〈論 文〉

# 平滑な下地膜を有する光磁気記録媒体における記録ノイズ低減と その磁気特性

Recording Noise Suppression and Magnetic Properties in Magneto-optical Recording Media with a Smoothed Underlayer Surface

牛山純子・粟野博之\*・宮本治一・安藤圭吉・助田裕史・高橋正彦
 (株)日立製作所中央研究所,東京都国分寺市東恋ヶ窪1-280(電185-8601)
 \*日立マクセル(株)情報メディア開発研究所,茨城県筑波郡谷和原村絹の台6-20-1(電300-2496)

J. Ushiyama, H. Awano,\* H. Miyamoto, K. Andoh, H. Sukeda, and M. Takahashi Central Research Laboratory, Hitachi, Ltd., 1–280 Higashi-Koigakubo, Kokubunji-shi, Tokyo 185–8601 \*Information Media Research Laboratory, Hitachi-Maxwell, Ltd., 6–20–1 Kinunodai, Yawara-mura, Tsukuba-gun, Ibaraki 300–2496

A smoothed underlayer surface produces a low level of disk noise in unrecorded disks and a high level of recording noise generated by recording marks. To achieve high S/N disks, the recording noise must be suppressed. By investigating the domain wall motion, we examined the origin of the high recording noise and studied ways of reducing it. When a flat underlayer was used, we found that the high recording noise was caused by irregular domain shapes that resulted from the decrease in the number of domainwall-pinning sites. A possible cause of the irregular domain shapes is the smaller coercivity of Fe-rich disks and the larger contracting force acting on the domain wall in Tbrich disks. When we deposited an improved TbFeCo film at a higher Ar pressure in order to create more wall-pinning sites, the recording noise was suppressed at about 4 dB in TM-rich disks, while the disk noise remained low.

**Key words**: magneto-optical disk, recording noise, domain-wall-pinning sites, flat underlayer, contracting force, domain-wall energy

# 1. はじめに

現在の光磁気ディスク(MO)にとっての最重要課題は大容量 化(高密度化)である。今後、さらに容量が必要とされる動画 やマルチメディアへのアプリケーションに対応するためにも、 同じ面積にさらに多くの情報を記録しなければならない。高密 度技術である磁気超解像や、記録層に記録した磁区を拡大層に 転写拡大して再生する方式は、小さな磁区の信号をいかにして 読み出すかという再生技術である。一方、良好な微小磁区記録 はこれらの技術に共通する本質的な課題である。磁区形状の乱 れは記録ノイズ(磁区を記録することにより発生するノイズ) 増大につながり、結果として S/N を低下させる。

我々は、MOの媒体ノイズ(磁区を記録していなくても媒体 から発生するノイズ)低減および記録ノイズ低減によるS/N 向上を目的として、SiN下地膜の表面粗さとノイズ、信号、お よび磁気特性の関係について調べてきた.これまで、下地膜表 面を平滑化したディスク (Flat-disk; F-disk)では、記録膜であ る TbFeCo 膜のカー回転角のばらつきが抑えられ媒体ノイズ は低減する<sup>11,21</sup>が、磁壁の pinning site 減少に起因すると推定 される磁区形状の乱れが生じ、その結果記録ノイズが増大する ことがわかっている<sup>3)</sup>. また、Fig.1に示すように、TbFeCo 組 成を変えた場合、SiN下地膜を平滑化していないディスク (Rough-disk; R-disk) では Tb-rich になる(補償温度が高くな る)に従って記録ノイズは減少するが、F-disk では  $-70^{\circ}$  ( 補償温度 ( $T_{comp}$ ) $\leq$ 10°C に最小値を示す<sup>4</sup>). つまり、R-disk の場 合、高温領域での保磁力  $H_e$  の温度変化が急峻であるほど記録 ノイズは低いという研究<sup>5</sup>を支持する結果を得たが、F-disk の 場合、記録ノイズの組成依存性は  $H_e$ の温度変化のみでは説明 できなかった.

H<sub>c</sub> は磁区あるいは磁壁のない状態から磁化を反転させるの に必要な磁界である.記録ノイズに影響するのは記録時の磁壁 の挙動が大であることから,我々は,F-disk において記録時の 磁壁に作用する力について検討するとともに,記録ノイズの組 成依存性についても調べた.また,記録膜を製膜プロセスの観 点から検討し,媒体ノイズ,記録ノイズ共に低い MO 媒体を得 たので詳細を報告する.

# 2. 実験方法

記録膜はマグネトロンスパッタ装置を用いて作製した. 作製 したディスクは基板上に SiN 下地膜 85 nm/記録膜 25 nm/ SiN 20 nm/Al 合金 50 nm を積層した 4 層構造であり, SiN



**Fig. 1** Recording noise ( $N_r$ ) normalized by the signal and S/N for various TbFeCo compositions.  $N_r$  is integrated within a frequency range of 0 to 5 MHz. Open symbols denote  $N_r/S$  and S/N in F-disks and closed symbols denote those in R-disks.

下地膜表面はスパッタエッチング処理を行い平滑化した. 原子 間力顕微鏡により SiN 下地膜の表面形状を観察したところ,中 心線平均粗さ  $R_a^{60}$  は 0.28 nm (エッチング処理をしていない ディスクの  $R_a$  は 0.47 nm) であった.

TbFeCo 膜は  $T_{comp} = -170^{\circ}$  の Fe-rich 膜から  $T_{comp} = 140^{\circ}$  の Tb-rich 膜まで Tb 量および Fe 量を変化させて作製 した.本論文では、TbFeCo 組成の変化を補償温度を用いて表 した.  $T_{comp}$  が低いほど Fe 量の多い (Fe-rich) 膜であることを 示し、 $T_{comp}$  が高いほど Tb 量の多い (Tb-rich) 膜であることを 示す. さらに、Fe-rich 組成の記録膜を、Ar スパッタガス圧、 投入パワーを変えて形成した.記録膜のスパッタ条件の詳細に ついては本文中に記載した.磁気特性は、振動試料型磁力計、 カー効果測定装置、およびトルクメータを用いて測定した.

磁壁を拡大あるいは収縮させるのに必要な臨界磁界 ( $H_{exp}$  と  $H_{cnt}$ ) は以下のようにして求めた.まず、ディスクに3種類の大 きさの磁区(磁区長は約 0.62  $\mu$ m, 0.82  $\mu$ m, 1.1  $\mu$ m) を三つの エリアに分けてそれぞれ記録した.記録条件は後述のとおりで ある.記録後、同じ磁区サイズが記録されているエリア毎に ディスクを切り出して、カー効果測定装置にセットし磁界を印 加した.Fig.2にカーヒステリシス曲線の一例を示す.図中に 示したような方法で  $H_{exp}$ ,  $H_{cnt}$  を求めた.

作製したディスクの記録再生特性の測定には,波長 830 nm の半導体レーザを搭載した光磁気ディスクドライブを用いた. レンズの NA は 0.55 である.記録は線速度 4.2 m/s,記録周波 数 2.5 MHz,記録パワー 4.5~6 mW の条件にて光変調記録を 行い,再生パワーは 1 mW とした.また,S/N の評価の際,ノ イズは媒体ノイズが装置ノイズより大きい 0 MHz から 5 MHz の周波数帯域を積算した.

# 3. 実験結果および考察

#### 3.1 F-disk における磁壁エネルギーと TbFeCo 組成

この節では、記録時の磁壁に作用する力を、Huthの式<sup>71</sup>を用いて計算し、F-diskの記録ノイズが Fig. 1 のような組成依存 性をもつメカニズムについて調べた。

磁区が形成される際、磁壁の位置は反磁界 H<sub>d</sub> や外部磁界 H<sub>ext</sub> などから受ける力のバランスによって決まり、次式で表される。

| $-H_{\rm J1} - H_{\rm J2} + H_{\rm d} + H_{\rm ext} \le H_{\rm c} \tag{1}$ | ) |
|----------------------------------------------------------------------------|---|
|----------------------------------------------------------------------------|---|

$$H_{\rm J1} = \sigma_{\rm w}/2rM_{\rm s} \tag{2}$$

$$H_{12} = (1/2M_s) \cdot (\partial \sigma_w / \partial T) r \cdot (\partial T / \partial r)$$
(3)

ここで、 $\sigma_w$ は磁壁エネルギー、rは磁区の半径、 $M_s$ は飽和磁化である.また、 $H_{J1}$ 、 $H_{J2}$ は磁壁エネルギーに関する項であり、 $H_{J1}$ は磁壁が曲率をもつことにより縮まろうとする磁界、 $H_{J2}$ は磁性膜が温度分布をもつことにより、半径方向に磁壁エネルギーの勾配が生じるために発生する磁界である.(1)式中、"-"は磁区を shrink させる方向、"+"は磁区を expand させる方向に働くことを意味している。本論文では $\sigma_w$ と磁壁抗磁力 $H_w$ を次式により算出した<sup>8,9,1</sup>

$$\sigma_{\rm w} = M_{\rm s} \cdot 2r \{ (H_{\rm exp} - H_{\rm cnt})/2 - M_{\rm s}/(1 + 3r/2t) \}$$
(4)

$$H_{\rm w} = (H_{\rm exp} + H_{\rm cnt})/2 \tag{5}$$

ここで, t は TbFeCo 膜の厚さ, H<sub>exp</sub>, H<sub>cnt</sub> は記録磁区の磁壁



Fig. 2 An example of Kerr hysteresis loops.



**Fig. 3** Temperature dependence of  $H_w$  and  $M_s$  in F-disks.

を拡大あるいは収縮させるのに必要な臨界磁界であり、3種類の大きさの磁区(磁区長は約 0.62, 0.82, 1.1  $\mu$ m) について $\sigma_w$ を調べた. 用いた F-disk は Fe-rich 膜 ( $T_{comp} = -170^{\circ}$ C; Disk A),  $T_{comp} = 0^{\circ}$ Cの膜 (Disk B), Tb-rich 膜 ( $T_{comp} = 100^{\circ}$ C; Disk C)の3種類である.

まず、Disk A, B, C の TbFeCo 膜の飽和磁化  $M_s$  の温度依存 性と、 $0.62 \mu m$  の磁区長で測定した  $H_{exp} \ge H_{ent}^{44}$ を用いて求め た  $H_w$  の温度変化を Fig. 3 に示す. さらに、磁区長が 0.62 と 0.82, 1.1  $\mu m$  における  $\sigma_w$  の温度変化の計算結果を Fig. 4 に示 す.  $\sigma_w$  は Klahn らの計算結果<sup>90</sup> および Satoh らの計算結果<sup>81</sup> と同様、温度が上がるに従って単調に減少する. 上述したよう に、F-disk の  $\sigma_w$ を、3 種類の大きさの磁区の  $H_{exp} \ge H_{ent}$ を用 いて求めたが、同じ組成のディスクでは、磁区の大きさに関係 なくほぼ一定であった. Disk A の  $\sigma_w$  は Satoh らの算出した Fe-rich 膜と、値、温度依存性共に類似している.

Fig. 5 には、R-disk の磁区長  $0.62 \mu m$  における  $H_{cnt}$ ,  $H_{exp}$  を



**Fig. 4** Temperature dependence of  $\sigma_w$  in F-disks.



**Fig. 5** Temperature dependence of  $\sigma_w$  in F- and R-disks.

用いて算出した  $\sigma_w \& F$ -disk の  $\sigma_w$  の平均を示した. R-disk の  $\sigma_w$  は 160°C 以上で大きな違いはなかった. 一方, F-disk の  $\sigma_w$  は Disk A, Disk C, Disk B の順に大きくなる. Disk B の  $\sigma_w$  は 室温付近で約 10 erg/cm<sup>2</sup> と大きく, 160°C の温度では R-disk および Disk A より約 10 倍大きい. これは下地膜表面をス パッタエッチング処理したためであると考えられる.  $\sigma_w$  を組 成の近い Disk B と  $T_{comp} = -10^{\circ}$ C の R-disk (図中□で表示) で比較すると, 前者の方が大きい. また, Fe-rich 膜では, Disk A ( $T_{comp} = -170^{\circ}$ C) の  $\sigma_w$  は, わずかではあるが R-disk の Fe-rich 膜 ( $T_{comp} \approx -250^{\circ}$ C, 図中○で表示) と  $T_{comp} = -70^{\circ}$ C の disk (図中△で表示) より大きい. スパッタエッチング処理 による  $\sigma_w$  の増大は高桑らの実験結果と一致する<sup>10</sup>.

#### 3.2 F-disk における磁壁に作用する力と記録ノイズ

前節で求めた  $\sigma_x$ ,  $M_s$  などの磁気特性の測定結果および記録 時の温度分布の熱シミュレーション結果を用いて, F-disk につ いて熱磁気記録時の磁壁に働く力を計算した(光照射開始から 終了までの過程は省略). ディスク構造は実験で用いたディス クと同一とした. 計算に用いた各層の熱定数を Table 1 に示 す. 熱シミュレーションの計算条件は, レーザ波長 685 nm, NA 0.55, 線速 5.0 m/s, 記録パワー 4.3 mW で, 40 ns のパル ス光照射直後における TbFeCo 膜内の半径方向の温度分布を 計算した. Fig. 6 が熱シミュレーションの計算結果である. 横 軸はピーク温度が最大となる位置からの距離を表す.

Table 1 Thermal parameters used for the calculation

|          | Specific heat<br>(J/kg • K) | Heat conductivity<br>(W/m · K) |  |
|----------|-----------------------------|--------------------------------|--|
| SiN      | 740                         | 10                             |  |
| TbFeCo   | 320                         | 15                             |  |
| Al alloy | 890                         | 40                             |  |



**Fig. 6** Calculated temperature distribution of the magnetic layers at the end of the light irradiation.

Fig.7 に H<sub>11</sub> および H<sub>12</sub>の, Fig.8 に反磁界 H<sub>d</sub>の計算結果を それぞれ示す、磁壁エネルギーと飽和磁化に関する項である  $H_{J1}$  と  $H_{J2}$  は, どちらも Disk A, B, C の順に大きくなり, shrink 力は T<sub>comp</sub> が高くなる(Tb-rich 膜になる)に従って増 大すると予想される.この計算結果は、Hexp および Hent の測定 で得られた「Tb-rich 膜は shrink 力が大きい」という実験結 果41と定性的に一致する. ただし, 計算で求めた Disk C の H<sub>12</sub> は極度に大きい. Disk B における H<sub>11</sub>, H<sub>12</sub> は Disk A のそれよ り1桁, Disk Cでは2桁大きく, Disk Cにおける磁壁に働く  $H_{J2}$ は数十 kOe という結果になった. $H_{J1}$ ,  $H_{J2}$ が大きな値をと るのは、実験から求めた σ<sub>w</sub>が大きいことが原因であると考え られる(高橋らが行った磁区形成シミュレーションでは、σ、を 室温で1erg/cm<sup>2</sup>とし、キュリー温度まで単調に減少するとし て計算している<sup>5</sup>). また, Fig. 8 に示したように, 磁壁に expand 力として働く  $H_d$  は、飽和磁化の大きさを反映して Disk C, B, A の順に大きくなった. 反磁界による expand 力は T<sub>comp</sub> が高くなるに従って小さくなる.

以上より, Fig. 1 に示した F-disk における記録/イズの組 成依存性について以下のように考えた. 磁壁位置は expand 力, shrink 力および  $H_c$  のバランスにより決定される. F-disk の  $-70^{\circ}C \leq T_{comp} \leq 10^{\circ}C$  において記録/イズが最も低くなる のは, この組成領域において, 磁壁に作用する expand 力と shrink 力のバランスがある程度保たれ, さらに  $H_c$  の温度変化 が磁壁固定温度近傍で急峻であるためであると考えられる. ま た, Fe-rich 膜では expand 力と shrink 力のバランスは良い が,  $H_c$  の温度勾配が緩やかすぎる (一般的に  $H_w$  あるいは  $H_c$ の磁区半径内での温度勾配が緩やかになると, 磁壁が移動しや すく, 記録磁区の大きさが不均一になりやすいといわれてい る). 一方, Tb-rich 膜では  $H_c$  の温度勾配は問題ないが, 磁壁 に働く shrink 力が大きすぎることが記録/イズの増大に関与



**Fig. 7** Contracting field acting on the domain wall in the F-disks at the end of the light irradiation.



**Fig. 8** Demagnetization field in the F-disks at the end of the light irradiation.

# していると考えられる.

### 3.3 TbFeCo 膜の製膜条件と記録ノイズ

我々は、下地膜平滑化による記録ノイズの上昇は、pinning site の減少が影響していると考えている<sup>30</sup>. そこで、平滑化した下地膜を用いながら pinning site を増やし、記録ノイズを減少 させるため、TbFeCo 膜の内部に pinning site を意図的につく

**Table 2** Recording noise  $(N_r)$  normalized by the signal for various sputtering conditions in F-disks

| Ar gas     | Applied power |                                      |          |  |
|------------|---------------|--------------------------------------|----------|--|
| pressure   | 250 W         | 500 W                                | 1000 W   |  |
| 0.85 mTorr |               | -23.0 dB                             | -18.6 dB |  |
| 3 mTorr    | -24.1 dB      | -24.1 dB<br>(conventional)<br>F-disk | -18.6 dB |  |
| 5.4 mTorr  |               | -26.6 dB<br>(disk D)                 | -24.2 dB |  |

ることを試みた. 具体的には, TbFeCo 膜の製膜条件 (Ar ス パッタガス圧: 0.85~5.4 mTorr, 投入パワー: 250~1000 W) を変えてディスクを作製し, その磁気特性および記録再生特性 について調べた. 本実験で作製したディスクは Fe-rich 膜で 6 種類である. 前節まで用いていたスパッタ条件はスパッタガス 圧: 3 mTorr, 投入パワー: 500 W であり, この条件で作製し た F-disk の補償温度は約 -140°C, その他のディスクのそれ は約 -170°C である.

製膜条件を変えて作製したこれらのディスクの記録ノイズ (N<sub>r</sub>/S)を Table 2 に示す. Table 2 からわかるように, 平滑化 された下地膜を用いてもスパッタガス圧を上げることにより記 録ノイズが低減した. Mansuripur らは, 直径数十 nm の周囲 と異なる磁気特性をもった領域 "defect" が磁化反転の際の核 となり、また、磁壁移動の際の pinning site となることを、シ ミュレーションにより示唆している"... 今回, 高ガス圧で製膜 することにより Ar ガスが TbFeCo 中に取り込まれ,記録膜中 に垂直磁気異方性エネルギーの低い領域が散在し、これが磁壁 の pinning site となっていると推測される.本実験では、Disk D(スパッタガス圧 5.4 mTorr, 投入パワー 500 W) が最も記 録ノイズが低くなった.Disk D の T<sub>comp</sub> は約 --170℃ である. 同じ Tcomp で記録ノイズを比較すると従来のスパッタ条件(ス パッタガス圧: 3 mTorr, 投入パワー: 500 W) で T<sub>comp</sub>= -170℃の膜を製膜した場合, Fig.1から記録ノイズ (N<sub>r</sub>/S) は -22~-23 dB になると予想される. このことから推測する と, 同じ *T*<sub>comp</sub> (−170<sup>°</sup>C) の TbFeCo 膜では, スパッタガス圧 を上げることで、約4dBの記録ノイズが低減したことになる. 記録/イズの低減が S/N に反映し、Disk D では、Fig. 1 で最 も S/N の高かった F-disk (T<sub>comp</sub>=-30℃) より約 1 dB 高い S/N が得られた.

R-disk, 従来の F-disk および Disk D の外部磁界依存性を Fig. 9 に示す. Disk D では、外部磁界 -200 Oe で Carrier level は 0 となり、磁界感度の良好な従来 F-disk と比較しても 約 50 Oe の磁界感度の低下にとどまった. 従来のスパッタ条件 (スパッタガス圧 3 mTorr, 投入パワー 500 W) で TbFeCo 膜 を作製した場合、下地膜の表面を平滑化することで、装置ノイ ズと同程度まで媒体ノイズが低減し<sup>2</sup>、また磁界感度が向上し たが、記録ノイズは増大した. しかしながら、TbFeCo 膜のス パッタ条件を変えることにより、磁界感度が良好で媒体ノイズ が低いという下地膜平滑化の利点はそのままで、記録ノイズが

日本応用磁気学会誌 Vol. 22, No. 10, 1998



**Fig. 9** External field dependence of carrier level and noise level for R-, F-, and improved F-disks.

約4dB低いディスク (Disk D)を得ることができた.

Fig. 10 には、R-disk ( $T_{comp} = -30^{\circ}$ ) と F-disk ( $T_{comp} = 0^{\circ}$ C), および Disk D における TbFeCo 膜のトルクカーブを示 した. 外部磁界は 16 kOe である. R-disk 以外は下地膜の表面 をスパッタェッチングしてあり、これにより 160°C 付近の温度 でのトルクカーブに違いが現れると考えられる. R-disk では、 反転開始から終了までの角度 ( $\alpha$ )が大きい. これは、膜中に、ミ クロな磁気特性 (垂直磁気異方性エネルギーなど)のばらつき が数多く存在するため、磁化反転に必要なトルクの大きさが異 なるためと推測される. この磁気特性のばらつきが磁壁の pinning site となっていると考えられる. 一方、F-disk では、磁化 反転が一斉に起こっていることから、磁気特性が均一で、pinning site が少ないと考えられる. さらに Fe-rich 膜から Tbrich 膜まで組成の異なる R-disk と F-disk についてトルクを 測定したが、保磁力の大小に関係なく、R-disk では $\alpha$ が大き く、F-disk では $\alpha$ が小さいという結果が得られている.

Disk D のトルクカーブは, pinning site が多いと推測され るにもかかわらず, 従来の F-disk のそれに類似して, 磁気特性



**Fig. 10** Torque curves for various temperatures in R-, F-, and improved F-disks.

が均一であることがわかった、そこで、今までの実験結果を合 わせて考え, R-disk と従来の F-disk, 記録ノイズを抑えた Fdisk である Disk D の 3 種類の TbFeCo 膜の磁気特性の違い について推察し,それを模式図で表現した (Fig. 11). 三角の部 分は磁壁の pinning site を示す.R-disk では,下地膜の凹凸に 起因した磁気特性の不規則なばらつきによる pinning site が 多数存在する. F-disk ではスパッタエッチング処理により下地 膜が平滑化され、その上の磁性膜の磁気特性も均一化されて媒 体ノイズは下がったが、その反面、磁気特性のばらつきに起因 する pinning site が減少したことで,記録ノイズが増大したと 考えられる. Disk D では、スパッタガス圧を上げることで磁性 膜中にガスが多く入り込み,これが磁気的な pinning site を生 成し記録ノイズが下がったと考えられる. この高ガス圧化に よって生成した pinning site は下地膜の凹凸に起因するそれ と比較した場合,より均一に分布しているために、トルク,磁 界感度などに対する磁化の挙動は従来の F-disk のそれに近い と思われる.

# 4. まとめ

媒体ノイズ低減のために平滑な下地膜を用いた TbFeCo ディスクにおいて,記録ノイズを低減し高 S/N を得ることを 目的として,以下のことについて調べた.

・平滑な下地膜を用いたときの TbFeCo 膜の磁壁エネルギー の算出と記録ノイズが TbFeCo 組成依存性を有する原因

・スパッタ条件改良による記録ノイズ低減の可能性

その結果得られた知見を以下に示す.

1. 下地膜表面の粗い TbFeCo ディスクの場合, Tb-rich に なるに従い記録ノイズは低くなるが, 平滑化されたディスクで



Fig. 11 Relationship between underlayer surface roughness and disk noise, and the relationship between the magnetic property and recording noise. Arrows ( $\uparrow$ ) denote the magnetization direction and triangles ( $\blacktriangle$ ) denote domain-wall-pinning sites.

は補償温度が  $-70^{\circ}$  から  $10^{\circ}$  の間で最も低くなる. この組 成領域で記録ノイズが極小となるのは、磁壁に働く shrink 力 と expand 力のバランスがある程度保たれ、さらに保磁力の温 度勾配が急峻であるためと推測される. Fe-rich 膜では shrink 力と expand 力のバランスは良いが保磁力の温度変化が緩や か、Tb-rich 膜では shrink 力が大きすぎる.

2. 平滑な下地膜を有するディスクの場合,  $H_{exp}$  および  $H_{ent}$  から求めた磁壁エネルギー  $\sigma_w$  は TbFeCo 組成によって大きく 異なり,  $\sigma_w$  は  $T_{comp}=0^{\circ}$  膜 (40° で  $\sigma_w=10 \text{ erg/cm}^2$ )> Tb-rich 膜>Fe-rich 膜 (20° で  $\sigma_w=4 \text{ erg/cm}^2$ )となった. こ の  $\sigma_w$  を用い, 磁壁に shrink 力として働く磁界を計算した結 果, この磁界は Tb-rich になるに従って大きくなるという結果 が得られ,実験結果と一致した.

3. 高スパッタガス圧(5.4 mTorr, 通常3 mTorr)で TbFeCo 膜を製膜することにより記録/イズは低減し、同じ組成の通常 膜と比べ4 dBの記録/イズの低減となった. その結果 S/N は 24.6 dB となり、下地膜平滑化なしのディスクの最高 S/N と比 較すると約 2 dB、従来スパッタガス圧(平滑化あり)で製膜し た場合の最高 S/N ( $T_{comp} = -30^{\circ}$ Cのディスクで、23.7 dB)よ り約 1 dB 向上した.

4. 改良ディスクはその記録ノイズの低さから, 記録時に磁 区形状を良好に保つのに必要なだけの pinning site が存在し ていると推定され,下地膜の凹凸に起因する pinning site と比 較すると磁気的に均一であると考えられる. **謝 辞** 熱シミュレーションを行って頂いた,(株)日立製作 所中央研究所の嵯峨秀樹氏,ならびに,ご助言いただきました 日立マクセル(株)の萬 雄彦博士に感謝いたします.

# 文 献

- 1) 刈屋田英嗣,島田 稔,安達忠史,深見栄三,土岐 薫,森本昭 男:日本応用磁気学会誌,18,177 (1994).
- J. Ushiyama *et al.*: Technical Dig. Int. Symp. on Optical Memory, Kanazawa, 1995, p. 133 (The Japan Society of Applied Physics and The Magnetics Society of Japan, 1995).
- T. Kohashi *et al.*: Proc. Magneto-Optical Recording Int. Symp., Noordwijkerhout, 1996, *J. Magn. Soc. Jpn.*, 20 (Suppl. No. S1), 303 (1996).
- J. Ushiyama *et al.*: Proc. Magneto-Optical Recording Int. Symp., Yamagata, 1997, *J. Magn. Soc. Jpn.*, 22(Suppl. No. S2), 125 (1998).
- 5) M. Takahashi et al.: J. Appl. Phys., 64, 262 (1988).
- 6) 例えば,日本工業規格,JIS B0601.
- 7) B. G. Huth: IBM J. Res. Dev., 18, 100 (1974).
- 8) T. Satoh et al.: IEEE Trans. Magn., 27, 5115 (1991).
- 9) S. Klahn and D. Raasch: IEEE Trans. Magn., 26, 1918 (1990).
- 10) 高桑敦司,川瀬健夫,根橋 除,下田達也:第16回日本応用磁気 学会学術講演概要集,名古屋,1992, p. 557 (1992)(日本応用磁 気学会,東京,1992).
- Giles and M. Mansuripur: Comput. Phys., MAR/APR, 204 (1991).

1998年4月4日受理, 1998年7月10日採録