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In order to understand the behavior of alpha-particles which are the dominant heat source in a burning plasma, it is necessary to measure the spatial
distribution of the density of the alpha-particles and their energy spectrum. A collective Thomson scattering (CTS) measurement based on a pulsed CO,
laser and microwave are being developed and one of them is under consideration for alpha-particle measurements on ITER.

Heating neutral beam (NB) ions (E = 1 MeV) will normally be co-injected in ITER and will have a similar velocity to the alpha-particles. An
important point is that the CTS measurement cannot, in general, distinguish between beam ions and alpha-particles which have the same velocity. However,
by using a vertical scattering geometry it is possible to distinguish between the beam ions and alpha-particles by measuring co- and counter-traveling ions.
Calculations have shown that the vertically viewing CTS can resolve counter-travelling alphas without being masked by beam ions.

An arrangement to measure counter-traveling alpha is proposed and a preliminary design of a heam line and a receiver system of CO, laser based CTS
with the vertical scattering geometry has been developed (Fig. 1). A heterodyne receiver T ' ] =
system with combination of HgCdTe detector and QWIP (Quantum Well Infrared
Photodetector) is proposed.

To realize the CTS measurement, a proof-of-principle test on the CTS system using the
JT-60U plasma is being conducted. The energy of the pulsed CO, laser is 15 J and the
nominal pulse length is about 1us. The scattering angle must be small (0.5°) to obtain large
ion contribution on the scattered spectrum. Stray light is reduced by a notch filter with hot
CO, gas. The scattered signal is detected by a heterodyne receiver and the spectrum is !
analyzed by a filter bank with six channels. Experiments have been carried out with JT-60U !
plasma but so far scattered signal has not been detected due to electrical noise originating o -4l 4 <
from the pulsed laser discharge and stray signal coming from mode impurities in the laser. B S RS = e

These problems are now being rectified. i:éjyc—» HRN = L
Subjects requiring further work to realize the CO, laser based CTS system on ITER are 4 ' = B : ; .
(1) detail optical design in the divertor and upper port, (ii) improvement in the spatial ] v o i

resolution (currently 40 ~ 80 cm), (iii) development of high power laser (50 J, 10Hz), and (iv) Fig. 1.
a successful proof-of-principle test on an existing plasma. Schematic diagram of the collective Thomson scattering system in ITER
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The concept of multiplexing divertor thermography was invented to observe the divertor targets in the deep slot divertor for ITER-98 [1]. The
newly designed multiplexing divertor thermography for ITER satisfies the recent requirement to measure ELM heat fluxes with a spatial resolution of 3 mm
and a time resolution of 20 us[2].

An overview of the mirror optics is shown with the enlarged front-end optics and spectrometer in Fig. 1. The optics are toroidally symmetric and
its toroidal width (~ 3 cm) is limited by the slit opening in the divertor cassette dome. The target length (L = 545 mm) is covered by a wavelength range of
3,400 to 4,470 nm. Therefore a spectral resolution of 6 nm is required to give a 3 mm resolution on the target. Thermal radiation from different positions on
the target is multiplexed into a single beam via the elliptic multi-focus mirror (~ 80 foci) and curved diffraction grating (200 lines / mm). The multiplexed
beam from Slit A is formed into a parallel beam by a parabolic mirror and guided to the .. Front end optics
outside of the divertor cassette through a hole and then transmitted to the outside of the ﬁ/ b
bio-shield via relay flat mirrors. There, the spectrum of the transmitted light is focused on \( S\ | .
to a multi-channel (~ 180 ch) detector in the Czerney-Turner spectrometer. A profile of \%ir ] (I T
temperature on the target is recovered from the intensity of the signal in each channel, « Ralay mirrors Foserfpams
since the total power transmitted to the detector is given by Q =t £ P. Here ¢ (z = 0.05) is
the attenuation factor in the optics and ¢ is the emissivity of the target materials. Detailed
signal to noise ratio calculation shows that ELM measurement is possible above 300 °C
for a carbon (¢ = 0.8) target and above 560 °C for a metal (¢ = 0.1) target while a spatial '
resolution of 3 mm and a time resolution of 20 us are both satisfied.
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In summary, the multiplexing thermography is feasible in principle and -~ Slta” il N\ \\ Fig. 1
. . . . i’\b ol \ \/ j) Mirror optics of the multiplexing
potentially could measure the ELM heat flux in ITER. However, several key engineering ara ,“\\\ " divertor thermography for ITER
A A i mirror -USSun T
problems remain to be solved. The displacements between the front-end optics and the S

AN
spectrometer due to movement of the vessel due to poloidal / toroidal field j x B forces,

must be actively controlled below 0.25 mm to keep a spatial resolution of 3 mm during a discharge. Mirror coating by redeposited divertor material and
carbon dusts in the dome cassette pose a survivability problem for optical components. In addition, experimental proof of principle in existing tokamak
machines is needed before a successful implementation can be assured.
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