日本応用磁気学会誌 27, 273-276 (2003)

# GaAs/AlAs DBR とMnAs ナノクラスターを含む 半導体積層構造の設計、作製及び磁気光学特性 Design, Fabrication, and Magneto-optical Properties of Multilayers Containing GaAs/AlAs DBR and MnAs Nano-clusters

上田和彦<sup>\*</sup>•清水大雅<sup>\*</sup>•田中雅明<sup>\*,\*\*</sup> <sup>\*</sup>東京大学大学院工学系研究科電子工学専攻,東京都文京区本郷 7-3-1 (〒113-8656) <sup>\*\*</sup>科学技術振興事業団,埼玉県川口市本町 4-1-8 (〒332-0012)

K. Ueda<sup>\*</sup>, H. Shimizu<sup>\*</sup>, and M. Tanaka<sup>\*,\*</sup>

Department of Electronic Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 \*\*Japan Science and Technology Corporation, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012

We calculated the magneto-optical properties of semiconductor-based multilayer structures containing GaAs:MnAs nanoclusters sandwiched by GaAs/AlAs distributed Bragg reflectors (DBRs). Very large magneto-optical Kerr effects (Kerr rotation and ellipticity) are predicted in multilayers with suitable DBR numbers. On the basis of the calculation, we have grown multilayer structures by molecular beam epitaxy, and have demonstrated a large Kerr effect (more than 600 mdeg of Kerr ellipticity) at a designed wavelength of ~980 nm under a relatively low magnetic field at room temperature. This large magneto-optical effect in III-V semiconductor-based multilayer structures could be used for thin-film-type magneto-optical devices monolithically integrated with semiconductor opto-electronic circuitry.

Key words: MnAs, multilayer, cluster, Kerr rotation, Kerr ellipticity, distributed Bragg reflectors

### 1. はじめに

近年、磁気光学効果を用いたデバイスは光アイソレーターに 代表される光通信分野、光磁気ディスクに代表される記憶媒体 分野に広く用いられている。しかし、いずれの分野においても その材料は金属及び金属酸化物が圧倒的に多いのが現状で ある。そこで、本研究では半導体レーザや光導波路など光エレ クトロニクス・デバイスの主材料であるⅢ-Ⅴ族半導体 GaAs を ベースとした磁性層 GaAs:MnAsナノクラスター材料<sup>1,2)</sup>を作製し、 その両端を同じくIII-V族半導体である GaAs および AlAs から 成る分布ブラッグ反射鏡(DBR, Distributed Bragg Reflector)で 両端を挟み込むことによって、半導体ベース材料でありながら 反射において磁気光学効果を有するだけではなく、その磁気 光学効果増大も狙った多層構造の設計を行った。設計に基づ き分子線エピタキシーにより作製した DBR/GaAs:MnAs/DBR からなる多層構造 <sup>3)-5)</sup>は、室温で所望の波長において III-V 族 半導体ベース材料としては最大級の磁気光学効果(カー効果) を示した。磁性層 GaAs:MnAs 層は比較的大きな消光係数を持 つために、磁気光学効果の増大に伴い、その反射率は減少す る傾向にあるが、非相反屈折率変化を用いた半導体導波路型 光アイソレーター6など、光の損失を電流注入によって補償する ことができる半導体デバイスとの融合により、従来型の磁気光 学デバイスとは異なるユニークな応用可能性が期待できる。

## 2. 材料及び構造設計

本研究において設計及び作製を行った構造の材料及びその 膜厚を Fig. 1 に示す。磁性層より上側の DBR の積層周期数を  $N_{top.}$ 下側を $N_{bottm}$ と各々定義する。磁気光学効果を生み出す 磁性層には、GaAs中にMnAsナノクラスターが分布している磁 性グラニュラー構造(以下、GaAs:MnAsと表記)を用いた。 MnAsは室温以上のキュリー温度(318K)をもつ強磁性金属で あり、磁気光学効果を持つ。GaAs:MnAsはIII-V族半導体と整 合性が極めて良い材料であり、GaAs中に存在するMnAsクラ スターの大きさによってその磁性は超常磁性にも強磁性にもな り、かつ磁気光学効果を示すという非常にユニークな磁気特性 を持っている<sup>1)-5)</sup>。

本研究においては、反射における磁気光学効果であるカー 効果の増大を目的とし、動作波長は 980nm とした。今回用いた 屈折率の異なる材料を周期的に積層させる構造は、一次元磁 性フォトニック結晶<sup>71</sup>とも呼ばれるもので、光を局在させる層の 最適膜厚はλ/2n、その上下の DBR の最適膜厚はλ/4n で各々 与えられる(λは局在を行う波長、n は各材料の屈折率)。なお、



Fig. 1 (a) Schematic diagram of the multilayer structure, and (b) cross-sectional scanning electron microscopy (SEM) image of the sample.

磁性層 GaAs: MnAs の屈折率は GaAs の屈折率を用いた。従っ て AlAs, GaAs, GaAs: MnAs の膜厚はそれぞれ 83nm, 69nm, 139nm となる。

### 3. 計算方法及び計算結果

### 3.1 計算方法

同様の多層膜構造におけるファラデー効果の計算と実験に ついては過去に我々のグループの研究<sup>3)-5)</sup>で示されているよう に透過において行われており、Erドープ光ファイバー増幅器の ポンプ光波長 980 nm におけるファラデー効果を増大させるの に最適な DBR の積層数は N<sub>top</sub>=10 周期, N<sub>bottom</sub>=10 周期であ り、その場合の GaAs:MnAs の消光係数 k は 0.125 と見積もら れている。本研究においても磁気光学効果(カー効果)、反射率、 透過率を求めるために、まずこの消光係数の値を用いた。

誘電率テンソルの対角項の実数成分を $\epsilon'_{xx}$ 、虚数部を $\epsilon'_{xx}$ と すると、一般に次の関係式より、屈折率 n, 消光係数 $\kappa$  から誘 電率テンソルの対角項が求められる。

$$\left. \begin{array}{c} \varepsilon'_{xx} = n^2 - \kappa^2 \\ \varepsilon''_{xx} = 2n\kappa \end{array} \right\}$$
 (1)

GaAs, AlAs の各波長における屈折率 n, 消光係数 $\kappa$  は既知で あるので、式(1)より GaAs, AlAs 層の誘電テンソルが求められる。 また GaAs:MnAs 層の誘電率テンソルの対角項は GaAs の値を 用いた。一方、誘電率テンソルの非対角項は実数成分を $\varepsilon'_{xy}$ 、 虚数部を $\varepsilon'_{xy}$ とすると次式で表される。

$$\varepsilon'_{xy} = -\frac{2c}{\omega d} (n\eta_{\rm F} + \kappa\theta_{\rm F}) \left\{ \varepsilon''_{xy} = -\frac{2c}{\omega d} (\kappa\eta_{\rm F} - n\theta_{\rm F}) \right\}$$
(2)

ここで、cは光速、 $\omega$ は光の角周波数、dはGaAs:MnAsの膜厚 を表す。ファラデー回転角 $\theta_{\rm f}$ 、ファラデー楕円率 $\eta_{\rm f}$ は GaAs:MnAs 単層膜において実測した値を用いた。計算の際に は GaAs:MnAs の消光係数 $\kappa$ をパラメーターとして変化させ、 最後には実験に合うようにフィッティングした。以上のように GaAs, AlAs, GaAs:MnAs 各層の誘電率テンソルを求め、最後 にマトリックス・アプローチ法<sup>7)</sup>を用いて任意の積層数におけ る磁気光学効果の計算を行った。

# 3.2 磁気光学効果の上部 DBR 周期数依存性

Fig. 1 の多層膜構造における反射率 R, 透過率 T, カー回転角 $\theta_k$ , カー楕円率 $\eta_k$ , の上部 DBR 周期数  $N_{top}$  依存性の計算結果をFig. 2 に示す。 $N_{bottom}$ は 10 周期で固定し、 $N_{top}$ を0~10 周期まで変化させた。波長 $\lambda$ は 980nm とした。 $N_{bottom}$ を 10 周期で固定した理由は、10 周期の DBR がある場合その反射率は非常に高く 90%以上に達するためである。この計算により、 $N_{top}$ を変化させることによって、上下の DBR による多重反射を利用し、磁性層に光をより強く局在させカー効果を大きくするための $N_{top}$ の最適値を見積ることができる。計算結果から磁気光学効果( $\theta_k \geq \eta_k$ )増大のための最適な  $N_{top}$  価値 2 周期であることが分かる。これは  $N_{top}$ の周期数増加に伴い磁性層に光が入り込まず、上部 DBR 層によって反射されているもの



Fig. 2  $N_{top}$  dependence of the Kerr rotation ( $\theta_k$ ), Kerr ellipticity ( $\eta_k$ ), reflection (*R*), and transmission (*T*) of the multilayer, where  $N_{bottom} = 10$ ,  $\kappa = 0.125$  and  $\lambda = 980$  nm.

だと考えられる。また、N<sub>top</sub> 周期が 2~3 周期の場合に反射率が 急激に減少している理由は、上下の DBR による多重反射によ って磁性層(GaAs:MnAs)へ光が強く局在しているために、消光 係数を持つ磁性層の中で光が減衰したためと考えられる。

## 3.3 構造中の電界強度分布

次に、前節において最適とされる周期数  $N_{top}=2$  周期,  $N_{bottom}=10$  周期(ただし消光係数 $\kappa =0.125$  の場合)における多 層膜中の電界強度分布を Fig. 3 に示す。電界強度分布の図の 下に多層膜構造の模式図が入っている。Fig. 3 の場合、光は左 側より入射し、左側に反射するものと定義する。従って  $N_{top}$  層は 左側、 $N_{bottom}$  層は右側に位置することになる。ここで、入射光の 電界成分強度は 1.0 として計算を行った。

この計算結果から入射光強度が 1.0 であるのに対し、磁性層 GaAs:MnAs 層ではその強度が 2.4 倍に増幅していることが分 かる。さらに電界強度分布の形状より磁性層を挟んだ両側の DBR 層によって光が多重反射を起こしていることも分かる。以 上の結果から前節で述べた N<sub>top</sub>=2 周期, N<sub>bottom</sub>=10 周期におけ るカー効果増大と反射率の急激な現象の原因は磁性層への光 の局在が大きいためであることが明らかになった。



Fig. 3 Intensity distribution of the electronic field in the multilayer, where  $N_{\text{top}} = 2$ ,  $N_{\text{bottom}} = 10$ ,  $\kappa = 0.125$ ,  $\lambda = 980$  nm, and the incident light intensity is 1.0.

## 3.4 カー効果の波長依存性

3.2 及び 3.3 の結果から、カー回転角q,カー楕円率 $_{\Lambda}$ が最 大となる磁性層(消光係数 $\kappa$ =0.125)を挟み込む DBR 積層数 は $N_{top}$ =2 周期, $N_{bottom}$ =10 周期であることが分かった。そこでこ の条件時のq, $\eta$ ,T, Rの波長依存性を計算によって求めた。 その結果をFig. 4 に示す。波長 980 nm 付近において非常に急 岐にq, $\ell$  $\eta$ , $\eta$ ,T, Rの波長依存性を計算によって求めた。 その結果をFig. 4 に示す。波長 980 nm 付近において非常に急 岐にq, $\ell$  $\eta$ , $\eta$ , $\tau$ ,Rの波長依存性を計算によって求めた。 その結果をFig. 4 に示す。彼長 980 nm 付近において大きく減少していることが分かる。 $\eta$ は波長 980 nm 付近において大きく減少していることが分かる。 $\eta$ は波長 980 nm 付近において 5 deg を超えており、q,について は 7 deg 近くまで達している。この計算より、この多層膜構造の 磁気光学効果は波長に対して特に敏感であることが分かる。



Fig. 4 Spectra of the Kerr rotation( $\theta_k$ ), Kerr ellipticity( $\eta_k$ ), reflection (*R*), and transmission (*T*) of the multilayer, where  $N_{top} = 2$ ,  $N_{bottom} = 10$ , and  $\kappa = 0.125$ .

# 4. GaAs: MnAs 層の成長条件およびその物性

GaAs:MnAs ナノクラスター構造の作製条件を簡潔に述べる。 まず分子線エピタキシーによって GaAs(001)基板上に (GaMn)As 薄膜(Mn 濃度 4%~7%)を基板温度 280℃で低温 成長し、その後、580~620℃でアニールすることによって GaAs 中にMnAsナノクラスターが形成される。低温 MBE 成長時には MnはGaサイトに入り込んでおりその分布は一様にGaAs中に 広がっているが、その後のアニールによって熱力学的により安 定な MnAs クラスターになる。GaAs 中に直径 5~10nm の MnAs クラスターが分布している断面 TEM 像を Fig. 5 に示す。MnAs 単体では 125℃と 45℃に構造相転移点を持ち、125℃以上及 び45℃以下では六方晶のNiAs型構造、中間温度である45℃ ~125℃では斜方晶の MnP 型構造をとる。45℃以下の相では強 磁性であるが、それ以外の高温相は常磁性である。しかし、本 研究で用いた GaAs:MnAs 中では MnAs はナノスケールのクラ スター状になっているためその磁性は単体のそれとは少し異な る。つまり、クラスターのサイズが 10nm 以下になるとシングルド メインを持つクラスターとなり GaAs:MnAs は超常磁性となる。ま た、GaAs:MnAs 中の MnAs クラスターのサイズが 10nm 以上の ときには、GaAs:MnAs は超常磁性ではなく強磁性を示す。 MnAs クラスターサイズは Mn 濃度とアニール温度に依存する。 つまりGaAs:MnAs層は強磁性にも超常磁性にもなりうるユニー クかつ制御可能な磁性を持つⅢ-Ⅴ族半導体ベースの材料で ある。本研究では強磁性を示す GaAs:MnAs を用いている。



Fig. 5 Cross-sectional TEM image of GaAs:MnAs.

## 5. 多層構造の作製と磁気光学特性

実際の多層構造作製プロセスについて述べる。3.1~3.3 の計 算結果をふまえ、磁性層 GaAs:MnAsを挟み込む DBR 層数は  $N_{top}=2$ 周期, $N_{bottom}=10$ 周期とした。成長はすべて MBE によっ て行った。各層の膜厚及び材料は Fig. 1 に示す通りである。 GaAs(001)基板上に Al<sub>0.9</sub>Ga<sub>0.1</sub>As エッチストップ層を 580℃で成 長し(Al<sub>0.9</sub>Ga<sub>0.1</sub>As エッチストップ層は多重反射には寄与しない が、後に構造の透過率測定をする際に GaAs 基板を除去する ために必要である)、その後、下部 DBR を形成している GaAs/AlAs 層( $N_{bottom}=10$ 周期)を 580℃で成長した。その後、い ったん基板温度を下げ、(GaMn)As 層 (Mn 濃度は 4%~7%)を 280℃で低温成長する。最後に、基板温度を上昇させ、上部 DBR を形成している GaAs/AlAs 層( $N_{top}=2$ 周期)を 580℃で成 長した。従って上部 DBR の成長を高温(580℃)で行う間に GaMnAs 層はアニールされてMnAs ナノクラスターが作製され、 GaAs:MnAs となる。

作製した多層膜試料のカー楕円率 $\eta_k$ の波長依存性を Fig. 6 の太い実線で示す。磁性層 GaAs:MnAs の Mn 濃度は 5.9%、 磁性層を挟む DBR の周期数は  $N_{top}=2$ ,  $N_{bottom}=10$  である。測定 は室温にて行い、印加磁場は 10 kG、印加方向は試料に対し て垂直方向である。実線で示したものが測定結果、太い実線の 右に隣接している太い破線は  $N_{top}=2$ ,  $N_{bottom}=10$ ,  $\kappa =0.28$  の場



Fig. 6 Measured and calculated Kerr ellipticity  $(\eta_k)$  spectra of the multilayer with GaAs:MnAs sandwiched by DBRs ( $N_{top} = 2$ ,  $N_{bottom} = 10$ ,  $\kappa = 0.28$ ).

A spectrum of a 139-nm-thick GaAs:MnAs single layer without DBR is shown as a reference (dotted curve). All the measurements were done at room temperature and under a magnetic field of 10 kG applied perpendicular to the surface.



Fig. 7 Magnetic field dependence of the Kerr ellipticity  $(\eta_k)$  at 972 nm of the multilayer structure in Fig. 1 and Fig. 6, measured at room temperature.

合の計算結果である。また、波長依存性がほとんどない細い点 線は DBR がない場合、すなわち GaAs:MnAs 単層膜でのnkで ある。単層膜の膜厚はDBRがある場合と同じ139 nm、Mn濃度 は 5.7%である。アニールの条件は多層膜、単層膜ともに同じ 580℃,15 分間とした。測定結果よりnk は最大で 645 mdeg に達 している。また、κ=0.28における計算結果と測定結果の形状及 びそのピーク値共によい一致を示している。計算結果に比べ測 定結果の曲線がすべての波長に渡って20nmほど短波長側に シフトしている原因は、DBR 及び磁性層の膜厚が設計より 2% 程度薄くなったためだと考えられる。また、測定結果と良い一致 を得たκ=0.28の値であるが3.1~3.3 で述べたκ=0.125<sup>4),5)</sup>と大 きく異なっている。この原因としては、実際にこの試料における GaAs:MnAs の作製条件では MnAs クラスターサイズが比較的 大きくなっているためにҝ も大きくなったこと、また、計算のフィ ッテングパラメーターがκのみであるために磁性層 GaAs:MnAs、DBR 層 GaAs/AlAs の結晶性、及び各々の界面 状態、また磁性層の Mn 濃度の違いをすべて κのみに集約し フィッテングを行っていることも一因として考えられる。従って、 試料の作製条件を最適化して光の損失を小さくし、κを 0.125 にすることができればカー楕円率は計算で求めた5 deg 以上に 達する可能性がある。さらに、GaAs:MnAs 単層膜と DBR を含 む多層膜構造を比較すると、単層膜のnk はすべての波長に対 してブロードかつその強度も小さいのに対し、多層膜構造試料 の n は波長に大きく依存し、ブラッグ波長である 980 nm 付近 においては最大でれが単層膜の20倍に増大している。

反射率 R は波長 980 nm 付近で GaAs:MnAs 層の持つ大き な消光係数によって急激に減少し14.8%である。測定装置の制 約からカー回転角  $\alpha$  は直接測定はしていないが、測定で求め たカー楕円率 $\eta$  と計算結果を実験にフィッテングして求めた消 光係数  $\kappa$  を用いてカー回転角  $\alpha$  を見積もると980 nm 付近にお いて約 800 mdeg に達している。このようにして得られたカー楕 円率 $\eta$  とカー回転角  $\alpha$  を用いて性能指数  $Q = \sqrt{R(\rho_k^2 + \eta_k^2)}$ を見積

もったところ 0.4 であった。この値は金属の中でも比較的大きな カー効果を示す MnBi が波長 480nm において 1.13<sup>10)</sup>に比べて 小さな値となっている。

Fig. 6 のカー楕円率 <sub>0</sub>の波長 972 nm における磁場強度依存性の測定結果を Fig. 7 に示す。Fig. 7 ではわずかながらヒステリシスが見られ、強磁性となっていることが分かる。また磁場

強度 2.7 kG において かが 600 mdeg に達していることから、低磁場でも、大きなカー楕円率を得ることができることが分かった。

#### 6. まとめ

III-V 族化合物半導体をベースとした多層膜構造を設計・作 製し、大きな光磁気カー効果を室温で観測した。磁性層として は GaAs 中に MnAs ナノクラスターが埋め込まれた半導体:磁 性体グラニュラー構造(GaAs:MnAs)を用い、磁性層の両側か ら AlAs/GaAs DBR で挟むことにより、光の強度分布を磁性層 に閉じ込め、反射磁気光学効果(カー効果)を増強できること を計算によって示した。下側 DBR の周期数を十分な反射率を 示す値(10 周期)に固定すると、上側 DBR 周期数の最適値は 2であることがわかった。

実際にMBEを用いて DBR(2周期)/GaAs:MnAs/DBR(10 周期)から成る多層構造を作製し、その透過率、反射率、反射 磁気光学効果を測定した。所望の波長(約980 nm)においてカ 一楕円率 645 mdeg という半導体ベースの材料としては最大級 の磁気光学効果を室温で観測した。GaAs:MnAs の消光係数κ を 0.28 としたときに実験で得られたカー楕円率強度とそのスペ クトルを良く説明することができた。また、作製した多層構造中 のGaAs:MnAs はソフトな強磁性を示すため、2.7 kGの低磁場 において 600mdeg 以上の大きなカー楕円率が得られた。

本研究で設計・作製した多層構造は、1) すべて III-V 族半 導体ベースの材料でできており、光エレクトロニクスデバイスと の整合性が良いこと、2) MBE で作製される単結晶エピタキシ ャル膜であるため、通常の磁性薄膜に比べて結晶が高品質で 界面の急峻性・平坦性や膜厚制御性に優れ、設計自由度が 大きいこと、3) III-V 族半導体材料や多層構造の膜厚を変える ことにより、原理的には広い範囲で動作波長を選べること、4) これまでの磁性半導体とは異なり、室温かつ低磁場でも大きな 磁気光学効果が得られること、など他の半導体材料系にはな い優れた特色を持っている。

謝辞:本研究は、科学技術振興事業団さきがけ研究、東レ科 学振興会、文部省科学研究費補助金より助成を受けて行われ た。

#### 文献

- J. De Boeck, R. Oesterholt, A. Van Esch, H. Bender, C. Bruynseraede, C. Van Hoof, and G. Borghs, *Appl. Phys. Lett.*, 68, 2744, (1966).
- 2) H. Akinaga, S. Miyanishi, K. Tanaka, W. Van Roy, and K. Onodera, Appl. Phys. Lett., 76, 97, (2002).
- 3) H. Shimizu, M. Miyamura, and M. Tanaka, J. Vac. Sci. Technol., B18, 2063, (2000).
- H. Shimizu, M. Miyamura, and M. Tanaka, *Appl. Phys. Lett.*, 78. 1523, (2001).
- 5) M. Tanaka, M. Miyamura, H. Shimizu, J. Cryst. Growth, 227-228, 839, (2001).
- H. Shimizu and M. Tanaka, Appl. Phys. Lett., 81. Dec, 30, (2002), in press.
- 7) M. Inoue, K. I. Arai, T. Fujii, and M. Abe, J. Appl. Phys., 85, 5768, (1999).
- M. J. Steel, M. Levy, and R. M. Osgood, J. Lightwave Technol., 18, 1289, (2000).
- M. J. Steel, M. Levy, and R. M. Osgood, *IEEE Photonics Technol.* Lett., 12, 1171, (2000).
- 10) K. Egashira and T. Yamada, J. Appl. Phys. 45, 3643, (1974).

2002年10月7日受理,2003年1月17日採録