

5. Hydrogen Isotope Separation by Water-Hydrogen Chemical Exchange

杉山貴彦

SUGIYAMA Takahiko 名古屋大学大学院工学研究科マテリアル理工学専攻量子エネルギー工学分野 (原稿受付:2015年10月21日)

水素は、高温金属表面等で容易に酸化され水の化学形となる.したがって、トリチウムを燃料とする核融合 炉燃料サイクルでは、量の多少、濃度の濃い薄いを問わず、あらゆる場所でトリチウム水の発生が想定され、こ れらに対応する同位体分離技術が必要である.水 - 水素化学交換法は、同位体分離係数が大きく、トリチウム水 の処理に有望な同位体分離技術の一つである.本章では、水 - 水素化学交換反応の原理や平衡定数、同法に必要 となる疎水性の触媒、工学装置としてのシステム構成等の基本的な説明を行う.また、関連した最近の研究動向 を紹介する.

Keywords:

isotope separation, water hydrogen chemical exchange, tritium, water detritiation, catalyst

5.1 はじめに

核融合炉施設は,燃料としてトリチウムを数 kg 保有し, そのトリチウムを非密封の水素ガスや水の化学形で取り扱 うため,トリチウムの閉じ込め,つまり排出する気体や液 体からのトリチウム除去技術の確立が安全の要である.

図1に、原型炉以降の燃料サイクルの概要を示す.炉心 で燃焼する重水素とトリチウムは数%と予想され、燃料の 大部分を、損失を最低限に抑えて循環せねばならない.主 燃料サイクル中の同位体分離システムは、重水素とトリチ ウムを分離するだけでなく、不純物である軽水素を除去す ることが重要な役割である.除去された軽水素はHTの化 学形でトリチウムを含むため、トリチウム経済の観点か ら、水処理システムにおいてトリチウムを回収する.気体 処理システムは、建屋雰囲気中のトリチウムを触媒により 酸化して水とし、その水を吸着除去して排気を行う.除去 されたトリチウム含有排水は、水処理システムに送られ る.また、原型炉以降は発電システムを備えるため、ブラ ンケット冷却配管を透過したトリチウムが冷却水中に移行 する.冷却水中のトリチウムは、作業従事者の被曝低減の ため除去する必要があり、水処理システムにおいて、この 多量の冷却水を処理せねばならない.発電を続けるために は、原子炉と同様に様々なメンテナンスが必要であり、平 常運転時のメンテナンスはもとより、例えば、固体ブラン ケットの交換等、定期的に生じる大規模なメンテナンスで は、トリチウム濃度の濃い廃水が決して少なくない量発生 することが容易に考えられる.この様に、核融合炉施設の トリチウム閉じ込めにおける水処理システムの役割は重大 である.

Nagoya University, Nagoya, AICHI 464-8603, Japan

author's e-mail: t-sugiyama@nucl.nagoya-u.ac.jp

水処理システムは,水蒸留法,水-水素化学交換法,電 解法等の既存の技術を組み合わせて構成することが考えら れているが,現在確立している技術は,必要となる処理量 や分離係数の観点から,原型炉までを見通した場合に不十 分であり,さらなる研究開発が必要である.本稿では,水 -水素化学交換法について基本的な解説を行い,研究開発 の状況と今後の課題について述べる.

5.2 水-水素化学交換反応とその平衡定数

文献をたどると、1933年10月の Nature 誌で、Oliphant が、液体の水と重水素ガスの間で同位体交換を認めたと報 告している[1].続く同年11月の同誌では、Horiuti と Polanyiが、同反応に及ぼす白金黒の触媒効果を報告している [2].Horiuti らの論文は、図表が無く、タイトルを含めて わずか45行の短いものであるが、白金黒の有無による対照 実験を含めて結論が簡潔明瞭に述べられている.

水 - 水素化学交換反応は,典型的な触媒反応で,触媒活 性サイトへの水素分子の乖離吸着および水分子の吸着,触 媒活性サイト上での乖離水素と水分子間の水素原子の交 換,触媒活性サイトからの脱離の素過程からなる可逆平衡 反応と考えられている[3].白金は液体水で覆われるとそ の活性を失うため,触媒上での実際の水 - 水素化学交換反 応は水蒸気と水素ガスの間で生じると考えられる.した がって,巨視的には,次に示す2段階の反応として表され る.ここでは,軽水素とトリチウムを例にとって示す.

$$H_2 O(\overline{\mathbb{X}} \mathfrak{H}) + HT \stackrel{\wedge}{\longleftrightarrow} HTO(\overline{\mathbb{X}} \mathfrak{H}) + H_2 \qquad (1)$$

$$H_2 O(\overline{\mathbb{X}}) + HTO(\overline{\mathbb{X}} \mathfrak{H}) \stackrel{\alpha}{\longleftrightarrow} HTO(\overline{\mathbb{X}}) + H_2 O(\overline{\mathbb{X}} \mathfrak{H}) (2)$$

式(1)は、気体分子間の同位体交換反応であり、触媒上で 生じる.式(2)は、蒸発と凝縮による気液交換であり、あ らゆる気液界面を通して生じる.式(2)はまた、水蒸留法 による水素同位体分離を表す式である.式(1)のみの反応 を利用する方法をVapor Phase Chemical Exchange (VPCE)法、式(1)と式(2)の反応を組み合わせて利用す る方法をLiquid Phase Chemical Exchange (LPCE)法と呼 ぶ.

式(1)の平衡定数Kは、BlackとTaylorにより実測され、 次の様に報告されている[4].

$$K = \frac{p_{\rm HTO}/p_{\rm H_{2}O}}{p_{\rm urr}/p_{\rm u}} \tag{3}$$

$$\log_{10} K = -1.055 + \frac{336.5}{T} + 0.292 \log_{10} T \tag{4}$$

$$(289 \text{ K} \le T \le 576 \text{ K})$$

ここで, *p* および*T* はそれぞれ分圧と温度である.式(2) の平衡定数は,比揮発度 *a* とも呼ばれ,完全気体と理想溶 液の仮定により,次の様に分圧の比として表される.

$$\alpha = \frac{x_{\text{HTO}} \cdot y_{\text{H}_{2}\text{O}}}{x_{\text{H}_{2}\text{O}} \cdot y_{\text{HTO}}} = \frac{y_{\text{H}_{2}\text{O}}/x_{\text{H}_{2}\text{O}}}{y_{\text{HTO}}/x_{\text{HTO}}} = \frac{p_{\text{H}_{2}\text{O}}}{p_{\text{HTO}}}$$
(5)

ここで, *x* と *y* はそれぞれ液相中と気相中のモル分率である.式(5)の分圧比は, Van Hook により計算され, 次の様 に報告されている[5].

$$\log_e \frac{p_{\rm H_{2O}}}{p_{\rm HTO}} = \frac{37813.2}{T^2} - \frac{136.751}{T} + 0.124096$$
(6)
(273 K≤ T ≤ 403 K)

これら平衡係数と比揮発度の計算例を図2に示す. どちら も温度が低いほど大きい値となり分離に有利だが,温度が 低いと反応速度が小さくなるため,工学的に適切な温度が 選択される.典型的に選ばれる温度の一つは343 K であり, このとき K とαの値はそれぞれ 4.64 と 1.048 である.

同位体組成の異なる分子(Isotopologue)間,例えば, H₂O, HTO, T₂O の間には,次に示す不均化反応が生じる.

$$H_2O+T_2 O \stackrel{K_D}{\longleftrightarrow} 2HTO$$
(7)

この反応の平衡定数 K_D の値は、分子間での水素同位体原 子の分配が完全にランダムであれば 4.0 で、統計力学的計 算では温度にもよるが約 3.8 である [6].水-水素化学交換 法や水蒸留法による水素同位体分離では、ほとんどの場 合、T₂O の存在割合は無視小で、不均化反応を考慮する必 要はない、例えば、濃度が1 GBq/kgのトリチウム水に含ま れる全ての水素原子に対するトリチウム原子の割合は約 10^{-8} であり、この場合、式(7)から計算される T₂O のモ ル分率は 3×10^{-16} となり無視小である、トリチウム原子の 割合が10%と膨大であっても、T₂O のモル分率はせいぜい 1%に過ぎない.

参考までに,軽水素 - 重水素系についても平衡定数と比 揮発度の式を示す[7].

$$\log_{e} K = -0.2735 + \frac{449.2}{T} + \frac{2380}{T^{2}}$$
(8)

$$\log_{e} \alpha = 0.0592 - \frac{80.3}{T} + \frac{25490}{T^2}$$
(9)
(273 K≤ T ≤ 473 K)

前節に述べた白金黒の触媒作用が発見されてから,重水 製造の需要により多大な研究が行われたが,触媒が水に濡 れて被覆され活性が急激に低下するという問題を,しばら くの間克服することはできなかった.もう少し言葉を補え ば,触媒金属が水膜で覆われると,水膜が,反応ガス種に

Special Topic Article

対して拡散透過抵抗となり,総括的に反応速度が著しく低 下するため,あたかも反応が生じていないかの状況になる という問題である.そのため,初期には,水蒸気を過熱し て凝縮水を生じない条件で VPCE 法が用いられた[6].触 媒金属としては白金やニッケルが選定され,酸化クロム上 にニッケルを添加したものや,木炭上に白金を添着したも のが用いられた[8].これらの VPCE プロセスは,濃縮段 毎に水蒸気の過熱装置が必要なことから生産コストが高 く,触媒が不要な水 - 硫化水素二重温度交換法 (Girdler-Sulfide: GS 法) に取って代わられた[6].

1970年代に入ると、カナダの Stevens により、水 - 水素 化学交換反応用の画期的な触媒が発表された[8,9]. それ は、白金を担持させたアルミナペレットの表面を薄い高分 子シリコンで被膜した触媒である.疎水性の被膜により, 液体水ははじかれるが、水蒸気と水素ガスは透過し、白金 が濡れないことで、プロセス中に液体水が存在しても活性 が持続した.これにより,GS法に比べて分離係数が大き く,腐食性や毒性のガスを用いない水-水素化学交換法の 利用が再検討されるようになった.そして,疎水性の触媒 の開発が研究の中心を占めることとなり、ポリテトラフル オロエチレン,ポリエチレン,ポリスチレン,スチレン -ジビニルベンゼン (SDB), カーボンモノフルオロライド 等の多孔性かつ疎水性の担体を用いた触媒が開発された. 我が国でも、1980年代にかけて、理化学研究所、北海道工 業開発試験所、光興業、住友電気工業などにより、活発に 研究開発が行われた[10].

触媒金属としては,白金以外も探索されている[10].室 温における,D₂のHDへの転化率の大小関係は次の様である.

Co[†]~Ru>Rh~Pt~Ni>Co[‡]>Pd>W>Fe>Cr >Au>Mn (10) (†:酸化物を水素還元したもの, ‡:塩素化合物を水素還 元したもの)

また,室温での反応速度定数の大小関係は次の様である.

Pt [†] >Pt [‡] >Ru,	Rh, Pd	(11)
(†:塩化白金酸,	‡:第一塩化白金)	

式(11)の反応速度の相対値は、Pt[†]が1600に対してPt[‡]が 230で,Ru等はほぼ0であったとのことで,結局,触媒金 属は,実用上は塩化白金酸に限られる.担体を疎水化する ことで,白金粒子が濡れなくなることは,水素化学吸着法 や水素滴定法による分析から次の様な機構によると考えら れている[10].すなわち,白金ナノ粒子は疎水性表面上に 分散しているため,水が白金上にだけ凝縮しようとする と,白金粒子を包み込んだ液滴とならざるを得ない.その 様な微小液滴の蒸気圧を次の式で見積もる.

$$\log_{e}(P/P_{0}) = 2\gamma V_{L}/rRT \tag{12}$$

ここで, *P* は圧力, *P*₀ は温度*T* での飽和蒸気圧, γ は表面 張力, *V*_L は分子容, *r* は液滴の半径, *R* は気体定数である. 半径が5 nmの水滴では, 圧力比*P*/*P*₀ が 273 K で 1.3, 295 K で1.2となり,安定に存在できず,蒸発してしまう.した がって,疎水性表面上に分散した白金ナノ粒子は水膜で覆 われることはなく,活性が持続する.

我が国でこれまでに開発された触媒の中でも、球状の SDB樹脂担体に0.8-1.0 wt%の白金を担持させたもの は、実用的に触媒活性が高く、有用であった.光興業が製 造した触媒は、「光」と「ゲル状」の言葉から、Kogel触媒 と呼称された.概観を図3に示す.詳細は文献[10,11]を参 照されたい.Kogel触媒は、新型転換炉「ふげん」の重水精 製装置の触媒として採用され、15年以上にもわたって安定 に性能を発揮した実績がある[12].販売元が、光興業、昭 和エンジニアリング、ガンツ化成、SIサイエンスと変遷し て、1リットルあたり約100万円で市販されてきたが、数年 前に供給が途絶えてしまった.

ITER の建設が始まり、トリチウムシステムについても、 詳細な設計の進捗に伴って、使用する触媒に関して新たな 課題も生じている. 例えば, 建屋換気系からのトリチウム 除去システムでは、予熱が不要で酸化性能のより高い触媒 が必要となり、また、水-水素化学交換法による水処理装置 では, 放射線耐久性が高く, 耐熱性の高い触媒が求められ ることとなり、新規の疎水性白金触媒の開発機運が再び高 まった[13]. 放射線耐久性と耐熱性が高い担体として、多 孔質シリカ剤を選択し, 疎水化処理を施し, 粒径を制御し た白金触媒を担持させることが主流の考え方の一つとなっ ている.日本原子力研究開発機構と田中貴金属工業は、ト リチウム酸化用疎水性白金触媒の開発を数年来継続してお り、球状の TKK-H1P が発表され、続いて規則成形構造の TKK-KNOITS が発表された. これらの触媒は, 500℃の加 熱や 500 kGy の放射線照射によっても性能が劣化しないこ とが確かめられている. さらに、これらの開発により得ら れた技術と知識を援用して,水-水素化学交換反応用の疎 水性触媒 TKK-JADE や, 原子力・再結合器用のヨウ素耐 性を有する疎水性触媒が開発された[13].

疎水化に用いられるシランカップリング剤は、化学構造 に含まれる直鎖アルキル基の炭素数が大きいほど疎水度合 が高くなる.極度に高い耐熱性が要求されない場合、疎水 度合が高い疎水化剤を用いれば、触媒の活性を高められる と考えられる.多孔質シリカビーズ(富士シリシア化学、 CARiACT Q-50)を、直鎖アルキル基の炭素数が異なる複 数の疎水化剤で疎水化して調製した触媒について、濃度が 約4 kBq/cm³のトリチウム水を用いて、水-水素化学交換 実験を行った例を図4に示す.反応速度定数k は疎水化剤 の炭素数の数とともに増大し、最も炭素数の大きいヘキサ デシルトリメトキシシランの場合、反応速度定数 は84±5 s⁻¹となり、Kogel 触媒の倍程度の性能となった.

図3 Kogel 触媒の概観.

Journal of Plasma and Fusion Research Vol.92, No.1 January 2016

図4 直鎖アルキル基の炭素数と反応速度定数との関係.

今後は、活性が高いだけではなく、実用性と安全性を高 めるために物理的、化学的に頑強な触媒の開発が必要とさ れ、新規に開発された触媒については、実際にトリチウム 水を用いて使用実績を重ねることが求められる.また、主 要技術のLPCE法では、後述の様に、式(2)の反応を促進 する親水性の充填物が欠かせないため、分離性能向上の観 点から、反応塔に充填するにあたり親水性充填物と共存性 の良い形状の触媒を開発することも指針となろう.

5.4 反応塔の様式とシステム構成

式(1)および式(2)に示した同位体効果を,工学的に同 位体分離に利用する場合,反応塔内で式(1)や式(2)の反 応を何度も繰り返して行い,同位体効果を累乗すること で,実用的に十分大きな分離係数を得る.

水-水素化学交換法による典型的な水素同位体分離プロ セスとして、LPCEと電気分解法を組み合わせた Combined Electrolysis and Catalytic Exchange (CECE)法が挙 げられる[6].これを図5(a)に示す.電気分解槽と加湿器 が液体水を水素ガスと水蒸気にそれぞれ相変換し、再結合 器と冷却器が水素ガスと水蒸気を液体水に戻すことで、塔 頂と塔底で還流が生み出され、水素ガスと水蒸気および液 体水が、LPCE塔内を循環する.この様に、反応塔内が気液 向流接触となっているため、式(1)と式(2)の反応が何度 も繰り返されて同位体効果が累乗される.重い同位体、例 えばトリチウムは、水素ガスから水蒸気、水蒸気から液体 水へと濃縮され、したがって、塔底にトリチウムが濃縮さ れる.装置全体では、鉛直軸方向に同位体成分の濃度分布 が形成され、要求濃度に合致する軸方向位置において、原 料の供給と濃縮流および減損流の抜き出しが行われる.

水素と酸素の再結合は,直接燃焼か触媒反応によって行 われるが,いずれも水素爆発を防止するために再結合器が 巨大で複雑となり,実用性を低下させる.塔頂のトリチウ ム濃度を,放射線安全上問題が無い程度まで小さくできる 場合には,図5(b)に示す様に,再結合器を廃し,水素ガス を直接放出できる[6,8].水蒸気状トリチウムは,放射線安 全上,排気基準が厳しいので,冷却して還流される.これ に天然組成の水を加え,必要量の還流液を得る.

LPCE 塔内部の充填構造として典型的な形式を図6に示 す.式(2)の気液交換反応は、触媒表面の液滴や塔の内壁 等の濡れ面でも生じる.しかし,それらだけでは式(2)に よる物質移動量を十分に確保できないため、塔内に親水性 の充填物を充填し、気液界面積を増大させる.図6(a)の気 液分離型[10,14,15]は、理研の磯村らによって考案された もので、水素ガスと水蒸気からなる混合ガスの流れと液体 水の流れとを途中で分離する内部構造をもつ. 触媒層を液 体水が流れないため、触媒が濡れにくいことと、高沸点の 不純物により触媒が被毒しないことが利点である.また, 触媒層と親水性充填物の層(吸収層)がそれぞれ理論段に なるように設計すれば、性能評価が容易である. 欠点は、 複雑な内部構造のために、塔高がやや高くなることと、製 造コストが高いことである.気液分離型の反応塔は,新型 転換炉「ふげん」の重水精製装置に適用された実績がある [12]. 図6(b)の層状充填型は、触媒層と吸収層を交互に 積み重ねた単純な構造である.吸収層に, ランダム充填物 ではなく規則充填物を採用し、液分散を改善する取り組み もある. 触媒層は気液向流となるため, 触媒は疎水性が高 くなければならない. また, 疎水性の触媒層は, 流下液を 通しにくく, フラッディングの要因となるので, 触媒はあ る程度粒度を大きくするなどの注意が必要である.図6 (c)のランダム充填型は、触媒と親水性充填物を所定の割 合で混合し、各々が塔内で均一に分布するように充填した ものである.この型式は、式(1)と式(2)の反応が各所で 細かく繰り返されるので,効率が良い. 触媒と親水性充填 物の充填量と充填割合が同じ場合、層状充填に比べてラン ダム充填の分離係数は約2倍との報告がある[16].また, 親水性充填物は触媒に比べて一般的に空隙率が大きく、流 下液の通り道となるので、層状充填のようなフラッディン グが起こりにくく, 圧力損失も小さい利点がある. 層状充

Special Topic Article

填やランダム充填は、トリクルベッドとも呼ばれる.トリ クルベッドは、経験上、塔径が5cm程度を超えると、流下 液が流下するにつれ集まって偏流(チャンネリング)し、 濡れ面積が減ることで気液交換性能が低下してしまう.し たがって、適度な距離毎に、流下液を一度集約して再び径 方向に均一に強制的に散布する構造(再分散器)を設置し なければならない.

CECE 装置の電気分解槽には,濃縮したトリチウム水が 蓄積されるため,①トリチウムインベントリが小さいこ と,②放射線耐久性が高いこと,③メンテナンスが容易で あること等が要求される[17].従来のアルカリ電解槽は, 十分に実績があるものの,メンテナンスに際し,トリチウ ムを含むアルカリ性電解助剤の処置に困難が伴うことから 敬遠される.そのため,固体高分子電解質(Solid Polymer Electrolyte: SPE)電解槽が用いられる.SPE 電解槽は,電 流密度が1A/cm²と高く,アルカリ電解槽に比べてインベ ントリを1/10程度に低減でき,水素発生装置として商業実 績が増している.一方,これをトリチウムシステムに適用 する場合,電解膜等の高分子材料の放射線耐久性がトリチ ウムの濃縮度合いを制限しており,課題となっている [18,19].

VPCE 塔は, 触媒のみが充填され, これに水素ガスと過 熱された水蒸気を流す. VPCE 法は, 並流操作であり, 単 独では同位体効果を累乗することができないため, 他の方 法と組み合わせて用いる. また, 水素ガスと水蒸気間で同 位体成分を移行させる平衡器として用いられる[6,8].

ここまで紹介した方法は,基本的に単一の温度条件で操 作されるため単温度交換法とも呼ぶ.一方,高温塔と低温 塔を組み合わせ,異なる温度間の同位体化学平衡シフトを 利用した方法があり,これを二重温度交換法と呼ぶ[6].二 重温度交換法は,装置や操作が複雑でインベントリが大き くなる欠点があるが,電気分解槽を用いないため,電力消 費が少なく,電気分解槽に起因する流量や放射線量の制限 を回避できる利点があり,大流量処理に適用できる可能性 がある[20].二重温度交換法を水-水素化学交換法に用い た場合を図7に示す.文献[6]によれば,重水素の回収に適 用した場合,回収率が30%の設計例では,圧力が

69 atm,低温塔が50℃,高温塔が170℃とされており,前述 のGS法に比べて,腐食性のガスを用いず,流量や所要段数 が少なく,熱や動力の消費量も少ない利点があり,性能の 良い触媒が多量に経済的に準備できれば魅力ある方法と評 価されている.この重水回収の例の様に,二重温度交換法 の最適運転圧力は高く,トリチウムを用いる場合には,安 全上問題となる.そこで,低温塔と高温塔とで運転圧力も 変えることで,具体的には低温低圧塔と高温高圧塔を組み 合わせることで,全体的に運転圧力を低く抑えるととも に,分離性能も向上させようとする試みもある[20].

5.5 分離性能評価

水 - 水素化学交換法による水素同位体分離システムの分 離性能評価や設計,動特性解析には,3章の深冷蒸留塔と 同じく,段モデルが広く用いられている[6,21].図6(a)と (b)に示すLPCE塔に対しては,段モデルは相性が良く,式 (1)と式(2)の反応に関する物質収支式と平衡関係式を各 段についてたてて連立させると係数行列を得るので,これ を解く従来の方法が適用できる.この段は,理論段と呼ば れる計算のための仮想的な段なので,実際の塔高を求める ためには,理論段1段に相当する高さ(Height Equivalent to a Theoretical Stage: HETP)を知る必要がある.HETP 値は一般的に,モックアップ装置を用いて,実験により直 接測定される.

図6(c)のランダム充填塔に対しては、微分接触操作と 考えて、次に示す様な微分方程式を解く方法がとられる [3,22].

$$-\sigma_l \frac{\mathrm{d}x}{\mathrm{d}h} = k_{\mathrm{vl}} \left(\alpha y - x \right) \tag{13}$$

$$-\sigma_v \frac{\mathrm{d}y}{\mathrm{d}h} = k_{\mathrm{vl}} \left(\alpha y - x \right) - k_{\mathrm{c}} \left(Kz - y \right) \tag{14}$$

$$-\sigma_g \frac{\mathrm{d}z}{\mathrm{d}h} = k_c \left(Kz - y \right) \tag{15}$$

ここで, x, y, z はそれぞれ液体水, 水蒸気, 水素ガス中の 着目成分のモル分率, σ_l , σ_v , σ_g はそれぞれ液体水, 水蒸 気, 水素ガスのモル流束, h は塔の高さ方向の位置, k_c と k_{vl} は式(1)と式(2)の右向きの容量係数(物質移動係 数) である.

HETP 値や容量係数は,塔の分離係数の実測値とモデル による計算値とを比較して得られる総括的な値であるた め,HETP 値や容量係数の値が,充填物のサイズや充填方 法,触媒の性能,流体の流量や流れ方,塔の運転条件等の パラメータと,どの様な関係にあるかを知ることは難し い.したがって,設計の際には,スケール効果を考慮して 同等の条件でモックアップ実験を重ねながら徐々にスケー ルアップしていくか,設計裕度を十分に大きくとる必要が あり,必ずしも効率的とは言えない.

効率的な設計の一助とすべく,充填塔内の物質移動過程 の特徴をモデル化することで,様々な条件を直接モデルに 取り込んで,HETP 値を計算で予測する方法が提案されて いる[23,24].例えば,充填塔内では,チャンネリングに代 表される流体の偏流によって、塔の軸方向に混合が生じ、 分離性能が低下する現象が避けられない. 図8に, 充填塔 内を流下する水の軸方向混合の度合いを評価した例を示 す. 充填塔内に気液向流状態を形成した後, 水流中に塔頂 からトレーサ物質をパルス状に投入する. 塔下部から流出 する水流中のトレーサ物質の濃度の時間変化を測定すれ ば、インパルス応答波形が得られる.図8の右上に示す段 モデルは、上段から流れてきた水の内、段上液と混合せず 濃度変化無しに通り抜けてしまう流れ (チャンネリング) を表現しており、「通り抜け段モデル」と名付けられてい

充填塔の軸方向混合の評価。 図 8

る.通り抜けてしまう流れの流量割合を記号φ₁で表し、 「通り抜け係数」と呼ぶ. 充填塔をN段に区切った場合, イ ンパルス応答波形 $x_N(t)$ およびその波形の分散 σ^2 を表す式 は、通り抜け段モデルの場合、次の様に求められている [23].

$$x_{N}(t) = \overline{xt}(\varphi_{L})^{N} \delta(t)$$

$$+ \overline{x} \sum_{k=1}^{N} C_{k} (\varphi_{L})^{N-k} \{ (1-\varphi_{L})^{2} N \}^{k}$$

$$\left(\frac{t}{\overline{t}}\right)^{k-1} \frac{e^{-(1-\varphi_{L})N^{t\overline{t}}}}{(k-1)!} \quad (16)$$

$$\sigma^2 = \frac{1 + \varphi_L}{1 - \varphi_L} \cdot \frac{1}{N} \tag{17}$$

図8下グラフの様に、インパルス応答の測定波形と解析解 を比較することによって、*φ*_Lの値が得られる.例えば1m の充填塔を100段とした場合、 φ_L の値は充填層の1 cm あた りの軸方向混合の指標であり、物理的なパラメータであ る.式(17)を利用すると、同一の分散を与える *φL* と *N* の組み合わせがある程度任意に選択できるので、段の高さ を変更した場合に対応する *φ*_Lの値を計算することができ る.一般に、気体と液体では軸方向混合の程度が異なる. このモデルでは、気体と液体でそれぞれ異なる φの値を用 いることで、気液向流場の軸方向混合を同じ段数で表現で きる. 従来の完全混合槽列モデルでは, $\sigma^2 = 1/N$ の関係に あり,段数が軸方向混合の程度を決めてしまうので,気体 と液体では段数が異なってしまい、気液向流場を同じ段数 の段モデルで同時に取り扱うことは困難である.

図6(c)のランダム充填塔について、軸方向混合の影響 を取り入れた段モデルの流れの様子を図9に示す[24].こ こで、L, V, G はそれぞれ液体水、水蒸気、水素ガスのモ

	軸万回混合の通り抜け係数	
1	ч н ц. ц.	'

液体水	φ_L	0.75
水素ガス,水蒸気	φ_{G}, φ_{V}	0

Т

局所物質移動の通	局所物質移動の通り抜け係数		
同位体交換反応	ф <i>с</i>	$\ln\phi_C = -kt_0S_r$	
気液交換反応	φ _{VL}	線速度の関数	

水素ガス	同位体交換反応	$\omega_{C,G}$	$1 - r_p$
	気液交換反応	$\omega_{VL,G}$	r_p
水蒸気	同位体交換反応	ω _{C,V}	$1 - r_p$
	気液交換反応	$\omega_{VL,V}$	r_p
液体水	同位体交換反応	$\omega_{C,L}$	1
	気液交換反応	$\omega_{VL,L}$	0

軸方向混合を考慮したランダム充填塔用の段モデル. 図 9

Special Topic Article

ル流量である.また、軸方向混合を表す通り抜け係数φ と, 触媒の充填割合に関係した通り抜け係数ωが導入され ている.気体の拡散と混合は速く,化学工学的知見からペ クレ数の大きさは概ね2であり、これは、充填物のサイズ と同程度の高さの段が完全混合槽となることを意味し, φ の値が0となることに等しい.局所物質移動の通り抜け係 数は、ハウゼンの段効率と同様の形で定義され、軸方向混 合の影響が十分に無視できるように工夫した実験により測 定するか、濡れ壁塔や球周りの物質移動モデルの解析解か ら評価することができる.通り抜け係数ωは、段に流入し た流体が、同位体交換反応と気液交換反応のそれぞれに関 わる割合を示しており、単純に幾何学的な観察から値を決 めている.ここで,r_bは触媒の充填割合である.図中,液 体水、水蒸気、水素ガスそれぞれの流れを整理して記述す ると次の様になる.

$$Lx_{j} = \phi_{1}Lx_{j-1} + (1 - \phi_{1})Lx_{VL}^{e}$$
(18)

$$+(1-\Phi_3) V y_C^e (19)$$

$$Gz_{j} = (1 - \Phi_{4}) Gz_{C}^{e} + \Phi_{4}Gz_{j+1}$$
(20)

ここで, Φ は総括通り抜け係数であり, 次で表される.

$$1 - \Phi_1 = (1 - \phi_{VL})(1 - \omega_{VL,L})(1 - \varphi_L)$$
(21)

$$1 - \Phi_2 = (1 - \phi_{VL})(1 - \omega_{VL,V})(1 - \varphi_V)$$
(22)

$$1 - \phi_3 = (1 - \phi_C)(1 - \omega_{CV})(1 - \varphi_V)$$
(23)

 $1 - \Phi_4 = (1 - \phi_C)(1 - \omega_{C,G})(1 - \varphi_G)$ (24)

式(18)-(20)と,式(1)および式(2)の反応に関する平衡 関係式とを全ての段について連立させて解けば,塔軸方向 の濃度分布が得られる.

通り抜け段モデルにより触媒充填割合がCECE塔の全分 離係数に及ぼす影響を、軽水素と重水素の分離について評 価した例を図10に示す[25].計算においては、図9中の通 り抜け係数のうち, ωの値のみを触媒充填割合に合わせて 変えて計算した.計算結果は実測値の変化の様子を十分良 く再現している.次に、水素ガス流量が全分離係数に及ぼ す影響を、軽水素とトリチウムの分離について評価した例 [24] を図11に示す.通り抜け係数の値は、流体の同位体組 成によらないので、軽水素 - 重水素系で評価した図10で用 いたのと同じ通り抜け係数を図11の計算に使用している. 平衡計算における平衡定数のみを軽水素 - 重水素系から軽 水素 - トリチウム系に変更している. 図11の例でも, 計算 結果は実験結果をよく再現している. ここで紹介したラン ダム充填塔用の通り抜け段モデルは、軸方向混合の影響と 局所物質移動の効率, 触媒充填割合だけに着目し, いささ か荒っぽく感じられるが、様々な条件の実験結果を良く再 現しており、実験系の特徴をうまく捉えたモデルと言え る. 通り抜け係数は、幾何条件や運転条件から具体的に評 価できるので、モックアップ実験を行わずとも、新たな実 験条件における HETP 値の予測にも役立てられる.

図10 触媒充填割合が全分離係数に及ぼす影響.

図11 水素ガス流量が全分離係数に及ぼす影響.

5.6 おわりに

原型炉以降に要求される大流量の水処理システムに対応 するため,水-水素化学交換法の技術開発が続けられてい る.疎水性白金触媒については,新たな課題のもと,近年 の技術と材料を用いて複数の触媒が開発され,実用化の目 途がたってきた.一方,充填塔の型式やシステム構成を検 討する上で,HETP 値や物質移動係数の実験データの拡充 と,パラメータの評価や最適化に適用できる解析手法の開 発が期待される.水処理システムの性能向上は,核融合炉 システム全体の安全性向上に直接的に資するので,今後も 基礎研究を継続すべきと考えられる.

参 考 文 献

- [1] M.L. Olyphant, Nature 132, 675 (1933).
- [2] J. Horiuti and M. Polanyi, Nature 132, 819 (1933).
- [3] T. Yamanishi et al., JAERI-Res. 95-058 (1995).
- [4] J.F. Black and H.S. Taylor, J. Chem. Phys. 11, 395 (1943).
- [5] W.A. Van Hook, J. Phys. Chem. 72, 1234 (1968).
- [6] M. Benedict and T.H. Pigford, *Nuclear Chemical Engineering* (McGraw-Hill, 1957).
- [7] J.H. Rolston *et al.*, J. Phys. Chem. **80**, 1064 (1976).
- [8] H.K. Rae, Separation of Hydrogen Isotope, ACS Symposium Ser. 68 (1978).
- [9] W.H. Stevens, Can. Pat. No. 119,402; No. 907,292; No. 941,134; US Pat. No. 3,888,974; No. 4,025,560.
- [10] 中根良平他:重水素およびトリチウムの分離(学会出版センター,1982).
- [11] 北海道工業開発試験所報告 34 (1984).
- [12] 清田史功他: 動燃技報 70, 19 (1989).
- [13] 岩井保則他:化学 70,35 (2015).

Journal of Plasma and Fusion Research Vol.92, No.1 January 2016

- [14] 磯村昌平他: 理研報告 55, 127 (1979).
- [15] S. Isomura et al., J. Nucl. Sci. Technol. 17, 308 (1980).
- [16] T. Sugiyama et al., Fusion Eng. Des. 81, 833 (2006).
- [17] T. Yamanishi et al., J. Plasma Fusion Res. 83, 545 (2007).
- [18] T. Yamanishi et al., J. Plasma Fusion Res. 85, 716 (2009).
- [19] T. Yamanishi et al., J. Plasma Fusion Res. 88, 508 (2012).
- [20] T. Sugiyama et al., Fusion Eng. Des. 98-99, 1876 (2015).
- [21] E.J. Henley and J.D. Seader, *Equilibrium-Stage Separation* Operations in Chemical Engineering (Wiley, New York, 1981).
- [22] M. Shimizu et al., J. Nucl. Sci. Technol. 20, 36 (1983).
- [23] T. Sugiyama et al., J. Nucl. Sci. Technol. 37, 273 (2000).
- [24] T. Sugiyama et al., Fusion Sci. Technol. 60, 1323 (2011).
- [25] T. Sugiyama et al., Fusion Eng. Des. 83, 1447 (2008).