解説「

MBE 人工結晶・超格子はどこまで進んだか

How Far Have We Got Man-made Crystals and Superlatties with MBE?

寺内 暉 関西学院大学理学部

H. Terauchi, School of Science, Kwansei-Gakuin University

Recent developments in artificial crystals and superlattices are reviewed, with particular attention to oxide films that include superconductive and ferroelectric materials.

Key words: artificial crystals, molecular beam epitaxy (MBE), superconductors, ferroelectrics

1. はじめに

分子線ェピタキシー (MBE) によって、電子の量子力学 的波長程度の厚さをもつ半導体超薄膜結晶やそれらを交互 に重ねた超格子結晶を作製しようという試みがなされて 20 年以上が経過した. この間, MBE 技術のめざましい進 歩によって超薄膜や超格子に特有な興味深い電子物性が見 いだされた. ここでは, MBE 技術の発展によって、半導体 に限らず, 超伝導体や強誘電体などを含めてどの程度の完 全性をもつ人工格子ができるようになったか, およびその 興味ある物性について述べてみる.

2. 単原子層制御の人工格子

MBE 法は超高真空中(10^{-10} Torr ぐらい)で分子線あ るいは原子線を基板結晶表面に照射し,薄膜結晶を作製す る一種の多元蒸着法である^{11,2)}.真空度が 10^{-6} Torr ぐらい である普通の蒸着では,真空槽内の酸素や水などの残留ガ スが基板結晶表面に付着して,基板の結晶性に基づいた結 晶成長,すなわちェピタキシャル成長はできにくい.しか し,真空度が 10^{-10} Torr ぐらいになると,残留ガスの付着 係数にもよるが,基板表面をクリーンな状態で長時間保つ ことができ,エピタキシャル成長が可能になる.また,結 晶の成長速度を1 Å/s ぐらいまで遅くできるので,単原 子層の制御も可能になる.

単原子層で制御して薄膜結晶を作製するためには、単原 子層が成長する時間をできるだけ正確に知る必要がある. その一つの手段として、結晶成長中に反射高エネルギー電 子線回折 (RHEED) の全反射強度の時間変化を測定する方 法がある. たとえば、GaAs 結晶を成長する場合、全反射 強度の振動周期は GaAs が1枚(せん亜鉛型の結晶なので GaAs 2枚が格子定数に相当) 2次元成長したことになる. すなわち、As 雰囲気中で Ga のシャッターを開くと、フ ラットな GaAs 基板表面に Ga 原子が飛んできて GaAs が 島状に付き始めるためにフラット性が失われ、全反射強度 が減少する。全反射強度が極小値をとるとき、GaAsが 50% 表面をカバーしたと思えばよい。そしてさらに、 GaAs が面内で成長して新しいフラットな表面ができあが ると全反射強度は極大になる。また次に GaAs が付き始め ると強度は減少する。したがって、この振動周期から結晶 成長の速さがわかり、これをフィードバックして人工格子 (超格子)を作製すればよい。

このような RHEED の強度振動をモニターしながら作 製した GaAs 35 枚 (17.5 単位格子に相当) と AlAs 35 枚 を交互に 30 周期重ねた超格子 [(GaAs)₃₅(AlAs)₃₅]₃₀ の X 線回折パターンを Fig. 1 に示す³⁾. この超格子は 35 a_0 の超 周期があるのでその回折パターンには $q=2\pi/35a_0$ の超格 子反射が観測される. 偶数次の超格子反射の強度が弱いの は、GaAs と AlAs の格子定数の差が小さいからである. 計算値も示してあるが、実測値と良く合っており、計算ど おりの人工格子ができているのがわかる.

3. 準結晶膜

5回対称をもつ準結晶が合金系で見つかっているが, こ こでは MBE 法で作製できる 1 次元の準結晶膜, フィボナ チ格子について述べる^{41.51}.

フィボナチ格子とは A と B の 2 種類の原子(層)を S₁=A, S₂=AB, S₃=ABA, S₄=ABAAB, …,

Fig. 1 Observed and calculated X-ray intensities around the (002) reflection in a $[(GaAs)_{35}(AlAs)_{35}]_{30}$ superlattice.

Fig. 2 Diffraction pattern of a Fibonacci lattice observed by means of synchrotron radiation. The upper inset shows the pattern observed by means of a normal X-ray unit.

 $\mathbf{S}_n \!=\! \mathbf{S}_{n-1} \mathbf{S}_{n-2}$

と並べた格子である. この格子は完全な長距離秩序をもた ないが,原子(層)の相関が強いためにシャープな回折パ ターンを与える. たとえば,A層をGaAs10枚(5a₀),B層 を AlAs 10枚(5a₀)としてS₁₄のフィボナチ格子をつくる と,Fig.2に示すようなX線回折パターンが得られる. こ れは(004)反射ごく近傍の回折パターンで,GaAs基板の (004)反射と人工格子の平均の格子定数に対応する(004) 反射が分離する程度に分解能を高めてある.上の図のよう に q_0 を適当な単位にとると、すべてのピークが、黄金律 $\tau=(1+\sqrt{5})/2\cong 1.62$ を用いて表される q_0/τ^n の位置にあ る.上の図の q_0/τ^0 の領域をさらに高分解能(シンクロト ロン放射光を用いた)で拡大して観察すると、その微細構 造は拡大前の構造と相似性(自己相似性)をもっているこ とがわかる.このような自己相似性はフィボナチ格子の特 徴である.

なお, MBE の正確な製膜技術を用いて, フィボナチ以

Time (arb. units)

Fig. 3 RHEED intensity oscillations of the specular beam during epitaxial growth for (a) $BaTiO_3$ (001), (b) $La_2CuO_4(001)$, and (c) $YBa_2CuO_{7-x}(001)$ on $SrTiO_3(001)$. The starting and ending points of the growth are indicated by the arrows. Insets: RHEED patterns observed during the growth of each oxide.

外の多くの準結晶が作製され⁵, その物性が調べられつつ ある。

4. 酸化物超伝導体膜

銅系酸化物超伝導体は層状構造であるため、その薄膜化の研究が盛んに行われるようになった。そして、これを契 機に、誘電体を含む種々の酸化物薄膜結晶が作製されるようになった。Fig. 3(a) には、ペロフスカイト型強誘電体として知られている BaTiO₃の RHEED パターンと結晶成 長中の RHEED 強度の時間変化が示してある⁶⁾. この場合 にも先に述べた強度振動が観測され、1 周期が1単位格子 に対応する。BaO と TiO₂ の 2 原子層が 2 次元的成長して

日本応用磁気学会誌 Vol. 22, No. 4-1, 1998

Fig. 4 Temperature dependence of the resistivity in n-layer YBCO between 6-layer PrBCOs on SrTiO₃ substrate.

Fig. 5 X-ray diffraction patterns in a 4000-Athick BaTiO₃ crystal on Pt/MgO substrate: (a) conventional method, (b) GIXD method.

いることがわかる. 同様に, (b) に示したように La₂CuO₄ では1 周期が単位格子(体心正方格子)の半分に対応し, LaO, LaO, CuO₂ の 3 原子層が組になって成長しているの がわかる. また, (c)の YBa₂Cu₃O_{7-x}(YBCO)の場合は1 周期が軸長 c に対応し, 6 原子層 BaO, CuO_x, BaO, CuO₂, Y, CuO₂ が組になって成長しているのがわかる. これらの 3 種の酸化物においては, 電気的中性を保つ分子層が単位 となって 2 次元成長している. 特に, YBCO においては 6

Fig. 6 D-E hysteresis loops in a 4000-Å-thick BaTiO₃ crystal (a) at room temperature and (b) at 347°C.

Fig. 7 Lattice parameters a and c as a function of the film thickness in BaTiO₃ crystals at room temperature. The parameters of BaTiO₃ and Pt bulks are given by dashed lines.

原子層からなる単位格子が2次元成長していることは驚 異的である.

ところで、YBCOの1単位格子層でも超伝導体になるで あろうか.その答えを知るために、次のような実験があ る⁷⁾.SrTiO₃(001)上に超伝導性を示さないPrBCOバッ ファ層を6単位胞積層し、その上にYBCO超薄膜を成長 する.いま、RHEEDをモニターして、1単位格子ごとに成 長を停止しながらPrBCOバッファ層をつくり、その上に n個の単位格子のYBCOを積層し、さらにPrBCOをカ バーする.このようにして作製したYBCOの抵抗の温度 変化をFig.4に示す、1単位胞の薄膜でも超伝導相転移を 示し、nが増加するとともに超伝導転移温度 T_c は上昇す る.1単位格子の超薄膜でも超伝導電流が流れることは少 なくとも1単位胞の厚さのYBCO膜が連続していること、 すなわち、層状成長していることを示し、YBCOの1単位 格子層で超伝導は起こると考えてよいのだろう.

5. 誘電体薄膜

酸化物超伝導体膜の研究に刺激されて,酸化物強誘電体の研究が盛んになった^{9,10}. ここでは MgO (001) 基板上に 電極用の Pt (001) 薄膜結晶を成長させ,その上に BaTiO₃ 単結晶膜を作製した場合について述べる¹¹⁾. Fig. 5 にその X 線回折パターンを示してある. BaTiO₃の膜厚は 4000Å

155

Fig. 8 Conventional 2θ - θ profiles of (111) Cu/Ni superlattices with various periods. Open circles denote the diffraction from the Ni buffer layer, while open triangles, zeroth-order satellites, and closed triangles deude the periodic structure.

である. もちろん, RHEED 振動をモニターしながら作製 した膜である. (a) は成長方向の X 線回折パターンである が, MgO, Pt, BaTiO₃の (001) しか観測されず, 配向性のよ い単結晶膜ができていることがわかる. また (b) は成長面 内の回折パターン (GIXD) で, (h00) 反射しか観測されず, 面内配向もよい単結晶であることがわかる.

この薄膜結晶の D-E ヒステリシス・ループを Fig. 6 に 示してある. (a) は強誘電相, (b) は常誘電相での測定であ る. これからもわかるように 4000Åの膜厚の BaTiO₃ 薄 膜が強誘電性を示すことがわかるが,もっと薄い膜はどう であろうか. Fig. 7 に BaTiO₃ 膜の格子定数が膜厚によっ てどう変わるかが示してある. 膜厚が厚い場合は,バルク の BaTiO₃ と同じ格子定数をもつ,ところが薄くなるにつ れて,BaTiO₃ 結晶の面内の格子定数 a は電極の Pt 結晶に 近づいていき,成長方向の格子定数は逆に伸びていく.こ れは Pt 結晶上に BaTiO₃ 結晶がエピタキシャル成長して いることを示し,興味深い¹²⁾.

6. 金属薄膜

金属薄膜や金属人工超格子をスパッタ法で作製し,その 拡散現象を調べることが古くから行われてきた.その後, 界面の磁性や巨大磁気抵抗効果の研究が盛んに行われ,後 者は応用の時代に入っている.さらには、重い金属と軽い 金属を交互に重ねた超格子が作製され,長波長 X 線の分 光結晶として,シンクロトロン放射光や X 線天文学の分 野などで注目されている.ここでは、周期律表で隣同士で

Fig. 9 Top-view SEM photographs of 30Å nominal thickness of NiAl deposited on (a), (b) a (5×2) reconstructed Al-terminated AlAs surface, (c) a (5×2) cation-terminated Al_{0.7}Ga_{0.3}As surface, and (d) a (2×4) As-terminated AlAs surface, respectively. The bright and dark regions correspond to NiAl and substrate, respectively.

Fig. 10 Structure of a C_{60} film grown on GaAs (111) substrate. Large open and small closed circles represent C_{60} molecules and surface As atoms of GaAs, respectively.

ある Cu と Ni の人工格子の例について触れておく. この 超格子は (001) 面が GaAs (001) 面上に, (111) 面が Y で 安定化した ジルコニア (111) 面上にそれぞれ成長する. Fig. 8 に後者の場合の X 線回折パターンが示してあるが, 半導体並の良質の超格子がいろいろな膜厚比で作製されて いることがわかる¹³¹. なお, この Cu と Ni の超格子はある 特定の膜厚で, その固さが急増することが期待され, 多く の研究がなされつつある.

もう一つ MBE 法で作製した金属量子線について触れて おく. Fig. 9 には,いくつかの AlAs (001) 面に成長した幅

Fig. 11 Shift of the sc-fcc transition temperature of a C₆₀ crystal with pressure. The open squares show the results obtained by Samara et al.¹⁷⁾ The closed circle shows the epitaxial strain of the C_{60} film just above T_c . The closed triangle shows the estimated value of the negative pressure in the case of the film.

30Å 位の NiAl 細線の SEM 像が示してある¹⁴⁾. AlAs 表面 の再構成構造などの状態によって細線の長さが異なるが、 AlAs 表面の [110] 方向にのみ細線が数 µm にも成長す る.また,細線同士が周期性をもつようにも見え,興味深い.

7. 分子性結晶薄膜

最後に分子性結晶である C60 単結晶膜が GaAs(111) 面 上にきれいに成長することを述べておく、この場合、格子 のマッチングは Fig. 10 に示してあるように、その整合性 がよく, きれいな C60 単結晶膜が成長することが予想でき る. 実際に作製された C60 膜は図のような構造であること が確かめられており15, その物性が調べられつつある. た とえば, Fig. 11 に示したように, C60 膜の相転移 (C60 分子) の回転が止まる相転移)はバルクの C60 に比べて、その転 移温度が 20K ぐらい低くなる. これは, エピタキシャル成 長による C60 薄膜結晶の歪み効果で、バルクの圧力効果と は逆の傾向を示す.

8. おわりに

ここでは、MBE 技術の進展によってどの程度の人工格 子ができるようになったかについて、我々のグループで 行った最近の研究を紹介した. ここで述べた人工格子はす べて準安定状態の構造で,原子拡散による構造消失過程の 研究も興味深いが、紙面の都合で割愛する. また、MBE 法 ではクリーンな人工格子表面が得られるので、今後人工格 子表面の構造的研究も盛んになるであろう.

最後に、関西学院大学 MBE グループの皆さん、京大化 研の人工結晶グループの皆さんをはじめ、多くの共同研究 者の皆さんに厚く感謝いたします.

参考文献

- 1) 寺内 暉: 固体物理, 20, 728 (1985).
- 2) 寺内 暉: 日本応用磁気学会誌, 11,563 (1987).
- 3) 寺内 暉:「物質の構造とゆらぎ」(丸善, 1987).
- 4) 寺内 暉: 固体物理, 24, 473 (1989).
- 5) 寺内 暉: 日本結晶学会誌, 32, 220 (1990).
- 6) F. Axel and H. Terauchi: Phys. Rev. Lett., 66, 2224 (1991).
- T. Terashima, Y. Bando, K. Iijima, K. Yamamoto, K. Hirata, K. Hayashi, K. Kamigaki, and H. Terauchi: Phys. Rev. Lett., 65, 2684 (1990).
- 8) 坂東尚周, 寺嶋孝仁: 応用物理, 60, 474 (1991).
- 9) H. Terauchi, Y. Watanabe, H. Kasatani, K. Kamigaki, T. Terashima, and Y. Bando: Ferroelectrics, 137, 33 (1992).
- 10) H. Terauchi, Y. Watanabe, H. Kasatani, K. Kamigaki, Y. Yano, T. Terashima, and Y. Bando: J. Phys. Soc. Jpn., 61, 2194 (1992).
- 11) H. Terauchi, Y. Yoneda, Y. Watanabe, H. Kasatani, K. Sakaue, K. Kamigaki, K. Iijima, Y. Yano, T. Terashima, and Y. Bando: Ferroelectrics, 151, 21 (1994).
- 12) Y. Yano, K. Iijima, Y. Daitoh, T. Terashima, Y. Bando, Y. Watanabe, H. Kasatani, and H. Terauchi: J. Appl. Phys., 76, 7833 (1994).
- 13) K. Sakaue, N. Sano, H. Terauchi, and A. Yoshihara: J. Cryst. Growth, 150, 1154 (1995).
- 14) K. Kamigaki, M. Ishida, M. Niboshi, H. Terauchi, and N. Sano: Phys. Rev. Lett., 68, 2317 (1992).
- 15) Y. Yoneda, K. Sakaue, and H. Terauchi: J. Phys. Soc. Jpn., 63, 3560 (1994).
- 16) Y. Yoneda, K. Sakaue, and H. Terauchi: J. Phys. Soc. Jpn., 63, 4290 (1994).
- 17) G. A. Samara, J. E. Schirber, B. Morosin, L. V. Hansen, D. Loy, and A.P. Slywester: Phys. Rev. Lett., 67, 3136 (1991).

(1998年1月5日受理)

寺内 暉 てらうち ひかる

昭40 関西学院大学理学部卒、関西学院大 学理学部講師,助教授を経て,昭56同大 学理学部教授,現在に至る.この間昭 51, 52 米国ノースウェスタン大学客員教授を 併任. 專門 結晶物理学

(理博)