Effect of Magnetic Field Applied along Hard Axis on Current-Induced Magnetization Switching in CoFeB/MgO/CoFeB Magnetic Tunnel Junctions

T. Inokuchi^{*,***}, Y. Saito^{*,***}, H. Sugiyama^{*,***}, and K. Inomata^{**,***}

*Corporate R&D Center, Toshiba Corp., 1 Komukai-Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan

**National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0044, Japan

***CREST, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan

The dependence of critical current density (J_c) for current-induced magnetization switching (CIMS) on external magnetic fields applied along the hard axis of a free layer (H_{hard}) was investigated in CoFeB/MgO/CoFeB magnetic tunnel junctions. The J_c and the intrinsic current density (J_{c0}), which is derived from the dependence of J_c on pulse duration, decreased as $|H_{hard}|$ increased. As the reduction ratios of J_c0 while applying H_{hard} depend on the anisotropy field of junctions (H_k), the initial angle of magnetization, affected by H_{hard} and H_k , is related to the reduction in J_c0 . These results are discussed in terms of the energy barrier for CIMS and the spin transfer efficiency.

Key words: magnetic tunnel junction, current-induced magnetization switching

CoFeB/MgO/CoFeBトンネル接合における スピン注入磁化反転に対する困難軸方向磁場の影響

1. はじめに

近年, MRAM (Magnetic Random Access Memory) などのス ピントロニクスデバイスの磁化書き込み法としてスピン注入磁化 反転法^{1,2)}が注目されている.スピン注入磁化反転法では,磁気記 録層へスピン偏極した電子を注入することにより磁気記録層の磁 化方向を反転させる.この磁化反転を生じさせるために必要な電 流は,磁気記録層の全磁気モーメント,異方性磁界,磁気記録層 と磁気固着層のスピン偏極率,ダンピング係数,および,外部印 加磁界などに依存する¹⁾.磁気記録層のサイズが小さくなると,磁 気記録層の全磁気モーメントが減少するため,スピン注入磁化反 転に必要な臨界電流は下がる.一般に,素子サイズが200 nm ¢ 以 下のときに,スピン注入磁化反転法は電流磁界を用いた磁化反転 法よりも低電流で書き込みが可能であると言われている³⁾.

しかしながら,スピン注入磁化反転には 10⁷ A/cm² のオーダー の非常に大きな臨界電流密度 (*J*₀) を要する⁴. 最近では,スピン 反射層の付与^{5,6,7} や CoFeB 磁気記録層を用いる⁸⁾, MgO トンネ ルバリアを用いる⁹⁻¹²⁾ などの手法を用いることで,10⁶ A/cm² のオ ーダーの *L* が実現されているものの, MRAM の書き込み方法と して用いるためには 10⁶ A/cm² 以下の *L* で,かつ, 熱擾乱両性定 数 (*K*₄ *VI*₈*T*) 80 以上を達成する必要がある. そのため,さらな る *L* の低減法の確立が望まれている.

以前,本グループではMTJ (Magnetic Tunnel Junction)の困難軸方向への磁場 ($|H_{hard}|$)の印加による J_c 削減法を報告した ^{13,14}. また,別グループからは GMR (Giant Magnetoresistance)素子における J_c の困難軸方向磁場依存性も報告されている ^{15,16}.本手法の概要は以下の通りである.

まず、 $|H_{hard}|$ の印加による磁気記録層の静磁エネルギーの変化 を考える. 一軸異方性エネルギー K_u とゼーマンエネルギーのみを 考えると、静磁エネルギー E_{state} の磁化角度(θ)依存性は以下 の式で表される.

 $E_{\text{static}}(\theta) = K_u \sin^2 \theta + M_s H_{\text{hard}} \cos \theta$ (1) 上式から、 $|H_{\text{hard}}|$ の印加とともに $\theta = 90^\circ$ もしくは 270° に存在す るエネルギー障壁 $E(= \text{Max.}(E_{\text{static}}(\theta)) - \text{Min.}(E_{\text{static}}(\theta)))$ が 減少することがわかる. すると、 $J_c \circ E$ 依存性は以下の(2)式で表 される ¹⁷⁾ ために、E の減少とともに J_c は減少すると考えられる.

 $J_{e} = J_{0} [1 - (J_{B} T/E) \ln (f_{e}/\pi)] (f_{e} \gg \pi)$ (2) ここで、 n はスピン歳差運動の周期、 f_e はパルス幅、 J_a はパル ス幅が n のときの J_e, J_B はボルツマン定数、 T は MTJ の温度 である.

また、 J_c の $|H_{hard}|$ 依存性として次の要因も考えられる.いま、 J_a に対する磁化の初期角度 θ の影響は次式で表される^D.

 $J_{s0} \propto (1+p^2 \cos \theta)/(p/2)$ (3) すなわち、 θ が増加するとスピン注入効率が増大するため に J_{c0} は減少する. $|H_{hard}|$ を印加すると、(1)式から磁化 の安定点、すなわち、最小の $E_{static}(\theta)$ をとる θ は 0° もしくは 180° からずれることがわかる. したがって、 $|H_{hard}|$ の印加により θ が増加してスピン注入効率が増 大するために J_{c0} は減少し、結果的に J_c も減少するもの と考えられる. 以上の要因をまとめると、 $|H_{hard}|$ の印加 により E および J_{c0} が減少し、結果的に J_c の減少がもた らされるものと考えられる.

今回,本グループで異方性磁場 H_kの異なる MTJ を用いて J_c の[H_{narel}] 依存性を調べたところ,新たな知見が得られたので,その内容について報告する.

2. 実験方法

本研究で使用した MTJ の構造は Ta / Ru / IrMn / CoFe / Ru / CoFeB / MgO / CoFeB / Ta である. 磁気固着層として用いた下部

CoFeBの膜厚は4nm,磁気記録層として用いた上部CoFeBの膜 厚は2nmである. MTJの作製にはフォトリソグラフィー,反応 性イオンエッチング,Arイオンミリング等を用いた.なお,接合 のサイズを規定する部分にはレジストのスリミング処理を行い, 最終的に0.00426 ~ 0.164 µm²の接合面積を有する素子を作製し た.

R*H* 曲線の測定には、4端子直流抵抗測定法を用いた、スピン 注入磁化反転は、パルス電流を試料に印加した後に低い読み出し 電流を用いて4端子直流抵抗測定を行う手順を繰り返しおこなっ て測定した. 読み出し電流値は、試料に印加される電圧が10 mV になるように設定している。また、測定の際にはジュール発熱が スピン注入磁化反転におよぼす影響を避けるために、パルス電流 印加の間隔を100 ms以上に設定した.以上の測定を行う際に*Haasy* および *Haard* を印加している。なお、*Heasy* の印加では平均の臨界 電流密度 *J*(=($J^{P-AP} - J^{AP-F}$)/2) は変わらないと報告され ている^{1,17,18} ため、今回の実験では *Haasy* を固定して *Haard* の値 から求めた.

3. 実験結果および考察

3.1 困難軸磁場印加下でのスピン注入磁化反転の観測

Fig. 1(a) に H_k が 150 Oe の試料 (Sample 1) を用いて測定し た R·H 曲線を示す.本試料の RA (Resistance-Area product) は 6 Ω ・µm², MR 比 (Magnetoresistance ratio) は 65.0 %, 接合 面積は 0.064 µm²である. 次に, H_{easy} = -72 Oe, |H_{hard}| = 0 Oe において幅 1 ms のパルス電流を用いてスピン注入磁化反転を観 測した結果を Fig. 1(b)に示す.まず, MTJ に印加するパルス電流 の振幅を -- 方向に増大させていくと、 $L^{AP-P} = -2.2 \times 10^{6}$ A/cm² で AP (Anti-Parallel) 状態から P (Parallel) 状態へのスイッチ ングが観測された.次に, パルス電流の振幅を+方向に増加させて いくと, $L^{P-AP} = +3.4 \times 10^{6}$ A/cm² で P 状態から AP 状態へのスイ ッチングが観測された. これらの電流密度から平均の臨界電流密 度 $L = (L^{P-AP} - L^{AP-P})/2$)を見積もると, 2.8×10⁶ A/cm² と なる.このスピン注入磁化反転で観測された抵抗変化は, R·H 曲 線で観測された抵抗変化と等しいことから,スピン偏極した電子 によって完全に磁化が反転していると考えられる.

次に, $H_{easy} = -72$ Oe, $|H_{hard}| = 100$ Oe において, 幅 1 ms のパルス電流を用いてスピン注入磁化反転を観測した結果を Fig. 2 に示す. J^{AP-P} は -2.1×10^6 A/cm², J^{P-AP} は $+ 2.6 \times 10^6$ A/cm² であり, これらの値から見積もった J_{c} は 2.4×10^6 A/cm² であった. つまり, $|H_{hard}|$ の印加によって J_{c} が低減した. なお, $|H_{hard}|$ を印加けると磁化の安定状態が 0° もしくは 180° から ずれるために, $|H_{hard}| = 0$ Oe のときに比べると P 状態と AP 状 態の間の抵抗変化量が小さくなる. しかしながら, $|H_{hard}| = 100$ Oe の印加下においてもスピン注入磁化反転で観測された抵抗変 化量は RH 曲線で観測された抵抗変化量に等しいことを確認し ている.

この | H_{hard} | の印加に伴う *L* 減少の起源を明らかに するために、*L* のパルス幅依存性を測定した (Fig. 3). こ のパルス幅依存性に対して(1)式を用いてフィッテングを 行い、*J*_{c0} および 平均のエネルギー障壁高さ *E*/*K*_B*T*(= $(E^{AP-P} + E^{P-AP})/2 K_BT$)を求めた. なお、ここでは to を 10^{9} s としている. その結果、| H_{hard} |=0 Oe において *J*_{c0} = 4.2×10⁶ A/cm² かつ *E*/*K*_B*T* = 49.7 であったのに対し、 | H_{hard} |=100 Oe においては、*J*_{c0} = 3.4×10⁶ A/cm² かつ *E*/*K*_B*T* = 43.9 であることがわかった. つまり、| H_{hard} | の 印加とともに *J*_{c0} は減少、かつ、*E*/*K*_B*T* も減少すること が明らかになった. この結果から、| H_{hard} | の印加による *J*_c の低減は、*J*_{c0} の減少と *E*/*K*_B*T* の減少に起因すると考 えられる.

3.2 困難軸磁場印加下でのスピン注入磁化反転の試料依存 性

次に, H_k の異なる試料について J_k の $|H_{hard}|$ 依存性を 調べた. 一例として, Fig. 4 に H_k が 40 Oe の試料 (Sample 2) を用いて J_k の $|H_{hard}|$ 依存性を調べた結果を示す.本 試料では, $H_{easy} = -22$ Oe, $|H_{hard}| = 21$ Oe のとき, $J_{c0} =$ 3.2×10^6 A/cm², かつ, $E/K_BT = 32.3$ であるのに対し, $H_{easy} = -22$ Oe, $|H_{hard}| = 31$ Oe のとき $J_{c0} = 2.6 \times 10^6$ A/cm², かつ, $E/K_BT = 27.1$ である. つまり, 10 Oe の $|H_{hard}|$ の増加により, J_{c0} は 0.8 倍になっている. 先程の Sample 1 においては, 100 Oe の $|H_{hard}|$ の増加でも J_{c0} は 0.8 倍にしかならなかったことに比べると, Sample 2 で

Fig. 1 (a) Magnetoresistance curve of MgO-based MTJ as a function of magnetic field applied along the easy axis of the MTJ (H_{easy}) when the magnetic field along the magnetization hard axis of the MTJ (H_{hard}) is 0 Oe. (b) Current-induced magnetization switching of the MTJ when $|H_{hard}|$ is 0 Oe and H_{easy} is -72 Oe.

Fig. 2 Current-induced magnetization switching of the MTJ when | H_{hard}| is 100 Oe and H_{easy} is -72 Oe, measured using a junction with H_k of 150 Oe (Sample 1).

Fig. 3 Dependence of J_c on pulse current duration when $|H_{hard}| = 0$ Oe and 100 Oe, measured using a junction with H_k of 150 Oe (Sample 1).

Fig. 4 Dependence of J_c on pulse current duration when $|H_{hard}| = 21$ Oe, 26 Oe, and 31 Oe, measured using a junction with H_k of 40 Oe (Sample 2).

Fig. 5 Dependence of \mathcal{J}_0 on the initial angle (θ) of magnetization, measured using five different junctions with various anisotropy fields.

は Jco の | H_{hard} | 依存性が大きい.

の

な

では、Jo の | Hard | 依存性の起源について次のモデルを用いて 考えてみる.まず、単磁区モデルを仮定すると、スピン注入磁化 反転をおこなう前の磁気記録層の磁化は以下の式で表される初期 角度 θを向いていると考えられる.

$$\theta = \tan^{-1}(H_{hard}/H_{h})$$
 (4)
すなわち、この θ は $H_{hard} \ge H_{k}$ がなす角度であり、スピン注入
磁化反転を行う前の磁化の角度は、P 状態の場合には θ , AP 状
態の場合には 180° — θ であると考えられる.式(3)に従えば、こ
の θ の増加により J_{0} は減少するはずである.したがって、大き
な H_{k} を有する試料では H_{hard} の印加に伴う θ の変化が小さい
ために、 J_{0} の H_{hard} 依存性が小さくなると予想される.

そこで、Hk が 30 Oe, 40 Oe*1), 40 Oe*2), 60 Oe, 65 Oeの 試料を用いて Ja の | Hard | 依存性を測定した. その結果を, 式 (4)で表される θを横軸としてプロットした結果を Fig. 5 に示す. この図から θの増大に伴って Ja は単調に減少することがわか る. この結果は、|Hhard|の印加によって磁化の初期角度が平行 もしくは反平行からずれることによってスピン注入効率が増大し、 Ja が減少するという描像を強く支持しているものと考えられる. また,磁化の初期角度の小さい領域($\theta < 20^{\circ}$)では, J_{0} の θ 依 存性が大きいのに対し、初期角度の大きな領域(θ>20°)では、 Jo の θ 依存性が小さい. すなわち,磁化の初期角度を 0° もし くは 180°からわずかに傾けることにより Ja を有効に削減でき ることを示唆している.

さて、式(3)に従えば Fig. 5 の Jo の θ 依存性は cos θ で表され るはずである。つまり、θが増大するにしたがい、 ムの減少率は さらに大きくなるはずであるが、観測された結果は cos θ の依存 性には従わないように見える。なお、最近 Slonczewski により提 案されたモデル¹⁹⁾では、定電圧下におけるスピントルクは sin θ に従うと予想されているが、これも Fig. 5 に表した結果とは一致 しない、この理論と実験結果の不一致は、磁気記録層のドメイン 構造の影響などに起因するのではないかと考えているが、詳細な

*1 と*2の試料では接合面積およびアスペクト比が異なる

Fig. 6 Repeated measurement by using current-induced magnetization switching over 25000 times. The write current density was $\pm 1.8 \times 10^{6}$ A/cm² and the pulse duration was 100 µs.

理解は今後の課題としたい.

次に、 | H_{hard} | 印加下でスピン注入書き込みを繰り返し行った 結果を Fig. 6 に示す.本測定におけるパルス幅は 100 μ s,書き込 み電流密度は±1.8×10⁶ A/cm², | H_{hard} | = 15 Oe である.また, H_k = 30 Oe,接合面積は 0.164 μ m² である。25000 回の書き込み に対して,誤書き込みは全く観測されなかった.すなわち, | H_{hard} | の印加によって書き込み電流密度を下げることができるとともに, その条件下で安定な書き込み特性を実現できることが判明した. なお,0.00426 ~ 0.164 μ m²の接合面積を有する試料においても | H_{hard} | の印加下で安定した書き込み特性を確認している ²⁰.

最後に, | H_{hard}| の印加による J。 削減法を実際のデバイ スに応用する例を紹介する.スピン注入磁化書き込み方式 の MRAM の利点の1つとして電流磁場配線が不要である ことが挙げられる. したがって, |H_{hard}| を印加するため に別途電流磁場配線を設けるのは望ましくない. そこで, スピン注入磁化書き込み電流から発生する磁場を MTJ に 印加するデバイス構造 (Fig. 7(a)) 21) を利用する方法が考 えられる.本構造では、書き込み電流を印加した際にビッ ト線および下部電極から発生される磁場を MTJ の磁化容 易軸に印加する. MTJ の向きを 90°回転させると, 書き 込み電流から発生される磁場を MTJ の磁化困難軸に印加 することができるが、この方法では半選択の問題が生じる. すなわち、書き込みを行いたい箇所以外のセルにも磁場が 印加されてしまい、そのセルの熱擾乱耐性が低下してしま う. その問題を解消する手段として, 先程のデバイス構造 に上部電極とビアを追加する方法が考えられる. その構造 を Fig. 7(b) に示す.本構造では、ビット線から発生される 磁場の隣接セルに及ぼす影響が小さいために、半選択の問 題を回避することができる.

本構造において, MTJ から上部配線までの距離を 45 nm,

Fig. 7 (a) Device structure for applying H_{hard} to MTJ by using write current ²¹⁾. (b) Improved device structure for applying H_{hard} to MTJ by using write current. This structure can avoid half-selection problem.

MTJ のサイズを 100×200 nm とし,書き込み電流密度を 1×10⁶ A/cm² とした場合,発生される磁場強度は 29 Oe と なる.例えば, *H*_k が 80 Oe の MTJ に対して式(4)を用い て磁化の初期角度を計算すると 19.9° となるため,この磁 場によって書き込み電流密度を効果的に下げられるものと 考えられる.

なお、本実験では容易軸方向の磁界シフト分を打ち消す ために *H*easy を印加しているが、実際のデバイスを作製する 際には、Synthetic antiferromagnet 層の膜厚比を変える、 もしくは、エッチング量の制御などの方法で打ち消すこと ができる.

4. まとめ

電流誘起磁化反転における臨界電流密度(J_c)の困難軸 方向磁場($|H_{hard}|$)依存性を観測した.その結果, J_c は $|H_{hard}|$ の増加に伴って減少することを見出した.また, J_c のパルス幅依存性から見積もった J_c 0は $|H_{hard}|$ の増 加に伴って減少することを見出した.この J_{c0} の減少の起 源を明らかにするために, H_k の異なる試料について J_{c0} の 測定を行ったところ, J_c 0の減少は $|H_{hard}|$ の増加に伴う θ の増加でよく説明できることが判明した.すなわち, J_c 0 の減少は θ の増加によるスピントランスファー効率の増 大に起因するものと考えられる.

References

- 1) J. C. Slonczewski: J. Magn. Magn. Mater., 159, L1 (1996).
- 2) L. Berger: Phys. Rev. B, 54, 9353 (1996).
- 3) K. Yagami and Y. Suzuki: J. Magn. Soc. Jpn., 28, 937 (2004).
- 4) Y. Huai, F. Albert, P. Nguyen, M. Pakala, and T. Valet: Appl. Phys. Lett., 84, 3118 (2004).
- 5) Y. Jiang, T. Nozaki, S. Abe, T. Ochiai, A. Hirohata, N. Tezuka,

and K. Inomata: Nat. Mater., 3, 1 (2004).

- K. Yagami, A. A. Tulapurkar, A. Fukushima, and Y. Suzuki: Appl. Phys. Lett., 85, 5634 (2004).
- 7) Y. Huai, M. Pakala, Z. Diao, and Y. Ding: Appl. Phys. Lett., 87, 222510 (2004).
- M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano: *Electron Devices Meeting*, 2005. *IEDM Technical Digest*, p. 459.
- 9) H. Kubota, A. Fukushima, Y. Ootani, S. Yuasa, K. Ando, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and Y. Suzuki: Jpn. J. Appl. Phys., 44, L1237 (2005).
- 10) J. Hayakawa, S. Ikeda, Y. M. Lee, R. Sasaki, T. Meguro, F. Matsukura, H. Takahashi, and H. Ohno: *Jpn. J. Appl. Phys.*, 44, L1267 (2005).
- 11) H. Kubota, A. Fukushima, Y. Ootani, S. Yuasa, K. Ando, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and Y. Suzuki: *Appl. Phys. Lett.*, 89, 032505 (2006).
- 12) J. Hayakawa, S. Ikeda, Y. M. Lee, R. Sasaki, T. Meguro, F. Matsukura, H. Takahashi, and H. Ohno: *Jpn. J. Appl. Phys.*, 45, L1057 (2006).

- 13) T. Inokuchi, H. Sugiyama, Y. Saito, and K. Inomata: IEEE INTERMAG 2006 Technical Digests, p.267.
- 14) T. Inokuchi, H. Sugiyama, Y. Saito, and K. Inomata: Appl. Phys. Lett., 89, 102502 (2006).
- 15) T. Devolder, K. Ito, J. A. Katine, P. Crozat, J. Kim, M. J. Carey, and C. Chappert: *IEEE INTERMAG 2006 Technical Digests*, p.4.
- 16) T. Devolder, P. Crozat, J.-V. Kim, C. Chappert, K. Ito, J. A. Katine, and M. J. Carey: *Appl. Phys. Lett.*, 88, 152502 (2006).
- 17) R. H. Koch, J. A. Katine, and J. Z. Sun: Phys. Rev. Lett., 92, 088302 (2004).
- 18) D. Lacour, J. A. Katine, N. Smith, M. J. Carey, and J. R. Childress: Appl. Phys. Lett., 85, 4681 (2004).
- 19) J. C. Slonczewski: Phys. Rev. B, 71, 024411 (2005).
- 20) Y. Saito, T. Inokuchi, H. Sugiyama, K. Inomata: International Workshop on Spin Transfer, p. 129
- 21) W. C. Jeong, J. H. Park, J. H. Oh, G. T. Jeong, H. S. Jeong, and K. Kim: Symp. on VLSI Tech., p. 184 (2005)

2006年10月18日受理, 2007年1月23日採録