

はじめてみよう!高エネルギー密度プラズマ計測

Introduction to High Energy Density Plasma Measurement

1. はじめに

1. Preface for Introduction to High Energy Density Plasma Measurement

重 森 啓 介 SHIGEMORI Keisuke 大阪大学レーザーエネルギー学研究センター (原稿受付: 2015年 9 月17日)

1.1 はじめに

いまこの原稿を書いている8月下旬,北京では世界陸上 大会が行われています.テレビ中継を見ていると,陸上競 技でも様々な画像計測等が駆使され,その記録や判定に有 効利用されてことに気が付きます[1].陸上競技はたくさ んの種目がありますが,100m走のような短距離では 1/1000秒の争いという過酷な世界です.こういった記録を 追い求める陸上選手も大変ですが,この記録を正確に計測 し,解析・処理することは非常に重要な仕事です.選手た ちが一所懸命に努力しても,ちゃんと計測ができていない とせっかくの記録が台無しになってしまうからです.

このような陸上競技と実験は似ているところがありま す.プラズマ実験の場合を考えてみても、準備を丹念に行 い、綿密な条件出しで理想的なプラズマが作れたとして も、肝心の計測や記録を失敗してしまうと全くの無駄骨に なります.特にこの講座で述べる高エネルギー密度プラズ マ実験では、単発現象であり繰り返しが効きにくいところ があるので、「一発勝負」という側面があります.よって、 計測に関して事前に詳しく検討しておくことが、実験全体 の成功の鍵を握ることになります.すなわち、「実験のた めの計測」であると同時に「計測のための実験」という姿 勢で臨むのが正しいかもしれません.これは一般的な実験 に言えることで、高エネルギー密度プラズマ実験に限った 話ではありませんが…

とはいうものの,こういった計測のことを検討するにあ たって,何から考え始めればいいのか,どういった準備を しなければいけないのか等,具体的な材料や数値が必要で す.ここではまず高エネルギー密度プラズマの特徴と,そ のために必要な計測のスペックを思い描くこととします. 本講座は7章で構成され,第2章では典型的な高強度レー ザー生成プラズマ実験の要点を示し,3章以降で高エネル ギー密度プラズマの典型的な例を示しつつ,わかりやすい 具体例を下地に解説を行います.

1.2 高エネルギー密度プラズマとは?

「高エネルギー密度科学」や「高エネルギー密度物理」と いった領域は既に確立された感がありますが[2],まずは この講座で扱う「高エネルギー密度プラズマ」とは何か? という話からはじめましょう. エネルギー密度という言葉 を単純にあらわすと、単位体積、単位質量あたりのエネル ギーという意味で「J/m³」「J/kg」という単位になります. これらのそれぞれの単位をわかりやすく言いかえると、前 者は圧力、後者は内部エネルギーといったものになりま す.しかしながら、高エネルギー密度プラズマで扱うのは ごく短時間の現象であり、「単位時間当たりのエネルギー 密度」が実際には重要な指標となります. また, 短時間の 現象であるがゆえ、体積ではなく面積当たりのエネルギー密 度で換算する方が現実的です.ゆえに「W/m²」,「W/cm²」 という尺度で評価すればいいことになります. なお, 高工 ネルギー密度プラズマの分野では、その歴史的経緯から純 粋 MKS ではなく, 上記の 「W/cm²」 のような MKS と CGS が混在した奇妙な単位が使用されることが多く、国際的な 論文でもこの単位表記が基本です.本来は MKS 単位系を 使用すべきですが、本講座ではこの単位を便宜的に使用し ます.

本講座で取り扱う高エネルギー密度プラズマは、高強度

Institute of Laser Engineering, Osaka University, Suita, OSAKA 565-0871, Japan

author's e-mail: shige@ile.osaka-u.ac.jp

Lecture Note

図1 本講座の各章で取りあげる高エネルギー密度プラズマの(a)温度・密度分布および(b)その計測の空間・時間スケール.

パルスレーザーやパルスパワー装置を用いて生成されま す.このような装置で得られるプラズマが、一般的に「高」 エネルギー密度状態のプラズマということになります。例 えば、レーザーの場合で考えてみると、照射強度が低い領 域では物質にレーザーを照射しても反射や透過、吸収され るのみでプラズマ化は起こりません。プラズマが発生する 強度は照射強度(単位面積当たりの強度)で決定されます が、おおよそ10⁹~10¹⁰ W/cm²の領域で起こりはじめます ので、これ以上のレーザー強度で発生するプラズマ、そし てそのプラズマによって生成する状態が高エネルギー密度 プラズマとして扱うことになります。もちろん、このレー ザーの照射強度を変化させるとプラズマの状態も変わり、 照射する物質によっても多彩な状態が得られます.

1.3 本講座で扱うプラズマの領域・特徴

このような高いエネルギー密度をもったプラズマについ て、この講座では高強度レーザーやパルスパワー装置を用 いたいくつかの典型的な実験について、そのパラメータに おける計測に関して述べます.もちろん、高エネルギー密 度プラズマの実験はこの講座で述べる内容のものだけでは ありませんが、典型的なプラズマパラメータのほとんどが 埋め尽くされています.図1(a)に本講座の各章で述べる 高エネルギー密度プラズマの温度・密度分布を示します. 本講座では、典型的な5つのタイプの実験に的を絞ってい ます.レーザーやパルスパワー装置で得られるプラズマ は、その装置スペックや実験条件で決定され、とても広い 範囲に亘っていることがわかります.例えば、相対論プラ ズマのような高速電子・イオンと高エネルギー密度物性で 扱う固体状態では、温度で約10桁の違いがあります.また、 密度でも全体を通してざっと数桁は開きがあります.

もう一つ違う視点として、これらのプラズマの時間・空間スケールが挙げられます.前述の通り、高エネルギー密度プラズマは非常に短い時間、微小な領域で起こる現象を追うことが必須なので、どれくらいの空間・時間スケールを持つのかを理解しておく必要があります.図1(b)にそれぞれの章で扱う高エネルギー密度プラズマの典型的な空

間・時間スケールを示します.図1の2つのグラフを見比 べると、各々のプラズマがどのような描像をもつのか、そ の特徴を得ることができます.

本講座では,第2章にレーザー生成プラズマ計測のイントロを行ったのち,典型的な実験系として本講座で挙げる5つの実験例に沿って内容を説明します.

第3章 高エネルギー密度物性計測

高強度レーザーの照射によるアブレーション圧力によっ て発生する超高圧力状態の物性を計測する.固体領域に近 く,温度は低く密度は高い.圧縮するレーザーのパルス幅 は,典型的にはナノ秒レーザーであるが,高圧力下での相 転移の時間スケールはピコ秒,空間スケールも原子間距離 ほどになる.

第4章 パルスパワープラズマ計測

パルスパワー装置を用いることにより,Warm Dense Matter領域の物性などを計測する.他のレーザー生成プラ ズマと比較して時間・空間スケールがやや大きく,温度や 密度は後述の宇宙プラズマ実験に近い領域となる.

第5章 レーザー宇宙プラズマ計測

宇宙プラズマ自体は非常に広いパラメータ領域をもつ が、ここでは主にナノ秒レーザー照射による高速プラズマ 流に関わる計測を扱う.レーザー生成プラズマの中では比 較的低密度領域であり、時間空間スケールもパルスパワー 生成プラズマに近い.

第6章 慣性核融合プラズマ計測

レーザー照射によって得られる爆縮プラズマのうち,核 融合反応が起きる最大圧縮に近い状態を計測する.温度・ 密度ともに高く,時間スケールや空間スケールは小さいと いう特性をもつ.

第7章 相対論プラズマ計測

ピコ秒オーダー以下の時間スケールの超高強度レーザー によって生成するプラズマの計測.このようなプラズマ は、その電子が光速を超えるほど温度が非常に高く、レー ザーのパルス幅と同様に時間スケールが短いことが特徴. 以上のように,それぞれの実験で得られる特徴的なプラ ズマの条件より,それに対応する計測に関する要求事項が 浮かび上がってきます.

表1に各章で扱われる予定の計測に関する一覧を示しま す.表の左側より用いられる計測法(やり方),計測対象 (そのプラズマのどのような物理パラメータを計測するの か),計測器(どういうハードウェアを使用するのか)を示 しています.表1に示される計測法の数々は,先人の努力 によって確立されたものですが,この計測法と計測器の組 み合わせが,観測したいプラズマの対象パラメータ(温度, 密度,磁場…)およびその空間・時間スケールが最適であ ることが重要です.

1.4 本講座のねらい

この講座では、高強度レーザーやパルスパワー装置を用

いて、高エネルギー密度プラズマの実験を始めようとする 方々を対象にしています.実験の中でも計測に焦点を絞 り、実験前に知っておくべき事柄について、典型的な5つ の実験を例として取り上げ、その道のプロに極意を伝授し ていただきます.本学会誌の講座の想定購読者として、こ の分野の大学院生の初学者を想定しています.また、高エ ネルギー密度プラズマの理論・シミュレーションを主体と して研究している非実験系の方々、さらにパラメータは少 し違うプラズマ実験を行っている研究者にも是非とも読ん でいただき、研究の幅を拡げる一助になれば幸いです.

参考文献

- [1] 例えば, http://www.nishi.com/catalogue/stadium/index_f.html#84
- [2] プラズマ・核融合学会誌 88 別 (2005).

	計測法	計測対象	計測器	パラメータ領域	計測スケール
3章	レーザードップラー速度 干渉計	ショック速度,粒子速度, および圧力など	ストリークカメラ	速度:0.1-10 km/s, 圧力:数GPa-1 TPa以上	0.1~10 ns,数 100 μm
	放射輝度温度計	プランク温度	ストリークカメラ	数 1000 K - 数万度	0.1~10 ns,数 100 µm
	その場 X 線回折	結晶格子間距離など	結晶分光器, イメージン グプレート	数Å	フェムト秒-ナノ秒,数 100 µm
	その場 X 線散乱	短周期構造,配位数など	結晶分光器, イメージン グプレート	数Å	フェムト秒-ナノ秒,数 100 µm
4章	電圧・電流計測	プラズマへの電磁エネル ギー入力	分 圧 器 (抵 抗 型, 容 量 型), Rogowski Coil		1∼1000 ns, ~cm
	ファラデーカップ	荷電粒子束	バイアス回路,電源	mA~kA	1∼1000 ns, ~cm
	荷電粒子の質量・エネル ギー分析	荷電粒子の比電荷とエネ ルギースペクトル	トムソンパラボラ型分析 器	100keV~MeV (Ion)	~100 µm
	干渉計測	プラズマの密度	レーザー,CCD カメラ	波長に依存	$\sim 100 \mu m$
5章	可視干渉計測, シャドウ グラフ, シュリーレン	電子密度,密度変化	可視 CCD, ICCD カメラ	密度 10 ¹⁷⁻¹⁹ cm ⁻³	1-10 ns, 数 mm (分解能 ~100 μm)
	可視トムソン散乱	電子密度,電子温度,イ オン温度,電離度,ドリ フト速度	ICCD カメラ	温度1-1000 eV, 密度10 ¹⁷⁻¹⁹ cm ⁻³	1 - 10 ns,数 mm(空間 分解能~数 10 μm)
	可視自発光計測	電子密度, 電子温度	ICCD カメラ, 可視スト リークカメラ	温度 1-100 eV, 密度 10 ¹⁷⁻²⁰ cm ⁻³	1-10 ns, 数 mm (分解能 ~100 μm)
	Proton Imaging	電場,磁場	RCF, CR39	磁場1-100 T, 電場~100 kV/m-MV/m	<100 ps, 数 mm – 数 cm
	磁気プローブ	磁場	磁気プローブ, オシロス コープ	磁場>0.001 T	~数 us,数 mm 程度
6章	X線自発光計測, X線バッ クライト計測	爆縮コアダイナミクス	X 線ストリークカメラ, X 線 フ レ ー ミ ン グ カ メ ラ, X 線 CCD カメラ	温度 1-100 eV, 密度 10 ²²⁻²³ cm ⁻³ 温度 1-10 keV, 密度10 ²²⁻²⁴ cm ⁻³	~数 ns,数 100 µm
	飛行時間法, エネルギー 分解 他	核反応性能(1次中性子 イールド)	シンチレータ, 放射化検 出器, 飛跡検出器	温度 1-10 keV, 密度 10 ²²⁻²⁵ cm ⁻³	< 100 ps, 数 10 µm
	飛行時間法	イオン温度	シンチレータ他	温度1-10 keV, 密度10 ²²⁻²⁵ cm ⁻³	< 100 ps, 数 10 µm
	TOF 法	主燃料 pR	散乱中性子カメラ	温度 1-10 keV, 密度 10 ²²⁻²⁵ cm ⁻³	< 100 ps, 数 10 µm
7章	Laser-driven proton deflactometory	1D observation of the transient E- field or B-field in the plasma	磁石,空間分解型イオン 計 測 器 等 (た と え ば MCP, single layer 固体飛 跡検出器)	using MeV~10 MeV pro- ton beam (~10 ⁸) V/m, 注) depends on proton beam energy	<mm(lateral), td="" ~ns<=""></mm(lateral),>
	Laser-diriven proton shadowgraphy & radiography	2D observation of transient E-field or B-field in the plasma	エネルギー空間分解型イ オン計測器(たとえば固 体飛跡検出器のスタック)	using MeV~10 MeV pro- ton beam (~10 ⁸) V/m, 注) depends on proton beam energy and density of the plasma	<mm(transverse), td="" ~ns<=""></mm(transverse),>

表1 本講座で扱われる様々な計測法の例.