

3. 理想気体のモンテカルロシミュレーション

松 田 七 美 男 (東京電機大学)

Monte Carlo Simulation of Ideal Gas

MATSUDA Namio

Faculty of Engineering, Tokyo Denki University, Tokyo 101 - 8457, Japan (Received 13 March 2000)

Abstract

Molecular gas transmission behavior in a cylindrical pipe is calculated using Monte Carlo methods. Visualization of the motion of molecular gas in a pipe and gas impinging on unit area is performed using an X Window System under a UNIX clone operating system of Linux.

Keywords :

molecluar gas transimission probability, conductance to gas flow, science visualization, Monte Carlo simulation, PC-UNIX, Linux

3.1 はじめに

モンテカルロ法で中性気体分子がパイプを通過する様 子をシミュレートし,気体分子の通過確率 K を算出する 方法の原理と実際の手順を述べる.内容に関して言え ば,電離気体の流れの基礎として希薄中性気体分子の流 れを位置づけることが可能かもしれない.本稿のもう一 つの狙いは,一昔前のスーパーコンピュータ並みの演算 性能を持つパーソナルコンピュータで,数値計算を楽し む術を紹介することにある.UNIX 互換のフリーな OS, LinuxやFreeBSDが大学や研究機関で急速に広まってい る[1].多くはインターネットのサーバ用の安定な OS としてであるが,UNIX が提供する本来の素晴らしいプ ログラミング環境を GNU C や X Window System でのア ニメーションの簡単な例とともに紹介する.

3.2 コンダクタンスの計算

3.2.1 コンダクタンスと通過確率

圧力 *p*₁, *p*₂ の 2 つの空間を導管で接続すると,気体分子に正味の流れが生じ,定常流量 *Q* は圧力差と比例関係

author's e-mail: matuda@film.s.dendai.ac.jp

$$Q = C \varDelta p = C (p_1 - p_2) \tag{1}$$

にある. この比例定数をその導管のコンダクタンスと呼び, 真空装置を構成する部品の基本的な物理量となっている. これは気体分子からみれば,一方の口から導管に入って,他方の口から出ていく通過確率 K と捕らえることができる. 開口自身が持つコンダクタンス (無限空間から開口部に入る確率)を G とすると,導管全体のコンダクタンスは

$$C = KC_0 \tag{2}$$

と表され、流れの向きに依らない導管固有の定数となる.

特に分子流領域では、空間における分子同士の衝突に よる散乱を無視できるので、壁での散乱のみによって *K*が決定される.この場合、壁での気体分子の散乱がど のような角度分布を持つかが重要となる.

3.2.2 気体分子放出の余弦則

気体分子の散乱は多少の例外はあるものの,簡単な分 布に従うことが知られている.すなわち壁面からの放出

講 座

松田

気体分子の角度分布は(入射時の履歴に無関係に)一般 に余弦則に従う.これは、気体分子が壁表面にしばらく 滞在し壁と熱的に十分馴染んだ後に放出されると考えれ ば自然な事柄である.すなわち、気体放出数 dn は

$$\mathrm{d}\boldsymbol{n} \propto \cos\theta \mathrm{d}\boldsymbol{\omega} \tag{3}$$

と表される. ところで球座標系では、 $d\omega = \sin \theta d\theta d\phi$ とするのが一般的であるから、シミュレーションする上で発生させる分布は

$$f(\theta) = \sin \theta \cos \theta \tag{4}$$

に比例したものでなければならない.この分布は逆変換 法により発生させることができる.逆変換法とは、与え られた分布関数にしたがう乱数 x を以下の方法により求 めるものである

$$x = F^{-1}(u), \quad F(y) = \int_{\mathbb{F}\mathbb{R}}^{y} f(\tau) d\tau \qquad (5)$$

ここにuは区間(0,1)における一様乱数である. $f(\tau) = \sin \tau \cos \tau$ とおいて,

$$F(\theta) = \int_0^\theta \sin\tau \cos\tau \,\mathrm{d}\tau = \frac{1}{4} \left(1 - \cos 2\theta\right) = \frac{1}{2} \sin^2\theta \tag{6}$$

 $\int_{0}^{\pi/2} f(\tau) d\tau = 1/2$ で割って正規化した後、 $u = F(\theta)$ と置いて、整理すれば

$$\sqrt{u} = \sin\theta \tag{7}$$

を得る.実は,式(7)の右辺を $\cos \theta$ と置いて乱数を発生 させても全体として変化しないので,一般には

$$\theta = \arccos \sqrt{u} \quad \text{stat} \quad \cos \theta = \sqrt{u} \tag{8}$$

により,関数(4)に比例したθの分布を発生させる. Fig. 1に上述の方法に従って発生させた放出気体の角度 分布を示す.余弦則に従っていることがわかる.

3.2.3 円形導管の分子流コンダクタンス

分子の通過確率は導管の幾何学的形状によって決定される.ここでは最も単純であり,かつ実用的な円形断面 の導管を取り上げる.このような簡単な形状の導管に関 しては,モンテカルロ法以外の方法で通過確率を求める ことが可能であり,数表や近似式が得られている.話し が前後してしまうが,モンテカルロ法の位置づけと結果 の妥当性を理解してもらうために,まずこれらの値との 比較を行い,続いてモンテカルロ法の実際の計算手順を 記述する.

Fig. 1 Distribution of angle of emission calculated by the equation ; $\sqrt{u} = \cos \theta$.

A. 近似式

円形断面導管の正確な通過確率 K は Clausing[2] 自身 の積分計算値 (クラウジング係数とも呼ばれる) ではな く Cole[3]の再計算値が正しいとされ、表形式で離散的に 与えられている.しかし、実際の装置の設計などにおい ては、管の長さをL、直径をDとして、任意の $x \equiv L/D$ に対する K を表す精度の良い近似式 K(x) が必要とな り、いくつかの近似式が考案されている.まずは、物理 的な考察に基づく Dushman[4]の近似式は有名である が、最大11%の誤差があり、あまり精度は高くない.

$$K_{\rm D} = \frac{1}{1 + \frac{3x}{4}} \tag{9}$$

Clausing 係数に対する近似曲線を求める努力は, Kennard[5], Henning[6]などよってなされ, 色々な形の式 が提案された. 中でも Santeler[7]の近似式は, 形が簡単 なのにもかかわらず広い x で精度がよく, 誤差は最大で 0.6% 程度である. プラズマ・核融合学会誌 第76巻第6号 1999年6月

$$K_{\rm S} = \frac{1}{1 + \frac{3x}{4} + \frac{1}{\frac{4}{x} + \frac{8}{7}}} \tag{10}$$

また,極めて複雑ではあるが,誤差の最大値がわずか 0.13%という非常に精度の高い式がBerman[8]により 与えられている.これは,円形断面導管のコンダクタン スを与える数値積分を級数展開して求めた理論的な近似 式であるが,実用的とはいえない.

$$K_{\rm B} = 1 + x^2 - x\sqrt{x^2 + 1} - \frac{2[(2 - x^2)\sqrt{x^2 + 1} + (x^3 - 2)]^2}{9[x\sqrt{x^2 + 1} - \ln(x + \sqrt{x^2 + 1})]}$$
(11)

*K*_D, *K*_Sおよびモンテカルロ法によるシミュレーション 結果を, Fig.2に示す.*K*_Dのずれはわかるが,*K*_Sやモ ンテカルロ法による値のずれは,この図では判別できな い.すなわち,モンテカルロ法による計算値は,精度の 高い近似式と同等の品質であることがわかる.解析式を 異なる断面形状について求めることは極めて困難である のに対し,モンテカルロ法では,断面形状の違いをその まま取り込んで,一定の手順で計算を進めることが可能 であるから,実用的に優れた方法であるといえる.

B. モンテカルロ法の計算手順

分子流領域における気体分子の運動では,容器壁での 散乱のみを考慮するので,軌跡のシミュレートは,以下 のように非常に明解で単純である (Fig.3参照).

- (1)一方の開口部Aから気体分子1個を余弦則に従って入 射させる.これは、気体分子の運動が等方一様ならば、 ある面を通過する分子の角度分布は余弦則となるから である.
- (2)気体分子が管内空間を直進して壁と衝突する位置を求める.この位置から再び気体を放出させる.その際,放出気体分子の角度分布は,壁の接平面に対して余弦則に従わせる.入射開口部 A あるいは反対側の開口部 B から気体分子が出るまで,この計算を続ける.
- (3)開口部Bから気体分子が出た場合に,通過数を1増加 させる.

試行回数を N, 通過分子数を n とすれば, 通過確率 K は明らかに,

$$K \equiv \frac{n}{N} \tag{12}$$

と定義される. さて,具体的に計算すべき量は,気体分子の直進運動の方向余弦,壁との衝突位置,開口部との 交差位置などである.壁の位置 $\vec{R}_s = (x_s, y_s, z_s)$ から,方

Fig. 2 Molecular transmission probability K for a cylindrical pipe evaluated by different authors.

Fig. 3 Schematics of Monte Calro calculation of gas molecular transmission through cylindrical pipe.

向余弦 (α , β , γ)の向きに気体が放出され直進して $\vec{R}_{f} = (x_{f}, y_{f}, z_{f})$ で再び壁に衝突したとすれば

$$\frac{x_{\rm f} - x_{\rm s}}{\alpha} = \frac{y_{\rm f} - y_{\rm s}}{\beta} = \frac{z_{\rm f} - z_{\rm s}}{\gamma} \tag{13}$$

が成立する.壁の形状が一般に関数

$$G(\mathbf{x}, \mathbf{y}, \mathbf{z}) = 0 \tag{14}$$

で表現されるとき, \vec{R}_s が与えられれば, (13)と(14)を連 立して \vec{R}_f を求めることができる.もちろん,壁の形状 が複雑な場合には連立方程式はかなり面倒であるが,円 形断面では結局二次方程式を解くだけの問題となる.気 体分子の直進運動の方向余弦は,任意の接平面からの放 出を直接考えると厄介である.しかし(0,1,0)面での余弦 則に従う分布を求め,これを適当に回転することで簡単 に求めることができる.List1にC言語でコーディングし た,円形断面単管の通過確率を求めるプログラムのソー スを示す.簡単な構造なので、コメントを見れば理解で

講 座

松田

```
List 1 cyl.c
```

			-		
4	/+		72	while (1) {	
-	/*	カバン メワークターン ちまやち	72	direction?();	/* ** 動圏りに会破別を発生 */
2	円形導管の通過確率(=クフ	ワンンクノテクラー)を求める。	73	direction2();	/* y 和向りに不法的を元エ */ /* これたかまにムわせて = 静岡りに */
3	*/		/4	theta = atan2(ys, zs);	
4			75	bt0 = bt;	/* theta 回転させる */
5	<pre>#include <stdio.h></stdio.h></pre>		76	gm0 = gm;	
6	#include <stdlib.h></stdlib.h>		77	<pre>bt = -sin(theta)*bt0+cos(t</pre>	heta)*gm0;
7	#include (math h)		78	gm = -cos(theta)*ht0-sin(t	heta) * gm0:
2	#include <mach.mz< td=""><td></td><td>70</td><td>$g_{\rm m} = \cos(\cos(2)) + \sin(2)$</td><td>1. 近の憲法が書の + 決定 (勝から勝) +/</td></mach.mz<>		70	$g_{\rm m} = \cos(\cos(2)) + \sin(2)$	1. 近の憲法が書の + 決定 (勝から勝) +/
8	#include <sys time.h=""></sys>		19	II = 1000(0/2.0);	
9			80	nextpos();	
10	int Pass Number = 0:		81	xs = xf;	
11	int Back Number = 0;		82	ys = yf;	
11	int Back_Number = 0,		83	78 = 7f	
12	int Irlal_Number = 0;		84		
13			04		(* - * * * * * * * ● ● ● ● * * *
14	double L, D=1.0, L2D;	/* 管の寸法 L:長さ D:直径=1 固定 L2D: L と D の比 */	85	$11 (x1 <= 0.0) {$	/* XI <= 0 は人的第日前に進展り */
15	double xs.vs.zs.xf.vf.zf:	/* 気体分子の衝突位置 */	86	Back_Number++;	
16	double al ht om da:	/* 方向会弦 (al.ht.gm) */	87	break;	
17	double alies, and a	/* 軸国的の古版金 */	88	} else if (L <= rf) {	/* L <= xf は管を通過した */
11	double put,		90	Dage Numbertt	,
18			09	Fass_number++,	
19	void nextpos()	/* 放出位置 xs,ys,zs と衝突位置の x 座標 xf から */	90	break;	
20	{	/* 方向余弦を用いて、次の衝突位置 yf,zf を求める */	91	}	
21	vf = hts(vf-ve)/al + ve		92	}	
	JI = 000 (XI X0)/41 · J0,		93	} also {	/* 入射腸口部から壁に衝突せず直接通過 */
22	zi = gm * (xi - xs)/ai + zs;		04	Page Numbertt	
23	}		94	Pass_Number++;	
24			95	}	
25	double root(void)	/* 壁との衝突位置の x 座標 xf を求める */	96	}	
26	1	/* 慶からの放出の場合 */	97		
20	· · · · · · · · · · · · · · · · · · ·		98	main (int args char stargy)	
21	double btygmz=bt*ys+gm=zs	, bt2gm2=bt+bt+gm+gm;	00	f (int arge; char + argt)	
28	return xs-2.0*al*btygmz/b	t2gm2;	99	1	
29	}		100	int trial=0;	
30			101	double theta, x, x2, sx, KB;	
31	double reath(double r)	/* 勝との衝突位置の * 広道 ** をすれる */	102	time t *now:	
			103		
32	1	/* 八別焼口町//*りり毎日 */	104	amand49(time(new)).	/・ 動道位の時間に上り遅心毛満剤を初期化 ・/
33	double btygmz=bt*ys+gm*zs	, bt2gm2≖bt*bt+gm*gm;	104	stand48(cime(now));	
34	return al*(-btygmz		105	L = atof(argv[1]);	/* 官の食さ,既行回家を対象がら欲足 */
35	+ sort(btvgmz*btvg	<pre>mz - bt2gm2*(vs*vs+zs*zs-r*r)))/bt2gm2;</pre>	106	Trial_Number = atoi(argv[2]);	
36	1		107	L2D = L/D;	
50	,		108		
37		· · · · · · · · · · · · · · · · · · ·	100		/# Barran の使の書示 #/
38	void direction1(void)	/* 人射開口部における x 軸まわりの余弦則の発生 */	109	$princi(~L/D = Ai(t^{\circ}, L2D);$	/* Berman v/mev/ac/r */
39	ſ		110	x = L2D; x2 = pow(x, 2); sx = s	sqrt(1.0+x2);
40	al = sort(drand48());		111	KB = 1.0+x2-x*sx-2*pow((2-x2)*	<pre>sx+(x2*x-2),2)/(9*(x*sx-log(x+sx)));</pre>
41	ds = sort(1 0 = slsl)		112	printf("%f by Berman's eqn. \t'	", KB);
40	ab sqrt(1)0 artary)		113	fflush(stdout):	
42	ph1 = 2.0+n_P1+Grand46();		114		
43	<pre>bt = ds*cos(phi);</pre>		114		N.C.
44	gm = ds*sin(phi);		115	while (trial < irial_Number ,	7.
45	}		116	flight(L2D);	
46			117	trial++;	
47	word direction?(word)	/* 慶における x 動すわりの会び則の発生 */	118	}	
40	ford attections(vord)	/ · 王··································	119		/* 計算結果の表示 */
48	1		120	nrintf(HK = 44\nH (double)Dear	Number/Trial Number)
49	<pre>bt = sqrt(drand48());</pre>		120	princi(K = AI(h , (double)Pase	s_Rumber/Illal_Rumber);
50	ds = sqrt(1.0 - bt*bt);		121	3	
51	<pre>phi = 2.0*M_PI*drand48():</pre>				
52	al = dstcos(phi):				
50	an a detain (ali)				
53	Rm - ds+sin(bui);				
54	1				
55					
56	<pre>void flight()</pre>				
57	4				
50	double thete had one of				
50	double theta, bto, gmo, r	, , , , , , , , , , , , , , , , , , ,			
59					
60	xs = 0.0;	/* 人射開口部では xs = 0 */			
61	rr = D/2.0*sqrt(drand48()); /* 円形断面で一様であるための半径の発生 */			
62	phi = 2.0+M PI+drand48().	······			
63	ve a rracog(shi), se	tagin (nhi) ·			
64	Ju - 11+000(pm1), 28 - 11				
04	ulrection1();	/* 八船周日前に40月9米135月 */			
65	xi = rootp(D/2.0);	/* 初めての衝突位置の xf */			
66	<pre>nextpos();</pre>	/* xf より yf,zf を求める */			
67	xs = xf;				
68	vs = vf:				
60					
70		/* 第の澤温制会ルーチン */			
70		/* ヨッコロ理判ル/ビデブン */			
71	11 (X1 < L) {	/* xf く L ならは実在の壁に衝突 */			
					ALL VICTORS

きると思うが,少し補足をする.プログラム起動時に, 管の長さL(L)と試行回数N(Trial_Number)を引数に取 る(105,106行目).初期入射位置の決定については,円 形断面で一様であるから

$$\mathrm{d}n \propto \mathrm{d}S = r\mathrm{d}\phi\mathrm{d}r \tag{15}$$

に比例させる, すなわち動径位置 r に比例した分布を発 生させる必要がある. 逆変換法により, 円の半径(動径 の最大値)を R として

$$u = \frac{r^2}{R^2} \, \mathfrak{H} \,\mathfrak{Z} \, \mathfrak{V} \, \mathfrak{l} \mathfrak{t} \, r = R \sqrt{u} \tag{16}$$

により r を求めればよいことがわかる(61行目). 管の長 さと試行回数を引数に渡して,実行すると,

\$ cyl 2.0 100000 L/D=2.000000 0.356575 by Berman's eqn. K=0.356030

のように,Berman の近似計算とモンテカルロ法による 計算結果が表示される.

3.2.4 X11上の簡易アニメーション

計算物理の立場から言えば,通過確率を求められれば それで十分である.しかし,気体分子がどのように運動 しているかをアニメーションすれば,現象自体の理解の 助けとなるかもしれない.ここでは、ごく簡単に PC-UNIX におけるグラフィカルな表現実現の方法を紹介 し、実例画面を示す.

PC-UNIX を含めて UNIX ではグラフィカルな表示は MIT の X Window Sysytem (以降 X と略記する)を用い ることが事実上の標準である[9].Xでは、図形や文字の ディスプレイへの描画、マウスやキーボードからの入力 の処理について標準プロトコル APIが定められており、 Xlib ライブラリを用いれば look & feel を含めて, あらゆ るプログラムが記述できるようになっている.しかし, Xlibで直接プログラムを記述すると一般に繁雑になって しまうことから、考えられる定型手続きを簡略に記述で きるように Xt(X Toolkit) ライブラリや, look & feel を規 定した Xaw (X Athena Widget) ライブラリが標準で提供 されている. Athena 以外にも商用 UNIX でポピュラー な Widget セット Motif のフリーな互換ライブラリ Lesstif[10]なども開発されており, プログラマは自由に GUI 構築環境を選択できる.しかし,逆に選択の幅があまり にも広いために、統一した操作感が得られないといった ことが、一般ユーザの普及の妨げとなっていると問題視 されるようになった. そこで, 現在は GNOME[11]や KDE[12]といった GUI 全般を規定した統合環境が開発 され、急速に浸透しつつある. どの開発環境が主流とな るかは予想できないが, Xlib また場合によっては Xt がそ の基礎を支えていることに変わりはない、ここでは、や や繁雑になるかもしれないが普遍的な価値のある Xlib を使った例題を紹介する.

A. 点を動かすアニメーションの例

アプリケーションごとに窓を設けて表示を行う Window System は、今や GUIの標準手法となっている. 一つの窓をスクリーンに開けるためには、定型的な初期 化の手続きが必要である. List 2 に窓を一つ開けて、その 中で点を動かすプログラムソースを示す. コンパイル時 には、

\$ gcc -o animdemo animdemo.c -IX 11 -Im

のように X のライブラリをリンクする必要がある.

誌面も少ないので全体の構成とXに特徴的な事柄のみ 説明する.まず、ウィンドウには親子関係があり、全部 の親はルートウィンドウと呼ばれる.この上にさらに子 どものウィンドウを開いてゆく、この例では ルートの 名前は root で(15, 27行)、その上に win というウィンド ウを開いている(15, 35行).ウィンドウを開くためには いくつかのサーバ情報が必要であるが、定型手続きを記 せばよい(26~28行). これらのウィンドウは画面に表示 させることも(42行, XMapWindow), 取り消す(XUn-MapWindow)ことも可能である.一方,画像は作成でき るが画面には表示されない Pixmap と呼ばれる部品もあ る.実は、アニメーションではウィンドウを更新して表 示するタイミングが重要であるが,Xサーバが元々デー タをバファリングするために同期を取ることが一般に難 しい、それでも、なるべくスムーズに描画を行わせるた めに,一旦 Pixmap に画面を作成しておき,いっきにウ ィンドウへと複写した(54行)直後バッファをフラッシ ュする(55行)といった手法が取られる.また Xでは, クライアントとサーバがネットワーク越しに描画情報を 伝達し合うので、色や線種や塗りつぶしのモードを描画 要求時に指定したのでは効率が悪いとされている、そこ であらかじめ、グラフィックコンテキストという属性 (GC)をまとめて指定しておき(37~40行), 描画時にそ の属性値を使って描く仕組みとなっている。最後に、X サーバは、マウスやキーボードや画面のオーバーラップ などの情報をイベント (event) と称して管理している. このイベントの通知に応じてクライアント(アプリケー ション)側がアクションを起こすように全体が構成され る. イベントを使うには構造体の宣言(22行目), 種類と 監視をする部品の選択(43行目),タイプの判別とその処 理(60,61)を記述する.この例では、ウィンドウ内にカー ソルを置きいずれかのキーを押下すると、点を動かす無 限ルーチンから脱出し、終了する.

非常に大雑把ではあるが、この点の動きを衝突位置や 方向余弦から計算して、ある一定の間隔で表示させれば 気体分子運動のアニメーションとなることはすぐに想像 がつくことと思う.いくつかプログラムを書いてみれ ば、手続き自身は面倒ではあるが難しくないことがわか るはずである.ただし、アニメーションの画面1枚1枚 の切替がこちらの思うタイミングで行われないことなど が最後の問題として残り、汎用のシステムの限界と観念 しなければならない場合がある.

B. 円形断面管内の圧力分布

円形断面導管内を気体分子が通過する様子のアニメー ションの実行例を Fig. 4 に示す.軸方向に輪切りにして その区間ごとの壁への衝突頻度も表示させている.両端 が開いている一様管(a)内の圧力分布は0次近似で,軸方 向に沿って一次関数となることはよく知られている事柄 であり,この図でもそのように現れている.他端が閉じ ている管(b)の側面に穴などの気体放出源がある場合に は,穴から開口端に向かっては一次関数,閉端側では一 講 座

松田

List 2 animdemo.c

1	<pre>#include <stdio.h></stdio.h></pre>	
2	<pre>#include <unistd.h></unistd.h></pre>	
3	<pre>#include <x11 xlib.h=""></x11></pre>	
4	<pre>#include <x11 xutil.h=""></x11></pre>	
5		
6	#define BORDER 2	
7	#define WIDTH 320	
8	#define HEIGHT 240	
9	#define DX 3	
10	#define DY 2	
11	and (internet above the second	
12	main (int arge, char ++argv)	
14	l Dignlau tonu:	
15	Vistray tapy, Window root win:	
16	int screen, depth:	
17	GC gc. gcr:	
18	Pixmap pix;	
19	Colormap cmap;	
20	int x=0, y=0, dx=DX, dy=DY, Wait;	
21	XColor black, white, green3, exact;	
22	XEvent event;	
23		
24		
25	Wait = atoi(argv[1]);	
26	dpy = XOpenDisplay("");	
27	root = DefaultRootWindow(dpy);	
28	screen = DefaultScreen(dpy);	
29	deptn = DefaultDeptn(dpy, screen);	
30	<pre>cmap = DefaultColormap(dpy, screen); XAllocNeredColor(dpy, erer #green2# hereen2 hereet);</pre>	
32	white nixel = WhiteDivel(dry screen);	
33	<pre>black_pixel = BlackPixel(dpy, screen);</pre>	
34	blach pixel black ixel(ap), beloch);	
35	win = XCreateSimpleWindow(dpv, root.	
36	100, 100, WIDTH, HEIGHT, BORDER, black.pixel, white.pixel);	
37	gc = XCreateGC(dpy, win, 0, NULL);	
38	<pre>gcr = XCreateGC(dpy, win, 0, NULL);</pre>	
39	XSetForeground(dpy, gc, green3.pixel);	
40	XSetForeground(dpy, gcr, white.pixel);	
41	<pre>pix = XCreatePixmap(dpy, root, WIDTH, HEIGHT, depth);</pre>	
42	XMapWindow(dpy, win);	
43	XSelectInput(dpy, win, KeyPressMask);	
44	$\frac{1}{1}$	
40		
46	if $(x < DX x >= WIDTH - DX)$	
47	$\mathbf{x} = \mathbf{abs}(\mathbf{x} - \mathbf{b}\mathbf{x}); \ \mathbf{dx} = -1;$	
40	f else x $\tau = dx;$ f (u < DV u > = UFICUT = DV) f	
49	$\frac{11}{y} = \frac{1}{y} = \frac{1}{y} = \frac{1}{y} = \frac{1}{y}$	
51	y = aob(y = bi), $dy = -1$, b also $y = dy$.	
52	j 6126 y '- dy,	
53	XFillRectangle(dpv. pix. gc. x. v. 6, 6):	
54	XCopyArea(dpy, pix, win, gc, 0, 0, WIDTH, HEIGHT, 0, 0);	
55	XFlush(dpy);	
56	usleep(Wait);	
57	XFillRectangle(dpy, pix, gcr, 0, 0, WIDTH, HEIGHT);	
58	XCopyArea(dpy, pix, win, gc, 0, 0, WIDTH, HEIGHT, 0, 0);	
59		
60	XNextEvent(dpy, &event);	
61	if (event.type == KeyPress) break;	
62		
63	ACLOSED1splay(dpy);	
64	3	

定圧力となると0次近似計算されるが、シミュレーショ ンではわずかに異なる結果を示している.詳しくは述べ ないが教科書に載っている0次近似においては、気体分 子の速度分布は管内で常に一様等方であることを仮定し て計算を行っている.しかし実際には管を通過する際に 軸方向に方向が揃ってくることが知られており [13,14],近似誤差の原因となっている.モンテカルロ法 ではこのような現象を自然に取り込むことになるの で,0次近似の計算予測とは異なる結果が一目瞭然とな る場合がある.

基本的な問題は,速度分布が一様等方でない場合に は,圧力 p と衝突頻度 Γ の間の比例係数が変化するの

プラズマ・核融合学会誌 第76巻第6号 1999年6月

ェア性能が著しく向上した現在のパーソナルコンピュー タを活かす強力な OS として BSD とともに急速に普及し ている[15]. UNIX は,動作が安定であり,あらゆるプロ グラミング言語が手に入れられることが最大の利点であ ろう.例えば, C, C++, Fortran (f2 c, g77), Pascal (p 2 c, gpc), Lisp などのコンパイル言語, AWK, Perl, Python, Ruby などのスクリプト言語, またネットワーク上 での使用に最も期待の高まっている JAVA などを簡単に インストールして使うことが可能となっている.

加えて, PC-UNIX はまさに一昔前のスーパーコンピュ ータ並の演算性能を持つパーソナルな計算機をいつでも 自由に使用できることも大きな魅力である.特に,高速 ネットワークを介したクラスタシステムにより,現在の スーパーコンピュータ並の演算性能を1 10のコストで 構成する試みは注目に値する[16].

商用 UNIX はインストール済みのマシンを購入して使 用するのが普通であるが、PC-UNIX は自分でインストー ルするのが常識である。普及初期には、このインストー ルでつまづく例も多くあったが、今はインストール自身 も非常に簡便となってきている。例えば、雑誌の付録に ついてきた CD-ROM でブートして質問事項に3つ答え るだけで済むというものまで登場している。

参 考 文 献

- [1] 佐渡秀治編: bit, 31(9), 2 (1999).
- [2] P. Clausing, Ann. Phys. 12, 961 (1932); republished in J. Vac. Sci. Technol. 8, 636 (1971).
- [3] R.J. Cole, Prog. Astronaut. Aeronaut. 51, 261 (1976).
- [4] S. Dushman, *Scientific Foundations of Vacuum Techniques*, 2 nd ed. (Wiley, Nwe Yprk, 1949) Chap. 2.
- [5] H. Kennard, *Kinetic Theory of Gases* (MacGraw-Hill, New York, 1983) p.306.
- [6] H. Henning, Vacuum 28, 151 (1978).
- [7] D.J. Santeler, J. Vac. Sci. Technol. A 4, 338 (1986).
- [8] A.S. Bermann, J. Appl. Phys. 8, 15 (1957).
- [9] 参考書を一つあげるとすれば、松田晃一:Xウィンド ウ実践技術講座(ソフトリサーチ・センター, 1992).
- [10] Lesstif ウェブサイト(Hungary): http://www.lesstif. org
- [11] 日本 GNOME ユーザー会:http://www.gnome.gr.jp
- [12] 日本 KDE ユーザー会:http://www.kde.gr.jp/
- [13] K. Nanbu, Vacuum 35, 573 (1985).
- [14] P. Krasuski, J. Vac. Sci. Technol. A 5, 2488 (1986).
- [15] 日本 Linux 協会:http://www.linux.or.jp/
- [16] 新情報処理開発機構:http://www.rwcp.or.jp/lab/ pdslab/TFCC/

Fig. 4 Distribution of gas impinging on unit area in a pipe ; (a) both sides open (b) one side closed.

で、導管全体を通じての衝突頻度分布が圧力分布と相似 であるとは見なせないという点にある.したがって、閉 管の場合も衝突頻度が一定でないこと即圧力が一定でな いとも結論できない.さらに言えば、速度分布が一様等 方でない場合の圧力の定義とは何かという基本的問題を 考え直さなければならないというところにまで発展す る.このように根源的な問題までも顕在化させるモンテ カルロ法のシミュレーション結果を解析式に反映させる 努力は続いているが、現在のところ完成しているとは言 いがたく、改めて理論の発展はモンテカルロシミュレー ションに負うところ大であると言える.はなはだ頼りな い解説であるが、現状を正直に述べた.

3.3 Linux について

Linux は Linus Torvalds がヘルシンキ大学に在籍して いた1991年に, Minix を手本としてスクラッチから起こ された UNIX 互換(POSIX 準拠)の OS である. ハードウ