日本応用磁気学会誌 24, 391-394 (2000)

Bi 置換 YIG 膜を用いた1次元磁性フォトニック結晶の作製と特性

Preparation and Properties of One-Dimensional Magnetophotonic Crystals with Bi-Substituted YIG Films

高山知子*1·仲村健志*1·弥生宗男*1·井上光輝*1,*2·藤井壽崇*1·阿部正紀*3·荒井賢一*4

*1豊橋技術科学大学、愛知県豊橋市天伯町雲雀ヶ丘 1-1(〒441-8580)

*2 さきがけ研究 21、科学技術振興団、埼玉県川口市本町 4-1-8(〒332-0012)

*3 東京工業大学工学部電子物理工学科、東京都目黒区大岡山 2-12-1(〒152-8552)

*4 東北大学電気通信研究所、宮城県仙台市青葉区片平 2-1-1(〒980-8577)

T. Takayama^{*1}, K. Nakamura^{*1}, K. Yayoi^{*1}, M. Inoue^{*1,*2}, T. Fujii^{*1}, M. Abe^{*3}, and K. I. Arai^{*4}

¹Toyohashi University of Technology, 1-1 Hibari-ga-oka, Tempaku-cho, Toyohashi, Aichi, 441-8580

^{*2}Form & Function, PRESTO21, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012

*3 Dept. of Physical Electronics, Tokyo Institute of Technology, 2-2-1 Ookayama, Meguro-ku, Tokyo 152-8552

⁴Research Institute of Electrical Communication, Tohoku Univ., 2-1-1 Katahıra, Aoba-ku, Sendai, Miyagi 980-8577

(1999年10月29日受理、2000年1月25日採録)

One-dimensional magnetophotonic crystals with bismuth-substituted yttrium iron garnet films were fabricated by a method that combines rf magnetron sputtering and pulsed-light annealing. The media exhibited significantly high transmittance and Faraday rotation at designated localized wavelengths of light in the photonic bandgap. These results coincide quantitatively with the theoretical prediction.

Key words: one-dimensional photonic crystal, magnetooptical Faraday effect, multilayer films, Bi substituted YIG films, rf magnetron sputtering

1. はじめに

我々はこれまで理論的に磁性体で構成した磁性フォト ニック結晶について調べてきた¹⁾⁻³⁾.希土類鉄ガーネット を用いた1次元磁性フォトニック結晶では、人為的に選択 可能な光局在波長で高い透過率と大きなファラデー回転 が共存する優れた磁気光学媒体が構成できることを指摘 した⁴⁾.本報ではこの知見に基づき、ビスマス置換イット リウム鉄ガーネット(以下Bi:YIGと略記する)膜を用いた1 次元磁性フォトニック結晶を RF スパッタ法で作製し、そ の特性を調べた結果について述べる.

一般に低い基板温度でスパッタ成膜した Bi:YIG 膜は, 成膜直後はアモルファス状態で磁性を持たないため, 700℃程度の高い温度での熱処理によりガーネット相に結 晶化させる必要がある.しかし,このような高温熱処理を 行うとフォトニック結晶の周期構造を壊してしまうため,

Fig. 1 Schematic drawing of a one-dimensional photonic crystal structure composed of SiO_2 , Ta_2O_5 , and Bi:YIG.

日本応用磁気学会誌 Vol. 24, No. 4-2, 2000

磁性ガーネット膜を用いたフォトニック結晶を得ること は困難であった.そこでこの難点を解決する方策として光 パルスによる急速熱処理を導入した.この方法によれば誘 電体多層膜の構造をあまり乱すことなく熱処理が可能で ある⁵⁵.本報ではこの方法を用いることで,理論予測に定 量的に合致する優れた磁気光学特性を有する磁性フォト ニック結晶が作製可能であることを示す.

2. 実験方法

試料の作製はマルチターゲットRFマグネトロンスパッ タ装置(島津製作所製, HSR-551 特型)により行った. 試料 の構造は Bi:YIG 膜を中間層として含む(SiO₂/Ta₂O₅)⁵/ Bi:YIG/(Ta₂O₅/SiO₂)⁵構造とした. この多層膜中央の Bi:YIG 層がフォトニック結晶の欠陥層として振る舞う.

試料の結晶構造の同定には X 線回折装置 (XRD: Cu-K_w), 表面観察は低真空走査型電子顕微鏡 (ESEM) により行った. また膜厚はダイヤモンド触針計,透過率は紫外可視吸収ス ペクトル装置により測定した.屈折率は透過率スペクトル の脈動から算出した.磁気光学ファラデー効果は offcrossed-polarization 偏光変調法 ^のによって測定した.

3. Bi:YIG 膜の作製と光パルス熱処理

3.1 表面平滑性の良好な Bi:YIG 膜の作製

フォトニック結晶においては各層の膜厚を精密に制御 する必要があり、また膜表面の荒れは光波長の数%以下に 抑えることが望まれる.そこで Bi:YIG 膜を用いたフォト ニック結晶作製に先立ち、表面平滑性の良好な Bi:YIG 膜 を得るための条件を調べた.一般にスパッタ法による Bi:YIG 膜の形成では、ガーネット組成のターゲットを用い、 Ar+O₂の混合ガス中で反応性スパッタ法を用いることが多 い⁷.しかしこの方法で作製した Bi:YIG 膜は表面平滑性が 悪かった.そこで、Table 1 に示すようにターゲット組成を ガーネット組成からずらしたものを用い、Ar 雰囲気中でス パッタ成膜を試みた.成膜後、試料を電気炉を用いて大気

3.6×10^{-7} (Torr)
Ar
7×10^{-3} (Torr)
$Bi_{1.0}Y_{2.5}Fe_5O_x$
#7059 glass plate
Room temperature
150 (W)
700 (°C)
10 (min.)

Table 1Sputtering and annealing parameters ofBi:YIG film.

Fig. 2 (a) XRD patterns and (b) wavelength spectrum of the Faraday rotation θ_F of a Bi:YIG single-layer film.

中 700 ℃, 10 分間の急速熱処理を施したものの XRD パタ ーンの測定例を Fig. 2 (a)に示す. 同図から分かるように, この条件で作製した試料はガーネット単相の Bi:YIG 膜で あることが分かる. Fig. 2 (b)に同試料のファラデー回転角 θ_Fの波長スペクトルを示す. これから Bi:YIG 膜の組成は Bio-Y2.3FesO12となっているものと思われる. これらの薄膜 試料にはホールやクラックは観察されず,フォトニック結 晶に利用するのに充分な表面平滑性を持つものを作製す ることが可能となった.

3.2 赤外線導入加熱装置による光パルス熱処理

上述の電気炉による熱処理では、Bi:YIG 膜を用いた磁性 フォトニック結晶の多層膜の周期構造が壊れてしまう難 点があった.この難点を克服する方策として、光パルスに よる急速熱処理により Bi:YIG 層のガーネット化を試みた. 装置の概略を Fig. 3 (a)に示す.Bi:YIG 膜面上にグラッシー カーボンを配置し、カーボン側から赤外線をパルス状に照 射し、熱処理を行った.加熱されたカーボンから熱伝導で 膜面は局所加熱されるが、基板の温度上昇を防ぐため基板

Fig. 3 Pulsed-light annealing system: (a) a schematic drawing of the annealing system and (b) temperature profile of the annealing pattern.

Fig. 4 Wavelength spectrum of the Faraday rotation θ_F of a Bi:YIG film fubricated by the pulsed-light annealing technique.

面はインジウムシートを通して冷水で冷却するようにし てある.加熱中はカーボン表面に熱電対を接触させ温度の モニターを行った.Fig.3 (b)に熱処理パターンの一例を示 す.Fig.4はこの光パルスによる急速熱処理で結晶化を施 した Bi:YIG 膜の,ファラデー回転角θ_Fの波長スペクトル である.Fig.2(b)に示した電気炉を用いたものと比較して, 同程度のファラデー回転スペクトルをもつものが得られ た.またこの光パルスによる急速熱処理では,膜表面の荒 れは 5 nm 程度で小さく抑えられた.

Bi:YIG 膜が結晶化したパルス光による急速熱処理中の モニター温度は 890~960 ℃であった. 電気炉で結晶化を 施した場合に比べ約 260 ℃高くなっているが,モニターし ている温度がカーボン表面温度なので,実際の試料膜面温 度は指示温度より低いものと考えられる.

4. Bi:YIG 膜を用いた1次元磁性フォトニック結晶の作製と特性

Fig.5にBi:YIG 膜を用いた1次元磁性フォトニック結晶

日本応用磁気学会誌 Vol. 24, No. 4-2, 2000

	SiO ₂	Ta_2O_5
Background pressure	3.6×10	\mathbf{D}^{7} (Torr)
Sputtering gas	Ar(98 (%))	, O ₂ (2 (%))
Sputtering pressure	10×10	⁻³ (Torr)
Substrate	#7059 glass plate	
Substrate	100 (°C)	
temperature		
Target	SiO ₂	Ta ₂ O ₅
Sputtering power	100 (W)	70 (W)
Thickness	122 (nm)	86 (nm)

Table 2 Sputtering parameters of SiO_2 and Ta_2O_5 films.

Fig. 5 Fabrication procedure of magnetophotonic crystals with a Bi:YIG layer: (a) sputtered $(SiO_2/Ta_2O_5)^5/Bi:YIG$ multilayer film, (b) pulsed-light-annealed $(SiO_2/Ta_2O_5)^5/Bi:YIG$ multilayer film, and (c) sputtered top $(Ta_2O_5/SiO_2)^5$ multilayer film.

Fig. 6 Transmittance T and Faraday rotation θ_F of magnetophotonic crystals with a $(SiO_2/Ta_2O_5)^5/Bi:YIG/(Ta_2O_5/SiO_2)^5$ structure for various Bi:YIG layer thicknesses with (a) $d_{Bi:YIG} = 120$ nm, (b) $d_{Bi:YIG} = 230$ nm, and (c) $d_{Bi:YIG} = 300$ nm.

の作製手順を示す.構造は(SiO₂/Ta₂O₅)⁵/Bi:YIG/ (Ta₂O₅/SiO₂)⁵とした.まず#7059 ガラス基板上に誘電体多 層膜(SiO₂/Ta₂O₅)⁵を基板温度 100 ℃で積層し,その上に Bi:YIG 膜を室温で成膜した.この試料を膜面を上にして前 述の光バルス熱処理を施し,Bi:YIG 層をガーネット相に結 晶化した.その後,上部の誘電体多層膜(Ta₂O₅/SiO₂)⁵を基 板温度 100 ℃で積層した.誘電体多層膜の成膜条件を Table 2 に示す.この成膜条件では誘電体の屈折率はそれぞ $h_{Ta₂O₅=2.04, n_{SiO₂}=1.43 であった.$

この手順で作製した 1 次元磁性フォトニック結晶の透 過率 T とファラデー回転角 θ_F の波長スペクトルを Fig. 6 に 示す. 光局在波長の設計値は λ = 720 nm, 各誘電体膜厚は 光学波長 $\lambda/4$ に選んだ. Bi:YIG 層の膜厚はそれぞれ光学波 長 $\lambda/2$ の 1 倍, 1.5 倍, 2 倍の d_{BEYIG} = 120, 230, 300 nm と した. 図中の白丸は作製した磁性フォトニック結晶の実測 値,実線は理論計算値である. また参考のため,透過率波 長スペクトルに局在波のモード番号を付けた.

Fig. 6 (a)の透過率波長スペクトルから,フォトニックバ ンドギャップ λ = 600~860 nm のほぼ中央,波長 λ = 725 nm で光が局在,T = 63 %の高い透過率が得られている.ファ ラデー回転波長スペクトルをみると波長 λ = 720 nm におい て θ_F = -0.22 deg.の大きな回転角を示した.このように光 局在波長で高い透過率と大きなファラデー回転が同時に 実現することは,磁性フォトニック結晶に特有のものであ り,理論予測に合致する試料が得られることが分かる.

Fig. 6 (b), (c)は中央に挿入する Bi:YIG 膜厚を 230, 300 nm とした試料の透過率とファラデー回転波長スペクトルで ある. Bi:YIG 膜厚の増加に伴い局在モード(1)が長波長側

Fig. 7 Figure-of-merit Q_F of magnetophotonic crystals with $(SiO_2/Ta_2O_5)^5/Bi:YIG/(Ta_2O_5/SiO_2)^5$ structure for various Bi:YIG layer thicknesses with (a) $d_{Bi:YIG} = 120$ nm, (b) $d_{Bi:YIG} = 230$ nm, and (c) $d_{Bi:YIG} = 300$ nm.

ヘシフトし, 短波長側のバンドエッジより次の局在モード (2)が現れることがわかる(Fig. 6 (b)). さらに Bi: YIG 膜厚が 増加すると、局在モード(2)がバンドギャップの中心までシ フトして局在モード(1)は長波長側のバンドエッジに消え, 短波長側のエッジに次の局在モード(3)が現れる(Fig. 6 (c)). また, Fig.6(c)で局在モード(2)の透過率が理論値よりも低 い値になったのは、Bi:YIG 層が厚くなったためにガーネッ ト化が不十分であったことも一因と考えられる. なお, そ れぞれの光局在波長においてファラデー回転の増大がみ 「られるが,特にバンドエッジ付近の局在モード(Fig.6(b) の局在モード(2)および Fig. 6(c)の局在モード(3))では回転 角の著しい増大(それぞれ $\theta_F = -0.80$ deg., $\theta_F = -0.83$ deg.)を示した. これらの結果は,磁性フォトニック結晶の 構造を制御することにより光局在波長(つまり透過率およ びファラデー効果が増大する光波長)を人為制御できるこ とを意味しており、光波デバイスへの応用上好ましい特長 であるといえる.

Fig. 7 は Fig. 6 に示した試料の性能指数波長依存性であ る. 性能指数は Q_F = T^{1/2} $|\theta_F|$ deg.で定義した. 図中の白丸は 作製したフォトニック結晶の実測値,実線は Fig. 6 に示し た理論計算値より求めた値である. 透過率波長スペクトル の局在モード番号も併せて記した. また比較のため,磁性 フォトニック結晶で用いた Bi:YIG 膜とそれぞれ同じ膜厚 の Bi:YIG 単層膜の値を図中に黒丸で示している. それぞ れの光局在波長で, Bi:YIG 単層膜の値に比べ性能指数の増 大がみられる. Fig. 7 (a)の光局在波長 λ = 726 nm において は約 4 倍の値が得られた.

5. まとめ

Bi:YIG 膜を用いた透過モードの1次元磁性フォトニッ ク結晶、(SiO₂/Ta₂O₅)⁵/Bi:YIG/(Ta₂O₅/SiO₂)⁵の製作を試み, 以下の結果を得た.

- (1) Bi: YIG 薄膜の製膜条件を検討し、表面平滑性が良好 で単相のガーネット膜が得られた.
- (2) 熱処理技術として光パルスによる急速熱処理を利

用し、下地誘電体多層膜構造を壊すことなくガーネ ット単相膜が得られた.

(3) Bi:YIG 膜を用いた磁性フォトニック結晶では, Bi:YIG 膜厚 d_{BiYIG} = 300 nm の試料にて光局在波長 λ = 634 nm で透過率 T = 56 %,ファラデー回転角 θ_F = – 0.80 deg.に達すものが得られた.またこれらの値か ら求めた性能指数は $Q_F = T^{1/2} |\theta_F| = 0.59$ deg.であった. Bi:YIG 膜を用いたフォトニック結晶の透過率およびフ

アラデー回転波長スペクトルは,理論予測と定量的に合致 しており,理論解析⁴の正当性を裏付けるものといえる. これらの結果は,磁性ガーネット膜を用いた1次元磁性フ オトニック結晶の優れた磁気光学特性をもつという理論 予測を,実験的に確認したものといえる. 今後,磁性フォ トニック結晶を用いた種々のマイクロ光波デバイスへの 応用が期待される.

謝 辞 本研究の一部は文部省科研費(基盤研究(c), No 10650308)により行ったものである.

文献

1) M. Inoue and T. Fujii : J. Appl. Phys., 81, 5659 (1997).

 2) 井上光輝,藤井壽崇:日本応用磁気学会誌,21,187 (1997).

3) M.Inoue, K. I. Arai, T.Fujii, and M. Abe : *J. Magn. Soc. Jpn.*, **22**, No.S1, 141 (1998).

4) 井上光輝, 荒井賢一, 阿部正紀, 藤井壽崇, Shanfui Fan, John D. Joannopoulos : 日本応用磁気学会誌, 23, 1861 (1999).

5) 高山知子,仲村健志,弥生宗男,井上光輝,藤井壽崇, 阿部正紀,荒井賢一:電気学会マグネティックス研究会 資料, MAG-99-91 (1999).

6) T. Imamura, K. Matsumoto, M. Inoue, M. Gomi and T. Fujii : *Jpn. J. Appl. Phys.*, **33**, L679 (1994).

7) 五味学, 宇都木潔, 阿部正紀 : 日本応用磁気学会誌, 10, 173 (1986).