高磁気力小型マグネットの検討

Design of a Compact Magnet for a High Magnetic Force

植竹宏往* • 廣田憲之*,** • 北沢宏一*,** • 三好一富*** *東京大学大学院工学系研究科応用化学専攻,東京都文京区本郷 7-3-1 (〒113-8656) **科学技術振興事業団,埼玉県川口市本町 4-1-8 (〒332-0012) ***古河電工(株)超電導開発部機器開発室,千葉県市原市八幡海岸通6(〒290-8555)

H. Uetake^{*}, N. Hirota^{*,**}, K. Kitazawa^{*,**}, and K. Miyoshi^{***}

*Dept. of Applied Chemistry, Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656

**Japan Science and Technology Co., 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012

***Application Sec., Supercond. Research Dept., Furukawa Electric Co., Ltd., 6 Yawata-Kaigandoori, Ichihara, Chiba 290-8555

(1998年10月14日受理, 1999年1月21日採録)

The condition for enlarging the product of the magnetic field and its gradient, $B \cdot dB/dz$, of a readymade small superconducting magnet was investigated by computer simulation. The calculation assumed the use of a superconducting magnet with 100-mmdiameter room-temperature bore and capable of producing a 10 T magnetic field at the center. The value of $B \cdot dB/dz$ seems to be amplified when an iron ring or inner coil is inserted into the bore of a small superconducting magnet. Indeed, when an iron ring with an inner diameter of 10 mm or a pair of inner coils with an inner diameter of 40 mm is inserted, the value of $B \cdot dB/dz$ increased sufficiently to satisfy the condition for water levitation. These results suggest the possibility of using an ordinary small superconducting magnet to levitate diamagnetic materials.

Key words: levitation of water, compact superconducting magnet, magnetic force, product of magnetic field and its gradient, enlarging the product of magnetic field and its gradient, iron ring, insert coil

1. はじめに

近年,最大10T程度の不均一な強磁場を用いた際に, 反磁性・常磁性の物質に対してさえも磁気力が大きく作 用することにより,種々の現象が引き起こされることが 報告されるようになった.¹⁾⁻⁵⁾その中でもとりわけ関心 を集めている現象の一つに,水や水溶液等の磁気浮上が ある.^{6,7)}この磁気浮上状態は磁気力と重力が釣り合った 擬似的な無重力状態ともとらえることができ,地上にお いて物質を長時間,安定に浮上させるための有力な手段 として,学術的・工学的な見地から近年注目されつつあ る.物質の体積当たりに働く磁気力は χ/μ_0 ·BdB/dz の ように表される.ここで, χ は体積磁化率, μ_0 は真空透 磁率, Bは磁東密度, dB/dz は磁場勾配である.すなわ ち,磁気力は磁場と磁場勾配の積に比例することが分か

る. 反磁性物質である水は磁場により反発され、その力 が重力と釣り合う程度になると浮上する.しかし、磁気 カにより水を浮上させるためには 1400 T²/m という非常 に大きな磁場と磁場勾配の積を持つマグネットが必要と なる.これまでに開発されてきた磁石は、通常、均一磁 場領域をいかに広くするか,あるいは,発生磁場強度を 如何に強めるかということを意図して作成されており[†], 既存の磁石を用いる限りは、20 T級の大規模なマグネッ トでなければ、この 1400 T²/m という磁場と磁場勾配の 積を実現できない. このような巨大磁石を所有する研究 機関はごくわずかであり、また、そのランニングコスト も非常に高いために、浮上実験の機会は極めて制限され ていると言える. 浮上技術の工学的応用を考えれば、コ ストの面からも,試験研究の機会を増大させるという観 点からも、一般的な研究室にも広く普及している汎用の 超伝導磁石によって,水などの磁気浮上が実現できるこ とが望ましい. その方法のひとつとして磁気アルキメデ ス浮上がある.8これは雰囲気を高圧酸素にし、酸素に 働く磁気力を利用することで浮上に必要な磁場と磁場勾 配の積を緩和する方法である.これによって安価に,反 磁性だけでなく、常磁性物質の浮上も可能となり、実験 機会は飛躍的に増加し、その対象は広がった.しかし、 酸素を高圧にする必要があるため、用途が限定されてし まうという難点がある.

そこで、今回、汎用の超伝導磁石の室温ボア内に強磁性 体である鉄のリングもしくはインナーコイルを挿入し、磁 束密度分布を変化させることで、大気圧下での水の浮上条 件を満たすための条件について計算機シミュレーションを おこなった.

2. シミュレーション

2.1 シミュレーション方法

磁場を印加した超伝導磁石のボア空間に鉄を置くと、鉄

[†]最近,磁気力が均一に働く領域を有する磁石を開発する 試みがなされている.ただし,水の浮上条件を満たすため には,やはりかなり大型の磁石となると見られる.⁹

の磁化により周囲の磁束密度分布が大きく変化する.また, ボア中に別のコイルを挿入し,その発生磁場強度や方向を 操作すれば,やはり同様に磁束密度の分布を操作すること ができる.ボアの中心軸上に物質を浮上することを意識し て,挿入する鉄の形状はリングとし,その位置,厚み,内 径をパラメーターとした磁束密度分布のシミュレーション をおこなった.また,ボア中に挿入するコイルの発生する 磁場方向を変化させることで磁場と磁場勾配の積を大きく する方法についても検討をおこなった.

シミュレーションには、有限要素法により計算を行う 3 次元電磁場解析ソフトを用いた.計算にはコイル内外での 磁界の方向を考慮した境界条件が必要となる。また、鉄は 十分に強い磁場により 2 T 程度磁化され飽和している。鉄 リングおよびコイルを挿入する磁石としては、最近急速に 普及しはじめた冷凍機伝導冷却マグネットの一機種である、 住友重機械工業製 HF10-100VHT を想定して、その諸元 を計算に利用した.このマグネットは、NbTi と Nb₃Sn の ソレノイドコイルにより構成され、その長さはともに 230 mm である.コイルの最内径は 126.7 mm で、直径 100 mm の室温ボアを有する.この磁石のボア軸上における磁場分 布、磁場と磁場勾配の積の分布を Fig. 1 に示す、磁場はコ イル中心で最大 10 T、コイルの端近傍で磁場と磁場勾配の 積の絶対値が最大の 420 T²/m となる.

2.2 鉄リングの挿入

Fig. 2 に示すように,鉄リングの外径を 100 mm と固 定し,磁場中での底面の位置,鉄リングの厚み,内径を変 えることにより,様々な形状について磁場分布及び磁場と 磁場勾配の積を調べた。計算は磁場中心 z = 0 に対して対 称となるように行ったので, z軸の正の部分のみの磁場と 磁場勾配の積の分布を示す。なお,物質の浮上は磁気力が 上向きの場合に実現する.反磁性物質の磁化率は負の値で あるから,磁場と磁場勾配の積が負の場合が浮上条件を満 たすことになる.鉄リングを挿入した場合のボア軸上にお ける磁東密度変化の様子を定性的に考えるために,Fig. 3 に磁場中に何も入れないときおよび,鉄リングを入れたと きの磁場分布と磁場と磁場勾配の積の分布をそれぞれ示す. これは後で示す鉄リング内径 20 mm,厚み 30 mm,鉄リ ング底面の位置 z=80 mmのケースに相当するものである. 鉄リングを挿入すると,鉄が磁化され,結果としてボア軸

Fig. 1 Distribution of the magnetic field B and the product of magnetic field and its gradient, $B \cdot dB/dz$, along the bore axis.

上の磁束をリング中に最大2T程度引き込む事になるので, 高磁場側の末端,すなわち鉄リング底面付近で負の磁場勾 配が急峻になる.このため,この付近での磁場と磁場勾配 の積が負の値で大きくなる.鉄リングの低磁場側末端,す なわち上面付近では逆に,リングに引き込まれていた磁束 が元のボア軸付近に戻るので,軸上では磁束密度の増加が 起こり(正の磁場勾配),磁場と磁場勾配の積は正の値で大 きくなる.なお,今後は磁場と磁場勾配の積の分布のみを 示すことにする.

まず,鉄リングの厚みを 30 mm,内径を 20 mm とし, 磁場中での底面の位置を変えて,その時の磁場と磁場勾配 の積の値を計算した。リングの底面の位置を z = 0, 40, 80mm の位置として計算をおこなった結果を Fig.4 に示す. 磁場中心に鉄リングを挿入した場合,中心での磁束密度が 磁場中心に対称に下がるだけで,磁場と磁場勾配の積の増 大には寄与しない.一方,リングの底面が 40,80 mm の時 には,磁場と磁場勾配の積の最大値は 1000 T²/m 以上とか なり大きくなった。また,この付近で底面の位置を変化さ せても,その位置に対する依存は小さく,磁場と磁場勾配 の積の最大値に大きな差は見られなかった。次に,鉄リ ングの底面の位置を z = 80 mm に固定し,内径を 20 mm にして,厚みを 10, 20, 30, 40 mm と変化させた時の磁場 と磁場勾配の積を Fig.5 に示した。リングが薄い場合には,

Fig. 2 Schematic diagram of the simulation with an iron ring in the bore of the superconducting magnet.

Fig. 3 Distributions to explain the principle of making $B \cdot dB/dz$ larger.

日本応用磁気学会誌 Vol. 23, No. 4-2, 1999

Fig. 4 Dependence of $B \cdot dB/dz$ on the position of the iron ring on the bore axis.

Fig. 5 Dependence of $B \cdot dB/dz$ on the thickness of the iron ring.

Fig. 6 Dependence of $B \cdot dB/dz$ on the inner diameter of the iron ring.

中心軸上からの磁束の引き込みが不充分であるため,磁場 と磁場勾配の積の強化の程度は小さくなるが,一定以上の 厚みがあれば,それ以上に厚みを増してもその影響は小さ い.

さらに,鉄リングの底面の位置を z =80 mm の位置に固 定し,厚みを 30 mm とした場合に,リングの内径を 10,20, 40,60 mm と変化させて計算を行った.その時の磁場と磁 場勾配の積を Fig.6に示す.リングの内壁がボア軸に近い ほど,軸上からの磁束の引き込みを軸方向の短かい距離で 行うことができるため,鉄リングの内径を小さくすること で効果的に磁場と磁場勾配の積を大きくすることができる. 計算の結果から,鉄リング内径 10 mm の時には磁場と磁 場勾配の積は 1850 T²/m 程度にもなることが分かった.こ れは水を磁気浮上させるのに十分な磁場と磁場勾配の積で ある.以上のことから,汎用の小型の超伝導マグネットで もそのボア内に強磁性体である鉄のリングを挿入すること によって,反磁性物質の磁気浮上を達成できる磁場と磁場 勾配の積が得られることがわかった。

2.3 コイルの組み合わせによる磁場と磁場勾配の積の変化

次に,超伝導磁石ボアの磁場中心よりも上方の空間(z>0) にコイル(これ以降インナーコイルと呼ぶ)を 1 つないしは 2 つ挿入し,これらのコイルが発生する磁場の方向と外側 の汎用超伝導磁石(外側コイルと呼ぶ)の磁場方向との組み 合わせを変えることで,大きな磁場と磁場勾配の積を得る ことができるかどうかに関して検討を行った.

まず、インナーコイルを1つ挿入する場合について考察 した。外側コイルは 2.2 節と同様のものを仮定した.この 超伝導磁石のボア内に Fig. 7 に示すようにインナーコイル を設置した。ボア中に設置する小型インナーコイルは外径 100 mm, 内径 50 mm, 長さ 50 mm, 電流密度は外側の Nb₃Sn コイルと等しく 12680 A/cm²とした.この場合,イ ンナーコイル単独で約 2.6 T の磁場を発生することができ る。インナーコイルの上面は外側のコイルの上面と揃うよ うに固定すると考える。外側のコイルの発生する磁場の方 向を上向きとして、インナーコイルの発生磁場方向を下向 き(Fig. 7(I))または、上向き(Fig. 7(II))にしたときの磁場 と磁場勾配の積の分布を Fig. 8 に示す。外側とインナーコ イルの発生する磁場方向を同じにした場合、外側コイルで 形成されている磁場勾配の急な領域の磁場強度が増加する ことになるため、この場合に、磁場と磁場勾配の積を大き くすることができ,その値は 800 T²/m 程度であった. 次に, Fig. 9に示すように2つの独立なコイルを挿入し, その発生磁場の方向を様々に組み合わせて、磁場と磁場勾

Fig. 7 Schematic diagram of the simulation with an inserted coil capable of producing magnetic fields in different directions.

Fig. 8 Distribution of $B \cdot dB/dz$ with an inserted coil capable of producing magnetic fields in different directions.

配の積の変化を計算した.外側のコイルの発生する磁場を 上向きとし、挿入した 2 つのコイルの発生する磁場の方向 を様々に組み合わせて計算を行った。Fig. 10 にこの結果 を示す. Type-III~VIは磁場中心側及び上方の2つのイン ナーコイルがそれぞれ外側コイルの磁場方向と、同方向・ 同方向(Type-III),同方向・逆方向(Type-IV),逆方向・ 同方向(Type-V), 逆方向・逆方向(Type-VI)の時の磁場 と磁場勾配の積の分布である.この結果 Type-Nのよう に磁場中心に外側と同じ方向の, 急勾配位置に反対方向の 磁場を発生するコイルを挿入するとき、磁場勾配が大きく なり、その値は対向するコイルの間の位置で最大値をとり 内径 50 mm の場合約 1200 T²/m にもなることが分かった。 これは、コイルを挿入することで、外側のコイルで作って いる高磁場側の磁場を強化し,低磁場側の磁場をさらに弱 めることで効率よく急な勾配を作り出しているためである. この Type-IVのコイル構成でコイルの内径を小さくして いったときの計算結果を Fig. 11 に示す. コイル内径をよ り小さくしてゆくと,磁場と磁場勾配の積は飛躍的に大き

Fig. 9 Schematic diagram of the simulation with two inserted coils capable of producing magnetic fields in different directions.

Fig. 10 Distribution of $B \cdot dB/dz$ with two inserted coils capable of producing magnetic fields in different directions.

Fig. 11 Dependence of $B \cdot dB/dz$ on the inner diameter of the inserted coil in the case of Type -N in Figure 10.

くなる. コイル内径 30 mm の場合には,磁場と磁場勾配 の積は 2000 T²/m 以上にもなることが分かった.

以上のことから,磁場中にコイルを挿入し,その発生磁 場方向をコントロールすることで磁場と磁場勾配の積は大 幅に大きくなり,磁気浮上に必要な磁場と磁場勾配の積が 達成できることがわかった.

3. まとめ

今回、既製の汎用型超伝導マグネットを利用し、そのボ ア内に鉄リング,あるいはインナーコイルを挿入した場合 の磁場分布の計算機シミュレーションを行なった。その結 果、いくつかのケースで、水などの反磁性体を浮上させる のに十分な磁場と磁場勾配の積が得られる可能性があるこ とが示唆された.実際の反磁性物質の安定浮上にはボア軸 上にエネルギーの安定点が存在することが必要となる.反 磁性物質の浮上の場合、ボア軸に直行する面内で、軸位置 から周囲に向かって、磁場が増加する必要がある.今回の 計算の場合にも、この条件を満たしていることを確認して いる.しかし,実際にこの原理のより反磁性物質の浮上を 検証することを考えると、鉄リング挿入の場合には、リン グに大きな力が働くことから,ボア内での位置の固定法を 検討する必要がある.また,インナーコイル挿入型マグネ ットの実機作製の際には、コイル同士の反発、巻き枠、冷 却方法、線材の能力等のさらなる検討が必要とされる。し かしながら、今回のシミュレーションにより、小型汎用マ グネットでも工夫次第では水等の磁気浮上が大気圧下で可 能になることが示唆されたことにより、今後このような手 法による磁気浮上システムの構築への指針が得られたと考 えられる.

文献

- 1) S. Ueno, and M. Iwasaka, J. Appl. Phys., 75, 7177 (1994).
- 中川 準,廣田憲之,北沢宏一,正田 誠,荻原宏康:日本応 用磁気学会誌,22,825 (1998).
- 3) 廣田憲之,崎浜達也,中川 準,北沢宏一,横井裕之,加藤隆 二,角館洋三,薄葉 州,藤原修三:日本応用磁気学会誌,22, 825 (1998).
- 4) 池添泰弘,廣田憲之,崎浜達也,茂木邦雄,植竹宏往,本間琢 朗,中川 準,菅原宏治,北沢宏一:日本応用磁気学会誌,22, 821 (1998)
- 5) 若山信子: バウンダリー, p. 48 (1993)
- 6) E. Beaugnon, and R. Tournier: Nature, 349, 470 (1991).
- 7) M. V. Berry, and A. K. Geim: Eur. J. Phys., 18, 307 (1997).
- Y. Ikezoe, N. Hirota, J. Nakagawa, and K. Kitazawa: *Nature*, 393, 764 (1998).
- 9) T. Kiyoshi, O. Ozaki, H. Morita, H. Nakayama, H. B. Jin, H. Wada, N. I. Wakayama, and M. Ataka: Proc. 1998 Applied Superconductivity Conference, September 13-18, 1998, Palm Desert, CA, U.S.A.

日本応用磁気学会誌 Vol. 23, No. 4-2, 1999