. B<sub>4</sub>C や SiC では B あるいは Si に捕捉されてい るとみなせる水素の脱離が各々350℃と600℃の低温側に みられた.また炭素に捕捉されているとみなせる水素の 脱離(800℃)もかなり存在していた.そのため, B<sub>4</sub>C, SiC に必要なベーキング条件はグラファイトとほぼ同程 度である.Wの室温下での水素リテンション量は、水 素イオンの飛程が短く,グラファイトに比べると小さい. しかし、室温での水素濃度は同程度となる.実際の炉壁 では、本実験条件(室温)よりも壁温度が高くなるので、 水素の拡散/透過によりバルク中へ保持されていくであ ろう、このためバルクの水素リテンション量はかなり大 きくなり、グラファイトと同程度あるいはそれ以上にな るという見方もある.ただし、水素の脱離ピークは200℃ と400℃と低温側にあり、グラファイトよりもベーキン グによる脱離条件は易しくなる.

He イオン照射すると,保持された水素は脱離し,リ テンション量は低減した.5 keV の He イオン照射の場 合についてであるが,フルエンスが約 $5 \times 10^{17}$  He/cm<sup>2</sup> で減少が飽和し,最大減少量はどの材料でも50%程度で あった.

今回紹介した水素リテンション量および加熱温度依存 性を考慮し、さらに各材料の昇華温度、スパッタリング 特性、耐熱衝撃性をふまえて、炉壁のどの部分にいかな る材料を適用していくのか検討する必要がある.今後, Be や低放射化材料に対する系統的な水素リテンション 特性の評価も重要である.

#### 参考文献

- [1] たとえば, H. Takatsu, T. Ando and the JT-60 Team *et al.* J. Nucl. Mater. **155-157**, 27 (1988).
- [2] たとえば, J. A. Snipes, E. S. Marmar, J. L. Terry and the TFTR Group, J. Nucl. Mater. **196-198**, 686 (1992).
- [3] たとえば, JET Team, Nuclear Fusion, **32**, 187 (1992).
- [4] P. Wienhold, J. von Seggern, H. G. Esser and J. Winter, J. Nucl. Mater. **176-177**, 150 (1990).
- [5] M. Saidoh, H. Hiratsuka *et al.*, Fusion Eng. and Design **22**, 271 (1993).
- [6] T. Ando, Proc. J-US Workshop P-196 NIFS-Proc., 75 (1993).
- [7] たとえば, U. Samm, P. Bagen *et al.*, J. Nucl. Mater. 220-222, 25 (1995).
- [8] J. B. Whitley, K. L. Wilson and D. A. Buchenauer, J. Nucl. Mater. 155-157, 82 (1988).
- [9] T. Tanabe, N. Noda and H. Nakamura, J. Nucl. Mater. 196-198, 11 (1992).
- [10] T. Yamashina and T. Hino, J. Nucl. Mater. 162-164, 841 (1989).
- [11] 田辺哲朗, 丸山忠司:プラズマ・核融合学会誌, **64**, 49 (1988).
- [12] Y. Yamauchi, T. Hino, K. Koyama, Y. Hirohata and T. Yamashina, J. Nucl. Mater. (1997) to be published.
- [13] Y. Yamauchi, Y. Hirohata, T. Hino, T. Yamashina, T. Ando and M. Akiba, J. Nucl. Mater. 220-222, 851 (1995).
- [14] Y. Yamauchi, T. Hino, Y. Hirohata and T. Yamashina, Vacuum 47, 973 (1996).
- [15] 金谷 康,山内有二,広畑優子,日野友明:プラズ マ・核融合学会秋季講演会,3pA-17,新潟(1996.10.3).
- [16] 中山喜明, 福田 伸, 山科俊郎: 真空 32, 301 (1989).
- [17] H. Sugai, H. Toyoda et al., J. Nucl. Mater. 220-222,

605

プラズマ・核融合学会誌 第73巻第6号 1997年6月

254 (1995).

- [18] J. F. Zieger *et al.*, *Stopping Powers and Ranges in All Elements*, Pergamon Press (1977).
- [19] R. Ito et al., Data on the Backscattering Coefficient of Light Ions from Solids Rep. IPPJ-AM-18 (1981).
- [20] A. A. Haasz and J. M. Davis, J. Nucl. Mater. 209, 155 (1994).
- [21] R. Jimbo, M. Saidoh, T. Ando *et al.*, J. Nucl. Mater. 196-198, 958 (1992).
- [22] V. Philipps, E. Vietzke, M. Erdweg and K. Flaskamp, J. Nucl. Mater. 145-147, 292 (1987).
- [23] V. Fernandez, J. Bardon, E. Gauthier and C. Grisolia, J. Nucl. Mater. 196-198, 1022 (1992).
- [24] C. Garcia Rosales, P. Franzen *et al.*, *12th PSI*, *to be published in* J. Nucl. Mater.
- [25] 野田信明:プラズマ・核融合学会誌 72,987 (1996).
- [26] W. R. Wampler *et al.*, 12th PSI, to be published in J. Nucl. Mater.
- [27] T. Mochizuki *et al.*, 北海道大学工学部研究報告 177, 1 (1996).
- [28] K. L. Wilson, R. Bastasz, R. Causey *et al.*, J. Nucl. Fusion 1, 31 (1991).
- [29] P. Franzen, C. Garcia *et al.*, to be published in J. Nucl. Mater.
- [30] K. Niwase and T. Tanabe, Materials Trans. TIM **34**, 1111 (1993).
- [31] T. Tanabe, Physica Scripta, T64, 7 (1996).

- [32] B. Discher, A. Bunenzer and P. Koidl, Solid State Comm. 48, 105 (1983).
- [33] V.Kh. Alimov, R. Schworer, B. M. U. Scherzer and J. Roth, J. Nucl. Mater. 187, 191 (1995).
- [34] 佐竹 徹:私信.
- [35] H. Sugai, N. Oheri and H. Toyoda, Vacuum 47, 981 (1996).
- [36] H. Kudo and K. Okuno, Radiochimica Acta 33, 223 (1983).
- [37] G. M. McCraken and P. Stott, Nuclear Fusion 19, 889 (1979).
- [38] J. Roth, J. Nucl. Mater. 103/104, 291 (1981).
- [39] S. M. Myers, O. M. Richards, W. R. Wampler and F. Besenbacher, J. Nucl. Mater. 165, 9 (1989).
- [40] W. Moller, Nucl. Instruments and Methods 209/210, 773 (1983).
- [41] K. Tokunaga, M. Takayama, T. Muroga and N. Yoshida, J. Nucl. Mater. 220-222, 800 (1995).
- [42] A. A. Pisarev, A. V. Varava and S. K. Zhdanow, J. Nucl. Mater. 220-222, 926 (1995).
- [43] H. Eleveld and A.van Veen, J. Nucl. Mater. 191-194, 433 (1992), 212-213, 1421 (1994).
- [44] K. Erents and G.M. McCracken, Brit. J. Appl. Phys. 2, 1397 (1969).
- [45] W. Bauer and G. J. Thomas, J. Nucl. Mater. 47, 241 (1973); 53, 127 (1974).
- [46] R. Wampler and S. M. Myer, Nucl. Fusion Inst. and Meth. B7/8, 76 (1985).

代表著者 E-mail tomhino@hune.hokudai.ac.jp

606