

4. 慣性核融合用電源

4.1 粒子ビーム電源技術

宮 本 修 治 (姫路工業大学高度産業科学技術研究所) (1997年5月26日受理)

A Power System for Inertial Confinement Fusion Pulsed Power Technology for Particle Beam Driver

MIYAMOTO Shuji

Laboratory of Advanced Science and Technology for Industry, Himeji Institute of Technology, Himeji, Hyogo 671-22, Japan (Received 26 May 1997)

Abstract

Particle beam fusion drivers require a high-power system that is both stable and highly efficient. A pulsed power system is generally used to generate the final output power that drives a fusion implosion, and especially in the case of the light ion beam. In this paper, a pulsed power system for particle beam fuison driver is reviewed.

Keywords:

particle beam fusion, heavy ion beam, light ion beam, pulsed power, pulse compression, magnetic switch, induction adder, magnetically insulated transmission line

4.1.1 はじめに

慣性核融合によりエネルギー発生をめざす試みは,大 出力レーザーを用いた爆縮物理研究の着実な進展によ り,エネルギー開発計画と位置づけた推進が待たれる段 階となっている.そのため燃料ターゲット部中心の爆縮 研究とともに,高出力ビーム発生源であるエネルギード ライバが開発課題となっている[1,2].

粒子ビームは、高効率が期待できることから、エネル ギードライバ開発の主要な候補として研究が進められて いる. 粒子ビームエネルギードライバは、大きく軽イオ ンビーム (LIB: Light Ion Beam) と、重イオンビーム (HIB: Heavy Ion Beam) に分類される. 軽イオンビーム はおおむね質量数20以下、重イオンビームは質量数200 程度のイオンビームが想定されている. 軽イオンビームの粒子エネルギーは数 MeV から数十 MeV までと比較的低いため、メガアンペアの大電流ビー ムが必要となる.加速器の技術としては、単段あるいは 数段の加速で、高出力パルス電力を直接ビーム出力に変 換するため、加速段あたりに大きな電気入力が必要であ り、電源技術に大きく依存する加速器を用いる.このよ うな電源技術がパルスパワー技術 (Pulsed Power Technology)であり、粒子ビーム慣性核融合だけでなく、各 種応用に用いられている[3-5].

一方,重イオンビームは,たとえば鉛イオンでは核融 合燃料標的でのエネルギー吸収過程から,10 GeV 程度 の粒子エネルギーが必要であり,このような高い粒子エ ネルギーは多段加速でなければ達成できない.比較的低 電流の長パルス重イオンビームを高周波線形加速器で加 講 座

速し,ビームスタックやバンチングで短パルス・大電流 にパルス圧縮し,高出力ビームを発生する[6].

Fig.1に軽イオンビームおよび重イオンビームの加速 エネルギーと電流の履歴を加速方法で分類したものを示 す.図にあるように,HIBではイオン源から発生した ビームを Induction Linac,あるいは RF Linac と Storage Ring により多段加速する.このため比較的低出力 電源を長い距離にわたって配置し,高周波加速空洞およ び偏向磁石・磁場レンズ系に電力を安定に供給・制御を 行うことが重要である.電源技術としては,安定性向上, 高効率・低コスト化が主要な目標で高ピーク出力は要求 しない.一方 LIBでは,核融合に必要な高ピークパワー は主に電源技術で達成されるため,高電圧大電流パルス 電源技術(パルスパワー技術)が研究・開発されている. 以下,パルスパワー技術について概説する.

4.1.2 パルスパワー慣性核融合ドライバ技術 4.1.2.1 構成

パルスパワー慣性核融合ドライバの構成の一例を Fig. 2 に示す.パルスパワー電源技術を用いた高出力イオン ビーム加速器は電気エネルギーから直接イオンビームへ 変換するため,変換効率が高く,高利得爆縮実験および 核融合炉用ドライバとして研究開発されている.ドライ バの構成として,まず初期エネルギー蓄積部がある.マ ルクス発生器 (Marx Generator) や,キャパシタ放電と ステップアップトランスにより数 MV 程度の高電圧パ ルスを発生させる.マルクス発生器を利用する場合は, スイッチにガスギャップの利用が一般的であるが,繰り 返し安定性や寿命の点で問題がある.ステップ

Fig. 1 Power supply parameter of particle beam fusion driver on voltage-current space.

アップトランスを利用する場合,スイッチング電圧を低 く設定すれば安定なサイリスタ等の半導体スイッチを用 いることができ,数10 Hz までの高い繰り返しでの動 作を実現することができる[7].

ステップアップトランス後の高電圧スイッチには, レーザートリガーガススイッチが考えられる.このスイ ッチ段以降は,磁気スイッチ等受動スイッチを用いるた め,電源モジュール間のタイミング同期はこのレーザー トリガーで実現する.

4.1.2.2 容量性パルス圧縮

初期高電圧発生部で発生した,比較的長い(数10 µs) 高電圧パルスは,容量性パルス圧縮を行うことにより, 電流を増倍して高出力短パルス(数10 ns)を発生する ことができる[8]. Fig.2のPulse Forming Line 部は低 インダクタンスのキャパシタで,前段から共鳴充電で高 速にエネルギーが転送され,それを出力スイッチで次段 に転送する.スイッチのインダクタンスを順次小さく設 定することにより,パルスは圧縮され電流増倍が実現さ れる.ここに用いられるスイッチは,高電圧で使用でき,

Fig. 2 Structure of pulsed power driver for inertial fusion energy.

689

低インダクタンスで, さらに核融合ドライバの電源とし て繰り返し使用に耐えなければならない. このため Fig.2 に示したような磁気スイッチ (Magnetic Switch) が用い られる[8].磁気スイッチは可飽和リアクトルを利用し たスイッチ素子で, 高透磁率磁性体に囲まれた電流路の インダクタンスが,磁性体の磁気飽和により高速に減少 することを利用したものである.磁気スイッチ動作の条 件は次のように表される.

$$\Delta B \cdot S = | V \mathrm{d}t \tag{1}$$

ここで、*△B*は磁性体のフラックススイングで、残留磁 束密度と飽和磁束密度の和,Sは磁性体の断面積,Vは スイッチ両端に印可された電圧でそれを時間積分した値 が *ΔB*・Sを超えると飽和して,スイッチ動作が始まる ことになる. 高速スイッチに用いられるフェライトで, $\Delta B = 0.8T$ 程度,鉄系アモルファスコアでは 3T 近い △Bのものも開発されている.磁気スイッチの形状は小 型であるほど、閉路時のインダクタンスを小さくでき、 大電流スイッチが可能になる.しかし,磁性体材料で決 まる ΔB により、必要磁性体断面積 S はきまり、スイッ チ全体のインダクタンスも制限されることになる.また, マイクロ秒以下の短パルスでは、磁性体の表皮効果が問 題となるため、通常10-20ミクロンの厚さの磁性体を、 絶縁材料と交互に巻き重ねた形状のコアが使用される. この場合,磁性体断面積 S は絶縁層を除いた実効断面積 で考える必要があり、小型化には充填率を大きくする実 装技術も重要となる.スイッチ動作後,磁性体は B-H 曲 線上で、動作前と逆の残留磁化位置に移動するため、逆 電流を流して磁性体をリセット(逆飽和)する.繰り返 し動作には、自動リセット回路を付加する必要がある.

磁気スイッチは放電ギャップスイッチ等に比べ電極等 の消耗がなく,動作の安定性,再現性でも優れており, 繰り返し動作に適したスイッチ素子である.

4.1.2.3 誘導電圧重畳

このようにして発生した,短パルス (50 ns),高電圧 (1-2 MV),大電流 (0.5-1 MA) パルスを誘導電圧重畳 装置 (Induction Adder) で直列に重ね合わすことによ り,目的の高出力パルスが発生される[9].Fig.3 に誘 導電圧重畳装置の一般的な構造と模式図を示す.1:1 トランスを多段直列に接続した構造である.Fig.3 では 2段の場合の構成を示しており,出力は電圧が2倍,電 流は直列接続のため等倍となる.この場合磁性体は非飽 和で回路を高インダクタンスに保ち,各段の高電圧を誘 導絶縁していると考えられる.そのため磁気スイッチの

Fig. 3 Conceptual configuration of induction adder accelerator.

場合とは違い,磁性体の非飽和状態領域が動作点となる. すなわち $\Delta B \cdot S > \int V dt$ で使用する必要がある.

誘導電圧重畳装置の一段あたりの電圧は、出力絶縁体 で制限される.イオンビーム発生に真空沿面絶縁部が必 要で、このサイズを大きくすると、絶縁耐力は上げるこ とができるが、インダクタンスによる誘導電圧のため、 負荷側に電圧が有効に出力されなくなる.動作電圧(絶 縁耐力)をVとすると、 $V \gg V_L = L \cdot I/t_{rise}$ である必 要がある.ここで、 V_L は誘導電圧、Lは1段あたりの 回路インダクタンス、I, t_{rise} は電流と立ち上がり時間で ある.したがって、電流は $I \ll V \cdot t_{rise}/L$ で制限される. 2 MV の絶縁耐力を選るには、現状技術ではインダクタ ンスが 10 nH 程度となり、電流は数 100 kA 以下に制限 される.

Fig. 4 に誘導電圧重畳装置の一例を示す[10]. 大阪大 学の励電 SHVS でマルクス発生器からの高電圧を,パ ルス整形ラインで 500 kV,400 kA,100 ns のパルスに整 形し,それを32本の高電圧ケーブルでパルスに分割し, 誘導電圧重畳装置に入力している. 誘導電圧重畳部は, 8 段の誘導空洞で構成されており,各段4本,500 kV, 40 kA が供給され,全段で4 MV,40 kA のパルス発生 ができる.

同様なインダクションアッダーでは、米国 Sandia 研 究所の Hermes III [11] が最大で、20キャビティで、20 MV、800 kA、16 TW の出力を記録している. Hermes III では4モジュールのパルス整形ラインが発生したパ ルスパワーを1キャビティに並列に加え、それを20台直 列接続する構造である. この Hernes III 技術を延長す る EDNA の概念設計が行われており、2 倍の40キャビ ティで47 MV、1.2 MA、56 TW を 37 m の MITL で伝送 する計画である. 慣性核融合計画の LMF (Laboratory

690

講 座

4.1 粒子ビーム電源技術

Fig. 4 Example of induction adder, "Reiden-SHVS". Eight stage cavities are fed by 500kV pulse through 32 power feed cables.

Microfusion Facility) では, EDNA と Hermes III の中 間の大きさのモジュールを24台使用した, 30 MV, 1,000 TW のドライバが検討されている.

4.1.2.4 磁場絶縁伝送ライン

前節に示した Hernes Ⅲ のような,高電圧,低イン ピーダンス装置では、中央電極表面は高い電界となり、 電界放出が起こる.電界がしきい値 2-4×107 V/m を 超えると爆発放出[12]により、電極表面はプラズマで覆 われ電子供給源となる.低い電流での動作では、このよ うな状態は絶縁破壊につながり、出力は前方に伝搬しな い.しかし、十分に大きな電流を流せば、言い換えれば 低いインピーダンスであれば、Fig.5のようにパワー入 力端で発生した電子は同軸ラインを流れる自己電流によ る磁場によって、内部導体側に曲げられ、全体として電 子は E × B ドリフト方向であるパワーの流れの方向に 伝送される. このような状態は磁場絶縁伝送ライン (Magnetically Insulated Transmission Line: MITL) と呼 ばれ通常の真空絶縁強度の30倍以上の高電界で同軸伝送 ラインが構成できるため、伝送可能なパワー密度は900 倍に達する. Hermes III では、中央に 15 m の MITL を持つ.

MITL 動作が起こる臨界電流は、同軸形状係数g=

Fig. 5 Magnetically insulated transmission line (MITL).

1/[ln(*R*₂/*R*₁)]を用いて

$$I_{\rm c} = I \propto g \beta \gamma = V(\gamma + 1) / (Z_0(\gamma - 1))$$
(2)

となる.ここで, $Z_0 = (1/2\pi g)(\mu_0/\epsilon_0)1/2 = 60g[\Omega] は通$ 常の同軸ラインの真空中でのインピーダンス. MITL におけるパルスの伝搬は,導体内部だけでなく真空中を伝搬する電子電流のために,形状で決まるインピーダンスより低いインピーダンスとなる.現実の電子流は Fig. 5の上半分のような電子の運動になると考えられるが,等価的に下半分のようなパラポテンシャル電子流を仮定す $ると,電極内を流れる電流は,<math>I_b = I_0/\gamma_m$ と表される. ここで γ_m は,電子の内一番外部導体に近づく電子の相 対論的係数で,外部導体に接する場合(飽和パラポテン シャル流) $\gamma_m = 1 + eV/cm^2$ となる.実験およびシミ ュレーションから,1 MV 以下の動作電圧では MITL の 実効インピーダンスは $Z_{eff} = 0.4Z_0, 1$ MV 以上では 0.6-0.7Z₀ に増加する.

4.1.2.5 誘導蓄積パルス圧縮

一方,容量性パルス圧縮方式でなく,誘導蓄積パルス 圧縮を用いて,高電圧パルスの発生も可能である [13-15].インダクタンスに大電流を流し*E* = *LI*²の磁 場エネルギーとして蓄積する.開放スイッチを用いて電 流を切断するとき,*V* = *L*d*I*/dtの出力電圧が負荷に印 可される.ヒューズを用いた開放スイッチもあるが,繰 り返しの容易さと,MVの高電圧で使用できるプラズマ 開放スイッチ (POS)が核融合ドライバ研究において開発 された.

POS は、プラズマ中を流れる電流の内、イオン電流 がプラズマを浸食し、シースを増加させることにより開 放スイッチ動作を行うものである.通常同軸真空伝送ラ インの途中(MITLの終端など)に、適当なタイミング で外部からプラズマを入射する.プラズマで短絡された 同軸伝送ラインには、大電流が流れるが、その電流によ りプラズマが開放し、下流側に電流が転送され始める. その結果、プラズマ部に磁場が発生し、その磁場はさら にプラズマの開放を早める.このようにして、MA レ ベルの電流が数ナノ秒という高速で遮断され、出力は短 パルス高電圧に圧縮される.

真空中で動作する POS を用いたパルス圧縮出力を, 誘導電圧重畳装置の入力パルスに利用するのは,イン ターフェイスの増加等構成上不利で信頼性低下の恐れも ある.そのため慣性核融合電源システムに置いては,主 にプリパルス除去や最終パルス整形に用いられる. プラズマ・核融合学会誌 第73巻第7号 1997年7月

4.1.3 おわりに

慣性核融合用粒子ビーム電源技術,特に軽イオンビー ム電源技術について概説した.現在の慣性核融合実験が 炉心プラズマの物理実験中心であることから,繰り返し の早い,高平均パワー電源の開発はあまりなされていな い.米国 Sandia 研究所の RHEPP 加速器が,磁気スイ ッチとインダクションアッダーの組み合わせで,120 Hz の繰り返しを得ることで,2.5 MV の電子ビームを, 平均 350 kW で発生している.磁気パルス圧縮技術,誘 導電圧重畳技術,オープニングスイッチによる誘導パル ス圧縮技術等,高出力,高密度,さらに高繰り返し電源 技術は,核融合以外にも広く応用できる技術であり,核 融合電源としての要求以上に,それぞれの技術の特徴を 生かした新しい技術展開が期待される.

参考文献

- [1] 中井貞雄, 今崎一夫, 宮本修治, 山中千代衛:日本 物理学会誌 36, 666 (1981).
- [2] 宮本修治: プラズマ・核融合学会誌 70, 374 (1994).
- [3]渡辺正人,糟谷紘一:プラズマ・核融合学会誌 71, 933 (1995).
- [4]秋山秀典,升方勝巳:プラズマ・核融合学会誌 71, 958 (1995).
- [5] K. Imasaki, D. L. Cook, T. R. Lochner, S. Miyamoto, R. E. Olson and W. J. Hogan, *Light Ion Drivers*, *Energy from Inertial Fusion*, W. J. Hogan, Editor, Vienna: International Atomic Energy Agency ISBN

92-0-100794-9 (1995) p.136.

- [6] 服部俊幸,片山武司,堀岡一彦:プラズマ・核融合 学会誌 71,939 (1995).
- [7]中井貞雄他,文部省科学研究費補助金エネルギー特別研究(核融合)第3班「炉心制御の基礎」総括班, 1984年.
- [8] 大電流工学ハンドブック,電気学会大電流応用技術 調査専門委員会編,コロナ社, p.182, 1992.
- [9] J. J. Ramirez, K. P. Prestwich and I. D. Smith, Proc. IEEE 80, 946 (1992).
- [10] S. Miyamoto, K. Imasaki, N. Yasuda, N. Yugami, T. Akiba, K. Tubakimoto, A. Zakou, S. Nakai, C. Yamanaka, Laser and Particle Beams, 7, part 4, p.687 (1989).
- [11] J. J. Ramirez et al., Proceedings of the 7th International Conference on High-Power Particle Beams, Karlsruhe, Germany, 4-8 July 1988, edited by W. Bauer and W. Schmidt, p.148 (1988).
- [12] G. A. Mesyats and D. I. Proskurovskii, JETP Lett., 3, 4 (1977).
- [13] S. Miyamoto, N. Yugami, H. Fujita, T. Ozaki, K. Imasaki, S. Nakai and C.Yamanaka, Jpn. J. Appl. Phys. 25, L108 (1986).
- [14] S. Miyamoto, N. Yugami, K. Imasaki, S. Nakai and C. Yamanaka, IEEE Trans. on Plasma Science, vol.**PS-15**, 667 (1987).
- [15] 横山昌弘編:「プラズマ理工学」,日刊工業新聞社, p.146 (1988).

著者 Email miyamoto@lasti.himeji-tech.ac.jp