特集 核融合エネルギーの社会的受容性と科学的見通しII

17. ヘリカル型核融合炉設計

相 良 明 男 (核融合科学研究所)

Design of Helical-Type Fusion Reactors

SAGARA Akio

National Institute for Fusion Science, Toki 509-5292, Japan (Received 30 June 1998)

Abstract

Currently, there is active interest in the research and development of helical systems. New large devices using superconducting magnets (LHD in Japan and W7-X in Germany) are expected to produce highly improved plasmas comparable to those recently obtained in the large tokamaks. Because current-less steady operation is advantageous, these aggressive programs have accelerated several design studies of helical-type reactors, which are promising alternatives to demonstration reactors.

A reference design for the Force Free Helical Reactor (FFHR) is presented, the main feature of which is the force-free-like configuration of the helical coils. Another feature is the selection of molten-salt Flibe as a self-cooling tritium breeder, which enhances safety. Demo-relevant engineering issues in the concept definition phase are discussed.

Keywords:

helical reactor, reactor design, LHD helical device, force free coil, liquid blanket, current less plasma,

17.1 はじめに

環状磁場閉じ込め外部導体方式のステラレータ (stellarator)(元は広義の「星のトーラス」の意)は、 複数の正負電流コイル対とトロイダル磁場コイル群から なり、両コイルを結合分割したモジュラーコイル型もあ る[1]. ヘリオトロン/トルサトロン(heliotron/torsatron)は字尾(京大)の独自アイデアによるものであり [2]、複数の同方向電流コイルと垂直磁場コイルだけか らなるシンプルな構造が特徴である. これらおよび L. Spitzer(米)[3]による8の字形を祖とする立体磁気 軸のヘリアック(heliac)と、閉じ込め形状を最適化し たヘリアス(helias: helical advanced stellarator)[4] を総称してヘリカル系トーラスと呼ばれている. トカマ ク型との本質的な違いはプラズマ電流を必要としないこ

author's e-mail: sagara@lhd.nifs.ac.jp

とにある.

現状のヘリカル系の閉じ込め性能が,実験炉段階のト カマク型(例としてITER)に比べて進捗度に約15年の 差はあるものの,トカマク型が今なお多大な労力と時間 を注いでいる電流ディスラプション制御と定常化に関し ては,当初からこのハードルを越えており,ヘリカル系 は原型炉の段階で十分にトカマク型と競合し得るもので ある.他方,磁場コイルが三次元的に精緻な構造を持つ ため,電磁力支持,ブランケットの保守交換等の工学設 計が複雑になる.したがって,ヘリカル型核融合炉の実 現への課題は,閉じ込めの着実な改善とともに,動力炉 としての炉本体構造の設計成立性の開拓にある.プラズ マ加熱と燃料補給・灰排気・T回収サイクルを含むプラ ントシステムおよび炉構造材料に関する課題は,トカマ ク型にほぼ共通と判断できる.

ここでは、各形式の進展と炉設計の特徴を概説すると ともに、我々が最近進めているヘリオトロン型核融合炉 FFHR (Force-Free Helical Reactor)を設計例として示 し、今後の課題を解説する.

17.2 ヘリカル系トーラス装置研究の進展

1952年の8の字形から始まるヘリカル系の伝統と歴史 は、1970年代からのトカマク全盛時代の後も、Cleo(英)、 L および Uragan (旧ソ連)、Wendelstein(独)等のス テラレータと、Heliotron(日)等々の各シリーズおよび 個性的な各種小型装置によって粘り強く受け継がれ、ト カマクに劣らぬ優秀さが改めて見直されるに至った.と くに Heliotron 装置の着実な成果は、1980年代からのヘ リカル系復調の決定的牽引力となった.事実1983年には 再度アメリカにヘリオトロン/トルサトロン型の ATF (Advanced Toroidal Facility)が建設され、1994年まで 稼働した.

このような歴史的経緯から,1989年には全システム超 伝導コイルによる世界最大のヘリオトロン型 LHD (大 型ヘリカル装置, Fig. 1) 建設が核融合科学研究所(岐 阜県土岐市)にて開始され[5],予定どおり1998年3月 31日にファーストプラズマを点火し,5月13日には第1 サイクル実験を終了した.今後は臨界条件に迫るプラズ マ領域,1時間以上の定常運転等をめざす.ドイツでも LHD 級の ヘリアス型超伝導モジュラーコイル仕様の W7-X (Wendelstein 7-X) 建設が本格的に始まっている [4,6].

ヘリカル系の磁場配位は外部導体で決まる利点がある が、閉じ込め劣化につながる磁気島(magnetic island) の生成を回避するなどの理由から、一般に設計磁場精度

Fig. 1 Large Helical Device (LHD).

は1万分の1が要求される.したがって近年のヘリカル 系の復調は,加工技術の高精度化と計算機の驚異的進歩 に明らかに同期しており,今後の更なる新展開が期待さ れている根拠の一つでもある.

したがってヘリカル系トーラス装置は、LHD と W7-X によって、大型トカマク級のプラズマ領域と、前例 のない高性能・定常プラズマ運転の両方を、間もなく実 証する段階に来ている.

17.3 ヘリカル型核融合炉の特徴

ヘリカル型核融合炉の魅力は、プラズマ電流を必要と しないことに帰着する.すなわち、

(1)定常運転が容易である(外部導体系).

- (2)電流ディスラプションがなく,安全性が高い(無電 流プラズマ).
- (3)プラズマ電流駆動のための還流エネルギーが不要 (大きいQ値).
- (4)ダイバータが自然に備わっている(造り付けダイ バータ).

等である. これらの魅力を生かした概念設計が, 1970年 代から1980年代初めにかけて精力的に実施された. Table 1 に示すように, ヘリオトロン型炉[7,8],トルサ トロン型炉 [9], モジュラーステラレータ型炉 [10,11] がある. これらの設計は, エネルギー閉じ込め時間 7E に関して,新古典拡散(neoclassical diffusion)のプラトー

域あるいは概略の実験比例則を仮定して進められた. 一方,トカマク型と比較して,ヘリカル型の課題として,

(1)ヘリカルコイルの設計製作が工学的に複雑

(2)非軸対称性のためプラズマ閉じ込めの理論予測が困難 (3)ヘリカルコイルとプラズマの間隔が狭い

等が指摘されてきた[4].しかし、これらに対する改善や提案を伴うかたちで、最近新たにヘリカル型炉の魅力が見直され始めており、トカマク路線を補完できる可能 性が科学的に議論され始めている.

オークリッジ国立研究所(米)ではトルサトロン型炉 のCT (Compact Torsatron)シリーズ[12],マックス プランク研究所(独)ではヘリアス型炉のHSR (Helias reactor)[13]等の概念設計が精力的に行われている. 前者は、コンパクト化により、発電コスト評価がトカマ ク型炉に勝る可能性を示している.後者は、閉じ込め磁 場配位を最適化したモジュラーコイルにより、自己点火 への良好な見通しを示している.そして新たに、LHD 建設での物理工学成果[14]を基盤にした FFHR [15-17] およびモジュラーヘリオトロン炉 MHR [17]が進められ 特 集

17. ヘリカル型核融合炉設計

Table 1 Design parameters of conceptual helical reactors.

	Heliotron-H	T-1	UETOR-M	MSR	CT6	HSR	FFHR-1	MHR-S	SPPS
Main field coils	2	3 (modular)	3 (modular)	2(modular)	2	50 (modular)	3	2(modular)	32(modular)
Toroidal field periods	15	20	6	6	6	5	18	10	4
Major radius	21m	29.2m	24.1m	20.2m	6.57m	20m	20m	16.5m	13.95m
Average plasma radius	1.8m	2.3m	1.7m	1.8m	1.74m	1.6m	2m	2.35m	1.6m
Toroidal field on axis	4T	5T	5.5T	6.4T	6T	5T	12T	5T	4.95T
Average beta	6%	3.54%	5%	4%	4.70%	4-5%	0.70%	5%	5%
Fusion output	3.4GW	4.3GW	5.5GW	4GW	1.8GW	2-3GW	3GW	3.8GW	2.29GW
T-breeder	Li ₂ O	Li	Li17Pb83		⁶ Li17Pb83		Flibe		Li
Structure material	SUS		HT-9		HT-9		JLF-1		V
References	7,8	9	10	11	12	13	15, 16	17	18
	1974-1982	1978	1981	1981	1989 -	1992 -	1995 -	1996 -	1997
	Kyoto-U	MIT	Wisconsin-U	Los Alamos	ORNL	IPP-Garching	NIFS	NIFS	UCSD
				Princeton					

ている. これらに呼応して,トカマク中心の ARIES チーム(米) でも SPPS (Stellarator Power Plant Study) 炉設計が行われ,経済的に成立しうることが示された[18].

17.4 設計例としての FFHR [15,16]

FFHR は D-T 原型炉であり、LHD 成果を順次取り入 れながら、動力炉開発のための主要技術課題を明らかに し、今後数十年で実用可能と期待できる革新的技術を導 入することおよび高安全・高稼働率を主な設計指針とし ている.

17.4.1 コイル間電磁力低減による強磁場設計

連続巻きヘリカルコイルの場合、ヘリカルピッチパラ メータ、 $\gamma = (m/\ell) (a_c/R)$ 、(ただし、ヘリカルコイル 数 ℓ 、トロイダルピッチ数m、コイル電流中心の小半 径 a_c)を小さくすることによって、コイル間のフープ 電磁力を低減できる性質が自然に備わっている.しかも この時、 a_c に対するプラズマ最外殻磁気面の小半径 a_p の比 (a_p/a_c) も小さくなるので、遮蔽ブランケット領域 が広がって都合がよい.その結果、コイル支持構造の簡 略化が可能となり炉内保守作業が容易になるとともに、 強磁場化も可能となり閉じ込め向上と低 β 値での自己 点火が可能になる.

Table 1 に示すように, $B_0 = 12 \text{ T}$ によって $\langle \beta \rangle = 0.7$ %で十分に点火条件に到達できる.この時,プラズマの 平衡・安定性,ヘリカルリップル輸送による粒子損失に ついても良好な解析結果が得られている.電磁力支持構 造についても,有限要素法三次元解析による良好な見通 しが得られている.ただしコイル導体内電流とその自己 磁場による収縮力は残る.この場合,電流密度の低減は コイル断面拡大によりブランケット空間を狭めるので, むしろコイル導体の機械的強度を高めることが課題である.

17.4.2 ブランケット・伝熱流動システム設計

自己冷却式T(トリチウム)増殖材として溶融塩フリーベLiF-BeF₂(フッ素化リチウムとフッ素化ベリリウムの混合物)を選定している.すなわち,Tインベントリが低い,空気・水との反応性が低い,高温運転でありながら蒸気圧は低く,強磁場下でもMHD 圧損が低い等,固有安全が高く,増殖材の連続処理の観点からも極めて有望である.

Fig. 2 にブランケットおよび放射線遮蔽構成を示す. Flibe は第一壁を冷却後,中性子増倍材の Be ペブルを 通過して T 増殖領域に入る.これにより部分 Tritium Breeding Ratio TBR ~ 1.2, Flibe での放射線体積発熱は 核融合出力の60%以上を得ている.

流動 Flibe の入口温度は、融点と粘性を考慮して 450℃、出口温度は低放射化フェライト鋼 JLF-1 (Fe9Cr2W)の照射下高温クリープ(100 dpa)を考慮 して550℃に設定している、流量は7 m³/s, 圧損は高々 ~1 MPa であり、ポンプ動力は核融合出力の高々 0.8% である.

伝熱流動・T回収ループを含む FFHR 全体システム 概念を Fig. 3 に示す.中性子増倍材の Be は,TF (フ ッ素化トリチウム) を還元して,管壁腐食の抑制にも 働く.磁場環境での電気化学基礎データ構築が課題であ る.燃料供給・排気回収システム設計は,炉心制御およ びダイバータと連動しており,今後の重要な課題である. 17.4.3 ブランケット構造材および保守

ブランケット構造材に関しては、メンテナンスフリー を目標として中性子壁負荷を 1.5 MW/m² と低く抑えた が、炉寿命30年での放射線損傷は第一壁で約 450 dpa と なり、500℃以上の温度領域では高温強度の点から極め て厳しい使用条件となる.実用材料が 150 dpa まで使用

相良

プラズマ・核融合学会誌 第74巻第9号 1998年9月

Fig. 2 The blanket and shielding structure in FFHR.

Fig. 3 Schematic illustration of the FFHR system layout.

可能になれば10年ごとの交換によって,稼働率は高く維持できる.廃棄物の低放射化条件と,今後の改良を想定して JLF-1を第一候補とし,V合金(V4Cr4Ti),ODS(酸化物分散強化)鋼などはオプションに位置付けている.

構成材料の総重量は, JLF-1 が約 800 ton であり,400 ton の Flibe,200 ton の Be は再利用する.ブランケット の交換には,コイル断面形状が一定であることを利用し て,モジュールユニットを順次送り込むスクリューコー スター式を提案している.この時,ブランケットモジュー ルは空で軽くできる.

17.5 まとめ

ヘリカル系トーラス装置は,LHDとW7-Xによって, 大型トカマク級のプラズマ領域と,前例のない高性能・ 定常プラズマ運転の両方を,間もなく実現できる段階に 至っている.ヘリカル型核融合炉は,プラズマ電流を必 要としない特徴を最大限に生かすことによって,原型炉 の段階で十分にトカマク型と競合できる.今後の課題は, プラズマ閉じ込めの着実な改善とともに,動力炉として の炉本体構造の設計成立性の開拓にある.この場合,炉 構造の骨格を左右するマグネットとブランケット開発 は,トカマクに共通する工学課題であり,材料開発とと 特 集

17. ヘリカル型核融合炉設計

もに優先課題である.

参考文献

- [1] 関口 忠編:現代プラズマ理工学(オーム社, 1979).
- [2] K. Uo, J. Phys. Soc. Japan 16, 1380 (1961); Plasma Phys. 13, 243 (1971).
- [3] L. Spitzer, Jr., Phys. Fluids 1, 253 (1958).
- [4] 山崎耕造:プラズマ・核融合学会誌 72,124 (1996).
- [5] A. Iiyoshi, M. Fujiwara, O. Motojima, N. Ohyabu and K. Yamazaki, Fusion Technol. 17, 169 (1990).
- [6] A. Iiyoshi and K. Yamazaki, Physics of Plasma 2, 2349 (1995).
- [7] A. Iiyoshi and K. Uo, 5th Int. Conf. on Plasma Phys. & Contr. Nucl. Fusion Research, Tokyo, 1974, IAEA-CN-33/G4.
- [8] O. Motojima et al., 9th Int. Conf. on Plasma Phys.& Contr. Nucl. Fusion Research, Baltimore, 1982, IAEA-CN-41/L3.
- [9] P.A. Politzer et al., PFC-TR-79-1 (1978)

- [10] Joint US-EURATOM Repo. 1981, IPP-2/254, p.89.
- [11] R.L. Miller and R.A. Krakowski, Joint US-EURA-TOM Repo. 1981, IPP-2/254, p.100.
- [12] J.F. Lyon *et al.*, Fusion Technol. **15**, 1401 (1989); ORNL/TM-12189 (1992).
- [13] C. Beidler et al., 14th Int. Conf. on Plasma Phys. & Contr. Nucl. Fusion Research, Wurzburg, 1992, IAEA-CN-56/G-1-2.
- [14] O. Motojima et al., 13th Int. Conf. on Plasma Phys. & Contr. Nucl. Fusion Research, Washington, 1990, IAEA-CN-53/G-1-5.
- [15] A. Sagara et al., Fusion Eng. Des. 29, 51 (1995).
- [16] A. Sagara and O. Motojima, Proc. 13th Top. Meeting on Technol. of Fusion Energy, 1998 ANS, Nashville, to be published in Fusion Technol.; A. Sagara et al., Proc. ISFNT-4, in press in Fusion Eng. Des.
- [17] K. Yamazaki, A. Sagara *et al*, 16th IAEA Fusion Energy Conf. 1996, Montreal.
- [18] R.L. Miller et al., UCSD-ENG-004 (1997).