

2. 無衝突衝撃波における宇宙線加速と磁場増幅の 観測・理論・シミュレーション

2. Observation/Theory/Simulation of Cosmic–Ray Acceleration and Magnetic Field Amplification at Collisionless Shock

2.1 超新星残骸の無衝突衝撃波での宇宙線加速の理論と観測

2.1 Theory and Observations of Cosmic-Ray Acceleration at Supernova Remnant Shocks

山崎 了

YAMAZAKI Ryo 青山学院大学 理工学部 物理・数理学科 (原稿受付:2015年11月24日)

銀河宇宙線の起源天体と考えられている超新星残骸の無衝突衝撃波での宇宙線加速の理論と,最新のX線・ ガンマ線観測結果,およびその理論的解釈についてまとめる.特に宇宙線電子によるシンクロトロン放射と逆コ ンプトン散乱放射,宇宙線陽子によるパイ中間子崩壊ガンマ線の観測から,宇宙線加速の理論にどのような示唆 が得られているか紹介する.

Keywords:

cosmic rays, supernova remnants, Fermi acceleration, shock waves, gamma rays, X-rays

2.1.1 はじめに:銀河宇宙線と超新星残骸

地球近傍での宇宙線の到来頻度からエネルギー密度を見 積もると核子成分については約1eV/cm³程度となり,これ は銀河内の可視・赤外光や磁場,乱流,ひいては宇宙マイ クロ波背景放射のエネルギー密度と同程度かそれ以上であ る[1].宇宙線電子成分は核子成分の100分の1程度以下で あり,主成分は核子である.核子成分の約9割は陽子であ る.地球近傍の宇宙線スペクトルは3000 TeV=3×10¹⁵ eV で折れ曲がり,このエネルギーを knee エネルギーと呼ぶ (本小特集1章図1参照).knee エネルギー以下の核子宇 宙線は銀河系内起源と考えられている(銀河宇宙線).

太陽近傍の銀河宇宙線のエネルギー密度は1億年程度以 上の長い時間スケールでみれば変動は小さく大雑把には一 定である。約1eV/cm³というエネルギー密度を保つため に必要な宇宙線供給量は,銀河の体積(約10⁶⁰ m³)と宇宙 線の銀河の滞在時間(~10⁷年)から10³³ J/s 程度と見積も られる。銀河系には様々な種類の天体があるが,実は我々 の知っている天体および天体現象のうちこのエネルギー供 給量をまかなえると期待できるのは超新星爆発くらいしか ない。1回あたりの超新星爆発の爆発エネルギーは10⁴⁴ J であり,超新星爆発が30年に一度の頻度で起こるので,爆 発エネルギーの1%程度が銀河宇宙線の生成に消費されて いるという勘定になる。このことは,銀河宇宙線の化学組 成が重元素を多く含むことからも示唆される.

現在の宇宙線研究の中心課題のひとつが,宇宙線核子成 分,特に陽子の加速源をつきとめることである.前段落の 見積もりに基づき,爆発後1000年程度かそれ以下の若い超

図1 宇宙線陽子のフィードバック効果.宇宙線陽子の注入効率 が上がったときに予想される背景プラズマの作る衝撃波の 圧縮比や磁気乱流,宇宙線陽子自身のスペクトル指数 pや 最高到達エネルギー Emaxの応答を示す.左半分の黒色が正 のフィードバック,右半分の灰色が負のフィードバックを 表す.太枠は電磁波観測により直接知ることが可能な量を 示す.尚,(1)式からわかるように,指数 pが大きくなる (小さくなる)ということは、高エネルギーの粒子の割合が 少なくなる(多くなる)ということを示す.

Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, KANAGAWA 252-5258, Japan

author's e-mail: ryo@phys.aoyama.ac.jp

Special Topic Article

2.1 Theory and Observations of Cosmic-Ray Acceleration at Supernova Remnant Shocks

新星残骸[2] 一超新星爆発で吹き飛ばされた星の破片が星 間空間のガスと衝突している一の外縁部にある強い衝撃波 が宇宙線の加速源であると長らく考えられてきた.天文学 的・宇宙物理学的な銀河宇宙線の研究は,銀河宇宙線の超 新星残骸起源というパラダイムの検証や,超新星残骸の衝 撃波における宇宙線生成過程の解明をめざすものである. もちろん,超新星残骸以外の可能性があれば天文学的には 面白いであろう.実際,最近の観測の進展により,未同定 ガンマ線天体が多数発見されており,これらが銀河宇宙線 の「暗黒加速器」となっている可能性が指摘されている[3].

宇宙線の起源に迫るために有効な手段は,加速現場で宇 宙線の発する電波・X線・ガンマ線等の電磁波放射を観測 することである.特に近年は,観測技術の急速な発達によ り,高精度のX線・ガンマ線観測の結果が続々と得られて おり,新たな発見とともにそれにより新たな問題も浮き彫 りとなってきている.本節では,超新星残骸の宇宙線加速 研究の最新の理論・観測の進展と残された課題について紹 介していきたい.

2.1.2 宇宙線加速理論概観

荷電粒子は宇宙空間の乱流磁場の影響を受け複雑な軌道 を描く. 乱流磁場中で運動する荷電粒子がエネルギーを獲 得して宇宙線となる過程を概観する[3,4].

2.1.2.1 衝撃波 Fermi 加速

超新星爆発で生じた超音速のプラズマ流は,周囲の星間 ガスに衝突して衝撃波を形成する.衝撃波近傍には種々の 電磁波動が存在して乱流状態になっており,宇宙線は空間 的に拡散運動を行う.宇宙線は波と上流で正面衝突により エネルギーを増し,下流では追突によりエネルギーを失 う.しかし衝撃波静止系では,波の速度は上流の方が下流 よりも速いために,上流と下流の間を一往復すると必ずエ ネルギーを得る.実際には大部分の粒子は背景プラズマの 流れにのって下流方向へ流されエネルギーを得ることはな いが,一部の粒子は衝撃波面を何度も横切り加速される.

このようなFermi加速機構において最も重要な未解決問 題は粒子の注入機構である.被加速粒子は、衝撃波面を自 由に横切るに十分なエネルギーまで一旦加速されていなけ ればならない.この予備的な加速過程は、衝撃波近傍での 複雑なプラズマ過程に支配されているため、理解は困難を 極めている.そのため、Fermi加速過程に注入される粒子 の割合(注入効率)は不確定である.以下で見るように、注 入効率の大小が加速現場の様子を変える.

宇宙線の背景プラズマへの反作用が無視できるくらい注 入効率が小さい場合,被加速粒子の運動をテスト粒子的に 取り扱うことができる.定常的な衝撃波の速度場のもとで 宇宙線のスペクトルを計算すると,

$$N_{\rm S}(E) \propto E^{-p}, \qquad p = (r+2)/(r-1)$$
 (1)

という冪形になる.ここでrは衝撃波の圧縮比である.比 熱比 5/3の理想気体の断熱衝撃波に対してはr=4で,この とき,p=2.0となる.ところが地球での宇宙線スペクトル を説明するためには,p=2.3-2.4でなければならないこ とが明らかとなってきている[4]. さらに複数の超新星残 骸の電波・ガンマ線スペクトルからも p > 2.0 であること が示唆されている(後述).

Fermi 加速理論に基づいて、被加速粒子の最大到達エネ ルギー E_{max} を計算すると、

$$E_{\rm max} = 4 \,{\rm TeV} \eta^{-1} (B/1\,\mu{\rm G}) \,(u_{\rm s}/3000\,\,{\rm km/s})^2 \\ \times (t_{\rm age}/1000 \,{\rm \pounds}) \quad (2\,)$$

となる. ここで u_s は衝撃波速度で, η と t_{age} はそれぞれ乱 流度と超新星残骸の年齢であり,若い超新星残骸では, $\eta = 1-10$ 程度, $t_{age} = 1000$ 年程度である.衝撃波近傍で磁場が 星間空間の典型値 $B \sim 3-10 \mu$ Gをとるとすると,最高到達 エネルギーは高々 10-100 TeV 程度となり, knee エネル ギーに及ばない.

これらテスト粒子近似のもとでの問題点を説明するため に、次節で述べる非線形モデルの他、様々な効果が指摘さ れている.そのほとんどが磁場の乱れに依存した効果であ り、磁場ゆらぎについての正確な理解が必要になってきた といえる[4].

2.1.2.2 宇宙線加速の非線形モデル

注入効率が大きく宇宙線陽子の運動量流速の総和(これ は宇宙線の実効的な圧力とみなせる)が背景プラズマのガ ス圧に対して無視できない場合を考える.このような効果 を考慮した理論は宇宙線加速の「非線形モデル」と呼ばれ る(図1).宇宙線は背景プラズマに比べてはるかに大き な平均自由行程をもつため,衝撃波面よりも上流方向にし み出すことができる.すると、宇宙線核子の圧力によって 背景プラズマは上流で加熱・圧縮をうけて減速され,さら に衝撃波面において減速するという速度構造をもつ[3]. このように宇宙線圧力によって変性した衝撃波構造のもと で加速された宇宙線のスペクトルは(1)式のような単純な ベキ則には従わない.

また加速された宇宙線陽子は、上述の反作用効果に加え て、衝撃波近傍の磁場を増幅させる可能性もある. 宇宙線 陽子と背景プラズマの間に起こるプラズマ不安定現象を通 して宇宙線陽子から磁場へエネルギーが転化されるのであ る.磁場が増幅された影響により、宇宙線の最高到達エネ ルギー (E_{max})の問題を解決できる可能性があるため、磁 場増幅過程は粒子加速の理論的研究において盛んに調べら れてきた. つまり, 衝撃波近傍で磁場が星間空間の典型値 B~3-10 μGではなく数 100 μG まで増幅されていれば, knee エネルギー (= 3000 TeV) に到達する. 一方, 増幅さ れた磁場の磁気圧や散逸により衝撃波の圧縮が弱くなる効 果や、散乱体である磁場の波と被加速粒子との相対速度が 小さくなって加速効率が落ちる効果など負のフィードバッ クも働くことが指摘されており(図1参照),磁場増幅過 程の与える影響は複雑で明確な理論的予言を行えないのが 現状である.

2.1.2.3 宇宙線の電磁波放射

宇宙線は銀河磁場により進行方向を曲げられ拡散的に運動するため、地球からみた到来方向はほぼ等方的である. そのため、宇宙線のやってきた方向に宇宙線源があるとは 限らない.加速源からまっすぐ飛んでくる電磁波の観測が 重要となるのである[1-3].

宇宙線電子は磁場中でシンクロトロン放射を行い,主に 電波やX線帯域で観測される.同時に,逆コンプトン散乱 過程により宇宙マイクロ波背景放射や星から放たれる可 視・赤外光などの低エネルギー光子をガンマ線に変える. 宇宙線電子のスペクトルが単純なベキ則 E^{-ρ} に従う場 合,観測される放射スペクトルは,シンクロトロン放射も 逆コンプトン放射もともに

$$\nu F_{\nu} \propto \nu^{(3-p)/2} \tag{3}$$

となる* (v は光子の振動数).

さらに密度の濃い媒質中では、まれに電子の制動放射ガ ンマ線が明るくなる場合もある.制動放射のスペクトルは

$$\nu F_{\nu} \propto \nu^{1-p} \tag{4}$$

となる.

宇宙線核子成分は星間ガス中の核子と衝突してパイ中間 子を作る.そのうち中性パイ中間子 π^0 は2個のガンマ線に 崩壊する.ガンマ線光子のエネルギーはもとの宇宙線核子 のエネルギーの約10%程度である.前述と同様に宇宙線核 子のスペクトルが $E^{-\rho}$ に従う場合, π^0 崩壊によるガンマ線 スペクトルは制動放射と同じ(4)式で与えられる.電子起 源の制動放射と核子起源の π^0 崩壊ガンマ線は GeV 帯域の スペクトルをみれば区別できる. π^0 粒子の静止系では, π^0 の崩壊により放出される2個のガンマ線はともに π^0 粒子 の静止エネルギー(=135 MeV)の半分の67.5 MeV のエネ ルギーをもち,互いに反対方向に飛行する.このため, π^0 崩壊ガンマ線のスペクトルは0.1 GeV 以下で急激に暗くな る.電子起源のガンマ線はこのようなカットオフは自然に は現れない.**図2**にp=2.0の場合のガンマ線スペクトルを 示した.

宇宙線の電子成分が若い超新星残骸で加速されているこ

 $m_{\pi 0} \sim 134 \text{ MeV}$

図2 宇宙線電子および核子のスペクトルが E^{-2.0} で与えられる 場合のガンマ線スペクトル. とは、電子のシンクロトロン放射が検出されたことで立証 された.字宙線電子の数は核子成分に比べて100倍程度少 ないにもかかわらず、質量差のために一粒子あたりの電磁 波放射の強度が陽子よりも圧倒的に明るく、電子起源の放 射の方が先に確認されたのである.現在の課題は、宇宙線 の主成分である核子起源のガンマ線放射の確たる証拠を捉 えることなのである.実際に検出されたガンマ線の起源が 宇宙線核子起源なのか電子起源なのかを明らかにすること が問題解決のカギとなる.ガンマ線の放射機構が同定され れば、(3)式または(4)式を用いて、電磁波放射源(=加 速源)での宇宙線スペクトルを推定することができる.ま た、磁場強度やターゲット密度が既知の場合は、フラック スの絶対値から放射源での宇宙線の総量も推定することが でき、宇宙線のフィードバック効果が顕著かどうかもあわ せて議論することができる.

2.1.3 超新星残骸の観測

シンクロトロン電波は地上の電波望遠鏡で,X線は観測 衛星によって観測される.ガンマ線に関しては,0.1-100 GeV 帯域はガンマ線観測衛星により観測され,約100 GeV 以上 のエネルギー帯域では地上チェレンコフ望遠鏡を用いて観 測される.

2.1.3.1 宇宙線電子によるシンクロトロン放射

シンクロトロン電波は主に1GHz帯域の振動数で観測される.これは1GeV前後の宇宙線電子の放射である.電波 シンクロトロン放射のスペクトルから電子のスペクトル指 数 p を(3)式を用いて求めると,若い超新星残骸はどれも p>2.0となっている.若い超新星残骸のマッハ数は100以 上であり,単純には圧縮比rはほぼ4となり,スペクトル 指数は2.0となるはずである.このズレは2.2章で述べた非 線形モデルで定性的には説明可能であるため,観測された 電波シンクロトロンのスペクトル指数は超新星残骸で宇宙 線核子の注入効率が高いことを反映していると考えられて いる.

高空間分解能をもつチャンドラ X 線望遠鏡により,多く の若い超新星残骸からシンクロトロン X 線が観測され,そ れらは衝撃波面付近に細くフィラメント状に分布している ことが明らかとなった[3].フィラメントの幅は超新星残 骸の半径の1%程度と薄い.この幅は加速された電子の存 在範囲を示していると仮定すると,強い磁場によるシンク ロトロン冷却が効いていることになる.その冷却時間 t_{synch} は様々な方法で見積もられるのだが,たとえば SN 1006の場合,60年程度と超新星残骸の年齢(約1000年) にくらべてはるかに小さくなる.シンクロトロン X 線を出 す電子に対する冷却時間は,

$$t_{\rm synch} = 1.5 \ (B/1 \,{\rm mG})^{-1.5} \, \Phi$$
 (5)

程度である.したがって, t_{synch} ~ 60年より*B*~0.1 mGとな り,星間磁場の典型値より10倍以上も増幅されている可能

^{*} F_ν は単位振動数あたりの電磁波フラックスである.これを振動数で積分すると全エネルギーフラックスとなる.したがって, F_ν にνをかけた量をプロットすると,どの振動数帯で放射エネルギーが卓越しているのか一目でわかる.高エネルギー天体観測では 電波からガンマ線にわたる広帯域のスペクトルを考察することが多いため, νF_νをプロットすることが多い.

Special Topic Article

性を示す.エネルギー収支を考えると,衝撃波面を通って 流入した運動エネルギーフラックスの1%程度が磁場増幅 に使われたという勘定になる.細いX線フィラメントは若 い超新星残骸にみられる普遍的性質であり,多くの場合, SN 1006と同様に B~0.1 mG 程度と見積もられ,衝撃波に おいて磁場増幅機構が普遍的に働いていると推測される. また,ごく小さな領域ではあるが,シンクロトロンX線が 1年程度の時間スケールで変動していることも報告された [5].この時間変動も同様にシンクロトロン冷却によるも のだとすると,(5)式より B~1 mG 程度まで増幅されて いることがわかる.以上の観測結果と(2)式より,超新星 残骸での陽子の最高エネルギーが knee エネルギーに到達 することが期待されたのは,ガンマ線観測が華やかになる 前夜のことであった.

また、衝撃波近傍で磁場が0.1-1mG 程度に増幅されて いるということは、以下で述べるようにガンマ線放射が陽 子起源であることを示唆する.シンクロトロン放射の強度 は、宇宙線電子の総量と磁場で決まる.磁場が強ければ、 比較的少量の宇宙線電子でも放射強度は大きくなる.この とき、同じ電子起源の逆コンプトン散乱ガンマ線の強度は 単純に電子の総量に比例するので暗くなってしまう.定量 的には、逆コンプトン放射の種光子が宇宙マイクロ波背景 放射の場合、ある高エネルギー電子によるシンクロトロン 放射強度 *P*_{syn} と逆コンプトン散乱の放射強度 *P*_{IC} の比は磁 場強度だけで決まり、

$$P_{\rm syn}/P_{\rm IC} = 9 \times 10^2 \ (B/0.1 \ \rm mG)^2 \tag{6}$$

となる.しかし,ここまで大きな比を示す超新星残骸はない.したがって,強磁場と電子起源の逆コンプトン散乱ガンマ線放射は単純には両立しないのである.また,若い超新星残骸の周囲のターゲット密度程度では電子の制動放射は一般には暗い.

ところで、シンクロトロンX線フィラメントの天球面上 での固有運動を測定することができる.数年の間隔をあけ て同じ部分を観測すると、超新星残骸の膨張に伴ってフィ ラメントの位置も外側に移動しているのである.このこと から衝撃波速度 us を見積もることができ、強い衝撃波に対 する衝撃波接続条件

$$k_{\rm B}T_{\rm d} = (3/16)\,m_{\rm n}u_{\rm s}^{\,2} \tag{7}$$

を用いて衝撃波下流の温度を推定できる.ここで, k_B はボ ルツマン定数, m_n はイオンの質量である.RCW 86 という 超新星残骸に対してこれを行うと $kT_d \sim 42$ keV となる.一 方で,これとは独立に,可視光バルマー輝線のドップラー 幅から実際の衝撃波下流の温度を求めることができ, $k_BT_d \sim 2$ keV 程度である.論文[6]では,この差は衝撃波の エネルギーが宇宙線加速に使われて下流プラズマの温度が 下がったためと解釈し,宇宙線の注入効率が極端に高いと 結論付けた.しかし,この議論では,衝撃波が一様な上流 媒質中を球対称に膨張することが暗に仮定されている.実 際の非一様な媒質中を伝播する衝撃波では波面はゆらぎ, ほぼすべての部分においてななめ衝撃波となることを考慮 すると、(7)式は適用できないために上述の結論は覆る可 能性がある[7].

2.1.3.2 ガンマ線観測による宇宙線加速への示唆

ここでは主にガンマ線スペクトルの測定結果とそこから 得られる示唆について現状をまとめる.詳細なガンマ線ス ペクトルをもとにした議論が可能になったのは,H.E.S.S. や MAGIC 等の地上チェレンコフ望遠鏡(2002年頃稼働開 始)や Fermi 衛星(2008年打ち上げ)のデータが報告され るようになってからである.以下では幾つかの代表的な超 新星残骸について観測結果とそれをもとにした議論を紹介 する.

(A) Cas A

まずは年齢400年程度の超新星残骸である Cas A のガン マ線スペクトルを図3に示す[8]. 0.1 GeV 以下に π^0 崩壊 に特徴的なカットオフの兆候があることから陽子起源のガ ンマ線であることが示唆され、フラックスの絶対値から陽 子宇宙線の総エネルギーは超新星爆発のエネルギーの数% 程度であると推定される. Cas A は全天で最も明るいシン クロトロン電波放射源の一つであり、さらに、シンクロト ロン X 線の時間変動も示すことから、増幅された磁場のも とで粒子加速が起こっており,陽子の最高到達エネルギー Emax も knee エネルギーに届くと期待されていた. ところ が、ガンマ線スペクトルは1TeV以上にカットオフの兆候 をもつため, 陽子の Emax は 10 TeV 程度であると推定され る. まだ年齢が若く, knee エネルギーに到達するのにはも う少し時間がかかるのかもしれない.もしくは, knee エネ ルギーまで加速された宇宙線陽子たちは衝撃波付近からす でに逃げ出した後であるという可能性もある[9].

(B) RX J1713.7-3946

年齢1000年程度の超新星残骸RXJ1713.7-3946はX線やガ ンマ線の詳細観測が進んでいる数少ない天体の一つであ る.この超新星残骸のガンマ線の起源は長らく議論の的で あったが、Fermi衛星が1-100 GeV帯域で $\nu F_{\nu} \propto \nu^{0.5}$ とい う予想外のスペクトルを報告したことでさらに混沌とする ことになった[10].報告されたガンマ線スペクトルは p = 2.0をもつ電子の逆コンプトン散乱によるものに近 かったのである.もし本当にガンマ線が電子の逆コンプト

ン散乱起源だとすると、測定された $P_{\text{syn}}/P_{\text{IC}}$ 比と(6)式か ら $B = 10 \mu$ G程度ということになる.一方で、この超新星残 骸からもシンクロトロンX線の細いフィラメントや時間変 動が観測されており、B > 0.1 mG 以上の磁場強度が示唆される[5].

この矛盾を解決する一つの方法は非一様な媒質中を伝播 する衝撃波を考えることである[11].実際,この超新星残 骸は多くの分子雲(高密度塊)に囲まれている.実は, (4)式のスペクトルは宇宙線陽子にとって衝突の標的とな るガスが一様分布しているときにのみ正しいのである.分 子雲のように中心に近づくにつれて密度が増加するような 標的の場合は事情が異なる.エネルギーの高い宇宙線陽子 ほど分子雲の内部まで侵入することができるため,実効的 にターゲット密度が大きくなり,結果として Fermi 衛星で 観測されたガンマ線スペクトルは陽子起源の π^0 崩壊ガン マ線で説明可能となる.さらに非一様媒質中を伝播する衝 撃波では Richtmyer-Meshkov 不安定により磁場も増幅さ れるため(本小特集2.2参照),シンクロトロンX線の観測 結果も同時に説明できる.

しかし, ガンマ線スペクトルは Cas A と同様に 10 TeV 付近でカットオフをもつため, ガンマ線が陽子起源だとす ると,この超新星残骸にもkneeエネルギーの核子宇宙線が 存在しないことになる. さらに,磁場が 0.1-1 mG と強い 場合,シンクロトロン放射強度から宇宙線電子の総量を見 積もると,宇宙線陽子の10万分の 1 以下程度と非常に少な くなってしまい,地球に降り注ぐ宇宙線電子のフラックス を説明できなくなってしまう.宇宙線陽子の存在の証拠を 得たとたんに宇宙線電子の存在の証拠を失ってしまうのは 皮肉なものである[3].

(C) IC 443, W44

年齢1万年程度の複数の超新星残骸のガンマ線スペクト ルも詳細に観測されている.それらのうち,IC 443 や W44 といった天体では0.1 GeV 以下にπ⁰崩壊特有のカットオフ をもつため,ガンマ線放射は陽子起源であることが確定的 である[12].ところが,これらの超新星残骸のガンマ線ス ペクトルからも,陽子の最高到達エネルギーがkneeに届い ているという証拠は得られていない.また,ガンマ線が陽 子起源だというだけでは,これらの超新星残骸で陽子が加 速されているとは言えないことに注意したい.なぜなら ば、これらの超新星残骸は高密度の分子雲と衝突しており、超新星残骸衝撃波が到達する前から星間空間に漂っていた宇宙線陽子が衝撃波によって掃き集められ、密度の高い標的に衝突してガンマ線を放射したとしてもガンマ線強度を説明可能なのである[13].

2.1.4 まとめと今後の課題

「若い超新星残骸がkneeエネルギーまで核子を加速して 銀河宇宙線の起源になっている」というパラダイムは,最 近の著しい観測的進展にもかかわらず,まだ検証されてい ないというのが現状である.その主な理由は,衝撃波での 宇宙線加速への注入効率が不明なこと,加速・放射現場に おける磁場の値が不明確であるために電子の総量が定まら ず,電子起源のガンマ線成分の分離が不十分なことによ る.近い将来,次世代の国際地上チェレンコフ望遠鏡観測 計画 CTA や,日本の次期 X 線天文衛星 ASTRO-H といっ た詳細観測装置による観測的進展と理論的計算の比較に よって宇宙線物理の未解決問題が解明されると期待され る.また,陽子起源の場合にのみガンマ線と同時に放射さ れる高エネルギーニュートリノが検出されれば陽子加速の 決定的証拠が得られるであろう.

参考文献

- [1]小山勝二,嶺重 慎(編):ブラックホールと高エネル ギー現象,(シリーズ現代の天文学,第8巻,日本評論 社,2007),第4章.
- [2]福井康雄,犬塚修一郎他(編):星間物質と星形成(シ リーズ現代の天文学,第6巻,日本評論社,2008),第 5章.
- [3] 山崎 了, 馬場 彩:日本物理学会誌 64, 196 (2009).
- [4] 大平 豊 他:日本物理学会誌 67,832 (2012).
- [5] Y. Uchiyama *et al.*, Nature 449, 576 (2007).
- [6] E. Helder et al., Science 325, 719 (2009).
- [7] J. Shimoda et al., ApJ 803, 98 (2015).
- [8] S. Kumar et al., arXiv:1508.07453 (2015).
- [9] Y. Ohira et al., Astron. Astrophys. 513, A17 (2010).
- [10] A. A. Abdo et al., ApJ 734, 28 (2011).
- [11] T. Inoue et al., ApJ 744, 71 (2012).
- [12] M. Ackermann et al., Science 339, 807 (2013).
- [13] Y. Uchiyama *et al.*, ApJ **723**, L122 (2010).