電磁鋼板環状試料の磁気特性測定法についての検討

Measurement of Magnetic Properties of Ring-Shaped Electrical Steel Sheets

森 啓士郎,渡邊 浩二,柳瀬 俊次,岡崎 靖雄,枦 修一郎

岐阜大学工学部, 岐阜市柳戸 1·1 (〒501·1193)

K. Mori, K. Watanabe, S. Yanase, Y. Okazaki, and S. Hashi Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193

We examined a method for measuring the magnetic properties of ring-shaped electrical steel sheets. The magnetic properties measured in ring-shaped samples depend on the orientation of stacked sheets, in spite of non-oriented sheet samples. We also measured the two-dimensional magnetic properties of non-oriented samples. Magnetic properties that are dependent on the stacking orientation appear to differ due to magnetic flux passing between the sheets.

Key words: electrical steel sheet, ring-shaped sample, two-dimensional magnetic measurement, angular dependence of magnetic loss

1. はじめに

モータの鉄心材料に広く用いられている無方向性電磁 鋼板の磁気特性を把握することは、モータの省エネ設計 にあたって必要不可欠である.そのため、無方向性電磁 鋼板の磁気特性評価のためにエプスタイン試験器¹⁾や単 板磁気試験器(SST)²⁾による特性測定が行なわれてい る.一方、実機中の電磁鋼板には回転磁束が生じている ことから、電磁鋼板の二次元磁気特性³⁾⁻⁵⁾についても検 討されている.これらの磁気特性測定に使用される試料 形状は短冊形、円形、正方形や六角形などである.そこ で、実機鉄心形状に近い環状試料の材料磁気特性と実機 特性の対応を把握するために、環状試料の局所磁気特性 と二次元磁気特性を比較するなどして、環状試料による 磁気特性測定法について検討した.

Fig. 1 Configuration of several coils and sample case.

2. 実験方法

2.1 環状試料の磁気特性測定法

環状試料の磁気特性測定に用いた各種巻線と試料ケースの概略を Fig.1 に示す. 環状試料には,内径 102 mm, 外径 127 mm に打ち抜き加工された無方向性電磁鋼板 50A470 (新日鐵製)を 10 枚用いた. 10 枚の試料を圧延 方向を揃えて積層する平行積みか, 18°ずつ徐々にずら して積層する 18°回し積みにし,試料全体に直接 0.26 mm ϕ の B コイルを巻いて,試料ケースに入れる. その 後,そのケース全体を励磁コイルで巻く構成になってい る⁶⁾. 測定は周波数 50 Hz,磁束正弦波 Bm = 0.5, 0.7, 1.0, 1.3, 1.5, 1.7 T にて行った.

環状試料の磁気特性測定系を Fig.2 に示す.F.S. (フ アンクションシンセサイザ)からの電圧信号をパワーア ンプで増幅して励磁コイルに電流を流す.パワーアンプ のオフセット直流成分による偏磁の発生を防ぐために, AC カップリング(直流カット用コンデンサ)を使用し て直流成分を除去している.励磁コイルに流れる電流を 測定するために0.5 Ωの標準抵抗を励磁コイルと直列に 接続した.また,高磁束密度励磁時に励磁コイルに流れ る電流が急激に増加することを軽減するために励磁コイ ルと直列に摺動抵抗を接続して調節できるようにした. 試料の磁束密度Bの検出は試料に直接巻かれたBコイル の出力を,また,試料に印加されている磁界Hの検出は 標準抵抗の両端電圧をA.R. (アナライジングレコーダ) により測定して行った.

Fig. 2 Block diagram of measuring system for ring-shaped sample.

2.2 環状試料の局所磁気特性測定法

10 枚の試料から選んだ 2 枚の試料を用いて, 圧延方向 を揃えて積層した場合と、 90° ずらして積層した場合に ついて測定した.その際 Fig.3 のように 2 枚のうち 1 枚 の試料に対して,平均的な磁束密度を測定するために, 0.1 mm ϕ の B コイルを試料の半周に巻き,さらに試料 励磁方向と圧延方向のなす角が 0,45,90°となる位置の 局所磁気特性を測定するために,それぞれの位置に 0.1 mm ϕ の B コイルを巻いた.平均的な磁界は,励磁コイ ルに流れる電流から求めた.局所的な磁界および磁気特 性は,サイズ 10×10×0.63 mm の H コイルを局所 B 検出コイル上に配置して測定した.

2.3 二次元磁気特性測定法

環状試料の局所的磁気特性と二次元磁気特性との比較 を行なうため、二次元磁気特性をリング型二次元磁気特 性測定装置ⁿを用いて測定した.ここで用いた試料は、 環状試料と同じ材料 50A470(新日鐵製)の 170 mm× 170 mm の正方形試料である. 圧延方向を 0°方向、それ に垂直な方向を 90°として、0、22.5、30、45、60、67.5、 90°方向の周波数 50 Hz, *Bm* = 1.0 T の交番磁束正弦波 励磁下での測定を行った.

3. 結果および考察

3.1 環状試料の磁気特性

10 枚の試料の積層方法による鉄損特性の違いを Fig.4

Fig. 3 Configuration of several coils for local magnetic properties.

-- Parallel stacking -- 18° rotational stacking

に示す. 平行積みの結果を■で, 18°回し積みの結果を ◆で示してある. 平行積みの鉄損値に比べ, 回し積みの 鉄損値の方が大きな値を示し, 1.0 T 励磁下では、回し 積みの損失の方が 5 %程度大きくなっている. ここで, 試料 1 枚ずつの鉄損値のばらつきは 1%未満であること から, この鉄損値の違いは試料の積層方法によるものと 考えられる.

Fig.5 に 1.0 T 励磁下における 2 種類の積層法による B・H ループを示す. 平行積みの B・H ループと 18°回し積 みの B・H ループとではループ形状が異なり, このループ 形状の違いが損失の差となっている.

10 枚の試料における 1.0 T, 50 Hz および 90 Hz の鉄 損測定値から、2 周波法で鉄損分離を行った 1.0 T, 50 Hz の分離結果を Table.1 に示す. 平行積みと回し積みにお けるヒステリシス損と渦電流損の割合はほぼ等しく,回 し積みにすることにより、ヒステリシス損失,渦電流損 失ともに増加していることが分かる.

3.2 環状試料の局所磁気特性

平行積みと回し積みによる鉄損の違いについてより詳 しく検討するために、2枚の試料を平行積みと90°回し 積みにした場合の局所磁気特性を測定した. 試料 10枚 を18°回し積みにすると平行積みに比べ鉄損値が5%程 度増加したのに対して, 試料2枚を90°回し積みにした

----- Parallel stacking ------ 18° rotational stacking

Fig. 5 B·H loops of 10 sheet sample (f = 50 Hz, Bm = 1.0 T).

Table 1 Separation of iron loss (f = 50 Hz, Bm = 1.0 T).

	Iron loss	Hysteresis	Eddy loss
	[W/kg]	loss [W/kg]	[W/kg]
Parallel	1.701	1.262	0.439
stacking		(74.2%)	(25.8%)
18° rotational	1.782	1.317	0.465
stacking		(73.9%)	(26.1%)

場合の鉄損値は、平行積みに比べ、2%程度の増加となった.Fig.6に示した試料2枚によるループ形状とFig.5の試料10枚によるループ形状を比べると試料2枚の場合でも鉄損の変化に相当するループ形状変化が見られる.なお90°回し積みにした場合でも、2枚の試料間に1mmの間隔をもたせると、平行積みと同様な損失、ループ形状となり、2枚の試料が密着、あるいはわずかな間隔をおいて存在する場合にのみ、平行積みと回し積みで違いが生じることを確認した.

試料 2 枚による局所磁気特性を Fig.7 に示す. 試料 2 枚を平行積みした(a)の磁束密度波形には 0,45,90° 位置による違いはあまり見られず,磁束が試料中でほぼ 均一に分布している.しかし,磁界波形は測定箇所によ り大きく異なり,振幅については 0°位置で小さく,90° 位置で大きくなっている.これは,無方向性電磁鋼板で

----- Parallel stacking ------ 90° rotational stacking

Fig. 7 Local magnetic properties of 2 sheet sample (f=50 Hz, Bm=1.0 T).

はあっても圧延方向が磁化容易方向になっているという 試料の異方性があらわれているものである.これに対し て,試料2枚を90°回し積みした(b)の特性は,逆に磁 束密度波形が大きく異なり,磁界波形にはあまり違いが 見られない.これは,試料を回し積みにすることにより, 透磁率の高い部分に磁束が集中するように試料板間を磁 束が行き来する渡り磁束が発生して試料1枚の中での磁 束分布が不均一になること,またその際には,磁界強度 の試料境界接線成分の連続性から磁界分布の方が均一に なりやすいことを示している.

1.5 Tにおける磁束密度、磁界の波形を Fig.8 に示す. 90°回し積みの 1.5 Tの磁束密度波形の振幅には、1.0 T の場合ほどの変化が見られないが、これは、飽和磁束密 度に近づき透磁率の局所的な差が小さくなるためで、磁 束密度の波形の 1.0 T付近では 1.0 T 励磁の場合の分布 に似た傾向がみられる. このように 1.5 T の場合では、 渡り磁束は磁束密度のピーク近傍ではなく、中間の磁束 密度領域でおこっていることがわかる.

Fig.9 (a) に 0, (b) に 90°位置での B·H ループ (1.0 T 励磁; Fig.7 の測定条件)を示す. 0°位置では回し積み のループの方が大きく, 90°位置では平行積みのループ

の方が大きくなっている.

Fig.9 に示すループの面積を局所的鉄損として,二次 元磁気特性測定による鉄損値と比較したものを Fig.10 に示す.二次元磁気特性を▲で,環状試料の局所的磁気 特性の平行積みを■で,90°回し積みを◆で示してある. Fig.10 の結果では,平行積みの損失が二次元磁気特性の 磁気損失と同じ傾向を示している.平行積みの鉄損の方 が二次元磁気特性と異なるのは,環状試料の磁気特性測 定時における磁束の流れと正方形試料による二次元磁気 特性測定時における磁束の流れが異なることや,試料形 状が異なるため試料切り出し時の応力の影響が異なるこ となどが原因と考えられる.回し積みの特性は,二次元 磁気特性とは逆に 0°位置で大きく,90°位置で小さいと いう傾向を示している.この鉄損分布には,先に示した 磁束密度の不均一分布が大きく影響している.

ヒステリシス損が Bm の1乗より大きな依存性を持つ と考えれば、渡り磁束による磁束の不均一が生じると、 Bm の低い部分のヒステリシス損の減少に比べ、高い部 分におけるヒステリシス損の増加の方が大きくなるため、 試料全体としてのヒステリシス損が増加するものと考え られる.しかし、今回用いた無方向性電磁鋼板の鉄損に は Fig.10 中■で示すような角度依存性があり、Bm の大 きくなる 0°位置では鉄損が小さく、Bm の小さくなる 90° 位置では鉄損が大きくなる.そのため、ヒステリシス損 失についても同様の傾向があると考えると、今回用いた

電磁鋼板では、その両者の増減による相殺により、回し 積みのヒステリシス損失の増加は数%にとどまっている のではないかと考えられる.また、磁束が試料板間を渡 ることによる試料面内渦電流損の増加、および不均一磁 束分布による渦電流損の増加もおこっている.

4. まとめ

二次元磁気特性と比較するなど環状試料の磁気特性測定 法について検討した.環状試料を平行積みにすると渡り 磁束を生じないが,回し積みにすると渡り磁束の影響に よって損失が大きくなる.したがって,モータ実機の特 性と素材特性とを対応させるためには,実機の鉄心構成 時の積層方法に対応して環状試料の磁気特性測定を行な うことが必要である.また,二次元磁気特性測定による 試料の任意方向特性が把握できれば,渡り磁束なども含 めた電磁界数値解析により特性値を推定することは可能 とは思われるが,測定の難易度から考えれば,環状試料 特性の測定値と実機特性との対応を明確にすることが重 要である.ただし,実機の鉄心では磁束がすべて円周方 向に通過しているわけではないため,実機の磁化状態に 対応した測定法についても検討していく必要がある.

謝辞 本研究を遂行するにあたり,試料を提供していた だいた新日本製鐵(株)技術開発本部の溝上雅人氏に深 謝する.

文献

- 2) ЛS C2556 (1996)
- A. Hasenzagl, H. Pfutzner, A. Saito and Y. Okazaki: J. Phys. IV France, 8, p.681 (1998)
- 4) M. Nakano, H. Nishimoto, K. Fujiwara and N. Takahashi-*IEEE Trans. Magn.* **35**, 5, p.3965 (1999)
- 5) M.Enokizono, T.Todaka and S.Kanao: J. Magn. Soc. Jpn, 17, p. 559 (1993)
- 6) K. Watanabe, K. Mori, S. Yanase, Y. Okazaki, S. Hashi: *IEE Jpn Tech. Meeting on Magn*, MAG-03-94 (2003)
- N. Ichijo, S. Yanase, S. Hashi and Y. Okazaki: *IEE Jpn Tech. Meeting on Magn*, MAG-02-187 (2002)

2003年10月24日受理, 2004年1月15日採録

¹⁾ ЛS C2550 (2000)