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Review

p-Galactosidase and a-L-Arabinofuranosidase in Cell Wall Modification Related
with Fruit Development and Softening

Akira Tateishi

College of Bioresource Sciences, Nihon University, Kameino, Fujisawa 252-8510, Japan

Fruitsoftening and textural changes are two important factors of fruit quality. The loss of galactosyl and arabinosyl
residues from cell wall polysaccharides is observed in many fruit species during ripening. The release of neutral
sugar residues could change wall polysaccharides properties of accessibility or reactivity for other cell wall
hydrolases. -Galactosidase and ¢-L-arabinofuranosidase contribute to the loss of neutral sugar residues. Thus,
the enzymes alter polysaccharide properties and might contribute to fruit softening or textural changes during
ripening. B-Galactosidase is composed of multiple isozymes and they are clearly distinguishable by their substrate
specificity and expression pattern of the related gene. A transgenic experiment revealed that a f-galactosidase
isozyme plays an important role in tomato fruit softening. In addition to fruit softening, the contribution of -
galactosidase to plant development is also indicated. a-L-Arabinofuranosidase genes constitute a gene family and
the isozymes are expressed in various organs and stages. Moreover, several a-L-arabinofuranosidases possess -
xylosidase activity in addition to a-L-arabinofuranosidase activity, therefore, substrate specificity against native
polysaccharides is very complex. Arabinose containing polysaccharides seem to contribute to cell to cell adhesion
but the crucial roles of a-L-arabinofuranosidase in fruit development or softening remain unclear. Further
biochemical and physiological studies of the enzyme are required.
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vary in fruit species, cultivars, and storage conditions;

Introduction therefore, it is important to elucidate the unique
Fruit become edible during ripening when accompa- contribution of each enzyme (isozyme) to the individual
nied by several phenomena such as sugar accumulation, character of fruit formed with softening. This would be
starch degradation, production of aroma, color change, helpful to develop high quality fruit and horticultural
and softening and textural changes. Fruit softening and knowledge at the field, handling, and storage levels.
textural changes are two important factors that influence Moreover, the modification of cell wall architecture is
fruit quality. Excessive softening limits fruit shelf life involved in not only fruit softening but also plant growth,
and postharvest handling. The structure of cell wall development, and shape formation. Cooperative biosyn-
polysaccharides is very complex and their interactions/ thesis and degradation of several cell wall components
connections in situ have not been entirely defined. are necessary. Many enzymes are found in the cell wall.
Numerous enzymes, which may contribute to modifica- ~ In this review, two glycosidases, B-galactosidase, and
tions in their architecture, have been found in the cell o-L-arabinofuranosidase are examined. The enzymatic
walls. Moreover, many wall-modifying enzymes consti- characters of the enzymes and expression pattern of the
tute multiple isozymes with different functions or roles genes are described and discussed in relation to fruit
and it is still difficult to understand the softening softening and other cell wall modification.

mechanism in detail. To elucidate the basic process of

softening during fruit ripening, physiological studies are 1. Pectin degradation and the contribution of

important and show common features of softening. On polygalacturonase

the other hand, fruit properties such as textural changes Fruit softening results from modifications of cell wall
architecture caused by several cell-wall-metabolizing
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pectin, hemicellulose and cellulose, based on their
solubility. During fruit ripening, the modification of
pectin is the major phenomenon among the three. The
pectic macromolecule, which consists of a polygalac-
turonan main chain, is degraded to a smaller size during
ripening (Brummell and Labavitch, 1997; Huber and
O’Donoghue, 1993). It is apparent that the decrease in
mechanical strength of pectic polymers caused by the
change to small molecules is responsible for fruit
softening. Endo-type polygalacturonase is an enzyme
which is able to hydrolyze polygalacturonan to a small
size. Indeed, polygalacturonase activity is not detected
in immature fruit while its activity increases with fruit
ripening. Corresponding transcripts are also detected in
ripening fruit. Until the 1990’s, it had been considered
that polygalacturonase was a key enzyme for fruit
softening; however, transgenic tomato (Solanum
lycopersicum) fruit, in which polygalacturonase activity
was suppressed to 1% in the wild type, showed almost
same softening pattern as wild-type fruit (Smith et al.,
1988). Polygalacturonase activity was recovered up to
60% in transgenic rin (ripening inhibitor) fruit, but did
not affect fruit firmness (Giovannoni et al., 1989). These
results suggest that polygalacturonase is not the sole
determinant of fruit softening. Suppression of poly-
galacturonase, which prevents the depolymerization of
polyuronide, contributed to the improvement of fruit
shelf life, decreased cracking and helped processing by
increasing the viscosity of paste or juice (Kramer et al.,
1992; Langley et al., 1994; Schuch et al., 1991).
Therefore, depolymerization of polyuronide mediated by
polygalacturonase contributes to fruit texture rather than
fruit softening. It is noted that the results of transgenic
experiments described above are limited to tomato fruit.
Besides tomato fruit, it has also been shown that
polygalacturonase expression is regulated by ethylene.
Both the expression of polygalacturonase and softening
of fruit are severely suppressed in ripening controlled
peach (Prunus percica) (Hayama et al., 2006) and melon
(Cucumis melo) (Nishiyama et al., 2007) treated with 1-
methylcyclopropene. Tatsuki and Endo (2006) showed
the relationship between ethylene sensitivity and apple
(Malus domestica) fruit shelf life. Inaba (2007)
summarized the necessity of ethylene for fruit softening
and expression of related enzymes. Ethylene is essential
for softening of several fruit species and the expression
of polygalacturonase; however, direct evidence of role
of polygalacturonase in fruit softening is still unclear.

2. Post polygalacturonase

Following polygalacturonase, many researchers tried
to mine new candidates for fruit-softening enzymes.
Other cell-wall-metabolizing enzymes or proteins, such
as pectin methylesterase (Tieman et al, 1992),
xyloglucan  endotransglucosylase/hydrolase  (XTH)
(Arrowsmith and de Silva, 1995), [B-1,4-glucanase
(Brummell et al., 1999a), and expansin (Brummell et

al., 1999b), were also examined for their contribution to
fruit softening using transgenic experiments in which
gene expression was suppressed; however, except for
expansin, these enzymes do not contribute to the
softening of tomato fruit (Brummell and Harpster, 2001).
Although the changes were small, expansin-suppressed
fruit showed rather limited fruit softening and over-
expressed fruit showed softening progress compared to
the wild type (Brummell et al., 1999b). The precise
action of expansin is unclear. Its role in polysaccharides
may be partial and transgenic fruit showed complex
changes in cell-wall polysaccharides.

Besides studies of cell-wall-modifying enzymes,
changes in cell-wall polysaccharides during fruit
ripening have been often reported. Polyuronide
depolymerization mediated by polygalacturonase is
observed during ripening although its extent seems to
vary depending on the fruit species (Brummell, 2006).
Polyuronide is considerably depolymerized into small
molecules in melting or highly softened stages in fruit
such as avocado (Persea americana) (Huber and
O’Donoghue, 1993; Sakurai and Nevins, 1997,
Wakabayashi et al., 2000), tomato (Brummell and
Labavitch, 1997; Huber and O’Donoghue, 1993) and
kiwifruit (Actinidia deliciosa) (Redgwell et al., 1992;
Terasaki et al., 2001). Extremely limited depolymeriza-
tion of polyuronide during ripening was even observed
in strawberry (Fragaria x ananassa) (Huber, 1984),
apple (Yoshioka et al., 1992), banana (Musa spp.) (Wade
et al., 1992), and pepper (Capsicum annuum) (Harpster
et al.,, 2002). Recently, Goulao and Oliveira (2008)
summarized the extent of depolymerization of pectic
polysaccharides and other wall components in various
fruit species during ripening. Depolymerization of
polyuronide occurs at a relatively late stage of ripening;
therefore, it may contribute to cell-wall breakdown with
over-ripening or may alter fruit textural properties. In
addition to polyuronide depolymerization during ripen-
ing, the solubilization of pectic polysaccharides is also
observed (Brummell and Labavitch, 1997; Huber and
O’Donoghue, 1993). ‘Solubilization’ can be defined as
polysaccharides, which previously could not dissolve in
water or a certain buffer, become soluble the solutions.
It is clear that cell-wall materials (mass) decrease with
fruit ripening. Increasing the solubility of wall
polysaccharides seems to be a general event during fruit
softening. Moreover, the solubilization of wall polysac-
charides occurs without a degree of polymerization in
kiwifruit and nectarine (Prunus persica) (Dowson et al.,
1992; Redgwell et al., 1992). Corresponding to the
solubilization of pectic polymer, the loss of arabinosyl
and galactosyl residues from wall polysaccharides is
widely observed in many kinds of fruit (Gross and Sams,
1984). Except for homogalacturonan, almost all pectic
or hemicellulosic polysaccharide backbones constituting
the cell wall possess branched side chains. The release
of neutral sugar residues, which may be located on the
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surface of wall polysaccharides, attributes to changes in
the structure of side chains and the interaction of
neighboring polysaccharides. The changed wall polysac-
charide properties are assumed to change the sensitivity
of enzymatic degradation or accessibility of other glycan
hydrolases to polysaccharide substrates internally.
Indeed, the release of galactosyl residues from side
chains of pectic polysaccharides is at least involved in
fruit softening (Smith et al., 2002, see details below).
Therefore, enzymes addressing side chains, such as -
galactosidase and a-L-arabinofuranosidase, might play
important roles in fruit softening and textural change
during ripening. Pectic polysaccharides and related
enzymes are shown schematically in Figure 1.

3. p-Galactosidase for fruit softening

Generally limited in pectic substances galactose is
composed of a side chain of pectic polysaccharides such
as arabinogalactan or galactan branched from the
rhamnogalacturonan backbone (Fig. 1). Galactose is also
found in hemicellulosic polysaccharides. In tomato fruit,
the loss of galactosyl residue during fruit ripening is
observed in pectic galactan. [-Galactosidases (EC
3.2.1.23) are characterized by their ability to hydrolyze
terminal, non-reducing p-D-galactosyl residues from
numerous substrates. In higher plants, B-galactosidase
is the only enzyme that is able to hydrolyze galactosyl
residues from cell wall polysaccharides and no other
enzyme capable of cleaving [-1,4-galactan in an endo
fashion has been identified (Smith et al., 1998). The
activity of B-galactosidase was measured in various fruit
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(pectin side chain)

000000000000008 ©
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Rhamnogalacturonan (pectin main chain)
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(pectin side chain)
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species (Table 1). The existence of multiple isoforms
(isozymes) was also reported in several kinds of fruit
and their different galactosyl-hydrolysing abilities were
characterized using native cell-wall polysaccharides and
synthetic substrate. Each isozyme discriminated at the
protein level by chromatography possesses different
substrate specificities and they are able to hydrolyze the
galactosyl residue at different positions (linkage). For
example, a ripening-related B-galactosidase isozyme is
capable of hydrolysing a native substrate, 3-1,4-galactan,
more effectively than an artificial substrate, 4-
nitrophenyl-f-D-galactopyranoside. Among three [-
galactosidase isozymes (B-Gal I to III) isolated from
tomato fruit, f-Gal II is capable of releasing galactosyl
residues from the pectic side chain and activity increased
during ripening (Carrington and Pressey, 1996; Pressey,
1983). B-Galactosidases isolated from melon fruit are
able to reduce the molecular size of cell-wall
polysaccharides, as observed during ripening (Ranwala
et al., 1992). DeVeau et al. (1993) also indicated that
B-galactosidase purified from avocado fruit is capable
of depolymerizing chelator-soluble pectin of tomato.
Among three avocado [3-galactosidase isoforms, AV-
GAL I, AV-GAL 1II and AV-GAL III, AV-GAL 1l
shows the highest activity of releasing free galactosyl
residue from the native cell-wall polysaccharides isolated
from fruit and its activity increases with fruit softening
whereas AV-GAL 1 can not hydrolyze native
polysaccharides (Tateishi et al., 2001a). Yoshioka et al.
(1995) indicated that one [-galactosidase fraction,
termed GA-ase I, from apple fruit, whose activity

B-6alactosidase

(3—5)-a-arabinan

0000

(1—5)-a-arabinan

o-L-Arabinofuranosidase

B-6alactosidase

Fig. 1. Schematic model of pectic polysaccharides and related enzymes. Polygalacturonase hydrolyzes homogalacturonan, which was de-esterified
previously mediated by pectin methylesterase, reducing size of pectin. Prior to depolymerization, pectic substances are solubilized and
galactosyl and arabinosyl residues are released. B-galactosidase and a-L-arabinofuranosidase approach the side chains and release neutral
sugar residues. Abbreviated hemicellulosic polysaccharides are also likely their substrates.
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Table 1. Enzymatic activities of B-galactosidase found in various fruit species.

Fruit References

Apple (Malus domestica)
Avocado (Persea americana)
Bell pepper (Capsicum annuum) Ogasawara et al., 2007
Grape (Vitis vinifera)

Japanese pear (Pyrus pyrifolia)
Kiwifruit (Actinidia deliciosa)
Musk melon (Cucumis melo)
Papaya (Carica papaya)

Peach (Prunus persica) Brummell et al., 2004
Pear (Pyrus communis)

Tomato (Solanum lycopersicum)

Zucchini (Cucurbita pepo)

Bartley, 1974; Dick et al., 1990; Ross et al., 1994; Yoshioka et al., 1995
DeVeau et al., 1993; Tateishi et al., 2001a

Barnavon et al., 2000; Nunan et al., 2001

Kitagawa et al., 1995; Mwaniki et al., 2007; Tateishi and Inoue, 2000; Tateishi et al., 2001b, 2005b
Bonghi et al., 1996; Wegrzyn and MacRae, 1992

Fils-Lycaon and Buret, 1991; Ranwala et al., 1992

Ali et al., 1998; Lazan et al., 1995, 2004

Ahmed and Labavitch, 1980; Mwaniki et al., 2005, 2007
Carey et al., 1995; Smith and Gross, 2000
Balandran-Quintana et al., 2007

increased during storage, effectively released galactose
from pectic polysaccharides but not from larch wood
arabinogalactan, whereas GA-ase II, 1II, and IV were
able to hydrolyze the arabinogalactan. Kitagawa et al.
(1995) also indicated that five B-galactosidase isozymes
(Gal 1 to V) fractionated from Japanese pear (Pyrus
pyrifolia) fruit possessed different activities against
native cell-wall polysaccharides. In this case, Gal III has
the highest activity of releasing galactose from Na,COs-
soluble pectic polysaccharides, guanidine thiocyanate-
soluble pectic polysaccharides, and hemicellulosic
polysaccharides isolated from Japanese pear. Lazan et
al. (2004) also fractionated B-galactosidase from papaya
(Carica papaya) fruit into three isozymes with different
substrate specificities and indicated that the enzymes
were able to solubilize and depolymerize not only pectic
polysaccharides but also hemicellulosic polysaccharides.
Thus, B-galactosidase can be clearly separated at the
protein level with different substrate specificities. This
implies that each isozyme plays a different role in the
modification of cell-wall architecture during fruit
development and ripening. These differences may
depend on fruit species with different characters. If we
evaluate [3-galactosidase in fruit softening, it is necessary
to determine softening-related [-galactosidase at the
gene level.

4. Genes for p-galactosidase

Genes for p-galactosidase have been identified in
many kinds of fruit and consist of a small gene family.
At least seven [-galactosidase genes are expressed
during development and ripening of tomato fruit (Smith
and Gross, 2000). A family of B-galactosidase was also
reported in strawberry (Trainotti et al., 2001), Japanese
pear (Tateishi et al., 2001b, 2005b), avocado (Tateishi
et al., 2002, 2007), pear (Pyrus communis) (Mwaniki et
al., 2005, 2007; Sekine et al., 2006), and grape (Vitis
vinifera) (Nunan et al., 2001). Some gene expressions
overlapped. According to an increase in activity during
fruit ripening and the ability to hydrolyze native cell-
wall polysaccharides, 3-galactosidase isoforms isolated

from tomato (B-Gal II, Pressey, 1983), apple (Ross et al.,
1994), and Japanese pear (Gal 111, Kitagawa et al., 1995)
are considered as softening-related p-galactosidase. In
addition, N-terminal amino acid sequences of the
proteins were analyzed and the corresponding cDNA
clones were revealed (Ross et al., 1994; Smith et al.,
1998; Tateishi et al., 2001b). Accumulation of their
mRNAs was mainly specific to ripening fruit. Transgenic
experiments using tomato fruit revealed which pB-
galactosidase isozyme is specific to fruit softening. The
significant contribution of B-Gal II to tomato fruit
softening was reported using antisense suppression of
TBG4 which encodes B-Gal II (Smith et al., 2002).
Tomato fruit transformed with the antisense 7BG4 gene
softened with ripening, however, it was firmer than the
wild type when fully ripe. Interestingly, total B-
galactosidase activity and loss of galactosyl residues
were not significantly affected.

Transgenic experiments also identified the roles of
other 3-galactosidase isozymes in the development and
ripening of tomato fruit. Strong accumulation of 7BG/
mRNA of another (3-galactosidase isozyme from tomato
was observed at breaker and turning stages; however,
down-regulated TBG/ expression caused no effect on
fruit softening and activity of B-galactosidase in fruit
(Carey et al., 1995, 2001). mRNA of TBG6, which is
also a B-galactosidase isozyme from tomato, accumu-
lated during the fruit developmental stage, especially
20-30 days after pollination (Smith and Gross, 2000).
Fruit with down-regulated 7BG6 expression showed
cracking on the surface, indicating the contribution of
TBG6 to fruit development (Moctezuma et al., 2003).
These observations suggest that individual (-
galactosidase isozymes play a distinct role in fruit
development and ripening, or more broadly, plant
development. Senescence-, abscission- and sugar
starvation-related B-galactosidase has also been reported
in some plant species (de Alcéntara et al., 2006; King
et al., 1995; Lee et al., 2007; Wu and Burns, 2004).
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5. Putative roles of a-L-arabinofuranosidase and
arabinosyl-containing polysaccharides

In addition to the loss of galactosyl residues, the
release of arabinosyl residues during fruit softening was
also observed commonly during ripening in many kinds
of fruit (Gross, 1984; Gross and Sams, 1984). The extent
of arabinose loss during ripening varies between fruit
species (Brummell, 2006). For example, extensive loss
of arabinosyl residues is observed in pear and blueberry
(Vaccinium ssp.) but is absent in watermelon (Citrullus
lanatus), apricot (Prunus armeniaca) and plum (Prunus
domestica) (Brummell, 2006; Gross, 1984; Gross and
Sams, 1984). Terminal arabinosyl residues are widely
distributed in pectic and hemicellulosic polysaccharides
such as arabinan, arabinogalactan, arabinoxylan,
arabinoxyloglucan, and glucuronoarabinoxylan
(Beldman et al., 1997; Saha, 2000; Sozzi et al., 2002b).
o-L-Arabinofuranosidase (o-L-arabinofuranoside ara-
binofuranohydrolase, EC 3.2.1.55) is an enzyme which
is able to hydrolyze non-reducing arabinofuranosyl
residues.

Increased o-L-arabinofuranosidase activity during
ripening or storage was observed in apple (Yoshioka et
al., 1995), Japanese pear fruit (Tateishi et al., 1996),
avocado (Tateishi et al., 2001a), tomato (Sozzi et al.,
2002a), persimmon (Diospyros kaki) (Xu et al., 2003),
peach (Prunus persica) (Brummell et al., 2004a; Jin et
al., 2006), and European and Chinese pear (Pyrus
bretschneideri) (Mwaniki et al., 2007). Ethylene seems
to promote an increase in the activity of climacteric
fruit, although the expression pattern of an a-L-
arabinofuranosidase gene did not coincide with the fruit-
softening pattern in Chinese pear (Mwaniki et al., 2007).
The activity did not increase in several fruit species and
some tomato cultivars during ripening (ltai et al., 2003).
o-L-Arabinofuranosidases in fruit have been purified
from Japanese pear (Tateishi et al., 1996, 2005a) and
partially purified from apple (Y oshioka et al., 1995) and
tomato (Sozzi et al.,, 2002b) and some enzymatic
properties have been characterized; however, in vivo
substrates for a-L-arabinofuranosidases have not been
clarified in detail.

The existence of arabinosyl residues consisting of cell-
wall polysaccharides seems to play an important role in
the adhesion of each polysaccharide or cell to cell. Iwai
et al. (2001, 2002) transformed a T-DNA insertion into
Nicotiana  plumbaginifolia and obtained a non-
organogenic callus with loosely attached cells (nolac).
Neutral-sugar side chains, composed mainly of linear
arabinan, were absent in a nolac mutant, suggesting the
role of arabinan in cell adhesion. The presence of
arabinan sometimes related to the mealy texture of fruit.
A larger amount of tightly bound arabinosyl-containing
polysaccharides was observed in softening-suppressed,
colorless and non-ripening (Cnr) mutant tomato fruit,
which has a mealy texture (Orfila et al., 2001, 2002;

Thompson et al., 1999). In peach fruit, the loss of
arabinosyl residues from both loosely and tightly bound
matrix glycans was observed in normal ripening fruit,
but not in mealy fruit, which showed a decline in the
loss of arabinosyl residues containing polysaccharides
firmly attached to cellulose (Brummell et al., 2004a,
2004b). In apple fruit, arabinosyl residues decreased
during the over-ripening stage (Pefia and Carpita, 2004)
and a decrease of arabinosyl residues in cell wall
polysaccharides was observed in the development of
apple fruit mealiness postharvest (Nara et al., 2001).
Therefore, arabinosyl residue is usually widely lost
during fruit ripening; however, in mealy-textured fruit,
the arabinosyl residue becomes tightly bound to matrix
glycan, including cellulose, and consequently the loss
of arabinosyl residue seems to be suppressed. Although
direct evidence was not shown, modification of
arabinosyl-containing cell-wall polymer may play an
important role in the alteration of fruit texture in relation
to cell-to-cell adhesion.

6. Expression pattern of a-L-arabinofuranosidases

There are relatively few reports of a-L-
arabinofuranosidase isolated from fruit with biochem-
ical characteristics compared to PB-galactosidase. o-L-
arabinofuranosidases were classified into five glycoside
hydrolase (GH) families (family 3, 43, 51, 54, and 62),
and biochemically characterized a-L-arabinofuranosi-
dases from higher plants are found in families 3 and 51
(Fig.2). This classification is based on the amino acid
sequence rather than on substrate specificity (Coutinho
and Henrissat, 1999; http://www.cazy.org/, August 10, 2008).

Ferré et al. (2000) purified o-L-arabinofuranosidase
from a monocotyledon, barley (Hordeum vulgare)
belonging to the GH family 51. The o-L-
arabinofuranosidase is an arabinoxylan arabinofurano-
hydrolase which is able to release arabinose from both
singly and doubly substituted xylose. The enzyme could
not release arabinose from linear or branched-chain
arabinan, although distinct results of the enzyme activity
against arabinan were shown by Lee et al. (2001). a-L-
Arabinofuranosidase isolated by two groups was able to
hydrolysis arabinoxylan and produced monomeric
arabinose  (arabinoxylan  arabinofuranohydrolase)
(Ferré et al., 2000; Lee et al, 2001). Two a-L-
arabinofuranosidases, ASD1 and ASD2, belonging to
family 51, were found in Arabidopsis (Arabidopsis
thaliana). ASD1 showed higher expression in cell
proliferation zones, the vascular system, developing and
regressing floral tissues, and floral abscission zones,
while ASD2 was expressed in the vasculature of older
root tissue and in some floral organs and floral abscission
zones (Fulton and Cobbett, 2003). Itai et al. (2003)
reported that family 51 a-L-arabinofuranosidase cloned
from tomato fruit were expressed during fruit
development and declined during ripening. Sekine et al.
(2006) reported that family 51 a-L-arabinofuranosidase
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Fig. 2. Phylogenetic relationships of bi-functional a-L-arabinofuranosidase/B-xylosidases and B-xylosidases classified into GH family 3 and
family 51. Amino acid sequences were aligned with the ClustalW program and phylogenetic tree was drawn. ASD1 and ASD2 from
Arabidopsis (AY243509 and AY243510), PPARF1 from Japanese pear (AB073311), LeARF from tomato (AB073310), PcAbl from pear
(AB067643), AXAH-I and AXAH-II from barley (AF320324 and AF320325), XYL1 from strawberry (AY486104), ARA-1 and XYL from
barley (AY029259 and AY029260), and LeXYL1 and LeXYL2 from tomato (AB041811 and AB041812) and LeArf/Xyll to 4 from tomato
(unpublished). AtBXL1 to 7 from Arabidopsis. RsArafl from radish (AB234292) and MsXYL1 from alfalfa (EF569968).

cloned from pear fruit was expressed constitutively
during fruit storage. From only expression analysis of
family 51 «-L-arabinofuranosidase, it seems to
contribute less to fruit softening, but its detailed role in
physiological metabolism remains unclear.
a-L-Arabinofuranosidase is also classified into GH
family 3 besides family 51, although they are clearly
distinguishable based on sequence homology (Fig.2).
Lee et al. (2003) purified a new a-L-arabinofuranosidase
from monocotyledonous barley and indicated the enzyme
belongs to GH family 3. Following barley, family 3 o-
L-arabinofuranosidase was purified from Japanese pear,
a dicotyledonous plant (Tateishi et al., 2005a). These
were the first reports that o-L-arabinofuranosidases
isolated from higher plants belong to GH family 3. Based
on amino acid sequencing similarity, -glucosidase and
B-xylosidase have been grouped into GH family 3 in
higher plants; however, it had not been elucidated
whether the proteins possessed P-xylosidase or -
glucosidase activity. The analysis of substrate specificity
of purified enzymes revealed that the enzymes grouped
into family 3 appear to be both single-functional B-
xylosidase and bi-functional o.-L-arabinofuranosidase/[3-
xylosidase for artificial substrates (Table 2). Therefore,
several putative -xylosidases in family 3, which were

classified by only sequence similarities, may possess o.-
L-arabinofuranosidase activity in addition to p-
xylosidase activity. Hence, the expression pattern of
family 3 a-L-arabinofuranosidase described below was
also summarized including B-xylosidase and putative o-
L-arabinofuranosidase/p-xylosidase. cDNA clones of
the enzymes were isolated from barley (Lee et al., 2003),
tomato (Itai et al., 2003), Arabidopsis (Goujon et al.,
2003; Minic et al., 2004, 2006), Japanese pear (Tateishi
et al., 2005a), radish (Raphanus sativus) (Kotake et al.,
2006), peach (Hayama et al., 2006), strawberry
(Bustamante et al., 2006), and alfalfa (Medicago sativa)
(Xiong et al., 2007). They constitute a small gene family
and the expression of each isozyme was found in various
organs and developmental stages. It is suggested that
enzymes exhibiting hydrolysis activity of arabinosyl or
xylosyl residues might act in plant development. Limited
in fruit, LeXYL] and LeXYL2, which are two putative
B-xylosidase cDNA clones, were isolated from tomato
fruit. LeXYLI expression was observed during fruit
ripening while LeXYL2 was expressed in fruit
development and markedly declined with fruit ripening
(Itai et al., 2003). PpARF2 from Japanese pear, which
encodes family 3 a-L-arabinofuranosidase, was
expressed in ripened fruit (Tateishi et al.,, 2005a).
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PpARF/XYL, which was cloned from peach and belonged
to family 3, was also expressed in softened fruit but not
in stony hard peach fruit (Hayama et al., 2006). The
expressions of PpARF2 and PpARF/XYL were regulated
by ethylene (Mwaniki et al., 2007; Hayama et al., 2006).
FaXYLI, which exhibited only B-xylosidase activity
isolated from strawberry, was expressed higher and
accumulated at an earlier stage in a softer strawberry
cultivar (Bustamante et al.,, 2006). According to
expression analysis of family 3 a-L-arabinofuranosidase
and B-xylosidase, they seem to play a certain role in
fruit softening while they were expressed at a relatively
late stage of ripening. A transgenic experiment is neces-
sary to elucidate the role of a-L-arabinofuranosidase in
fruit softening or textural changes.

7. Substrate specificity of a-L-arabinofuranosidase

Several enzymes belonging to both families 3 and 51
showed bi-functional activity against artificial substrates
(4-nitrophenyl a-L-arabinofuranoside or 4-nitrophenyl
B-D-xylopyranoside); therefore, the enzymes are
considered as bifunctional o-L-arabinofuranosidase/f-
xylosidase. It is more difficult and complex to understand
substrate specificity against native substrates of the
enzymes. The ability of enzymes or isozymes to release
both arabinosyl and xylosyl residues from various native
substrates in vitro is distinct (summarized in Table 2).
There is no correlation between substrate specificities
and the primary structure of the enzyme, suggesting the
necessity of biochemical properties when using enzyme
annotations in a database. Minic et al. (2004, 2006)
showed that several p-xylosidase and «-L-
arabinofuranosidase from Arabidopsis possessed similar
substrate specificities against both arabinan and
arabinoxylan and suggested that these broad substrate
specificities are rather convenient for modification of
the complex cell wall structure. On the other hand, a-
L-arabinofuranosidase isolated from Japanese pear
showed limited activity of releasing arabinose from
pectic arabinan (Tateishi et al., 2005a). Radish a-L-
arabinofuranosidase seems to hydrolyze only arabinosyl
residues constituting arabinogalactan protein (Kotake et
al., 2006). Although they showed broad substrate
specificity in vitro, it suggests that substrates of the
enzymes seem to be limited in vivo.

Conclusion

Cell-wall polysaccharides are composed of limited
sugar residues; however, linkage diversity complicates
its architecture. Moreover, many cell-wall-modifying
enzymes consist of multiple isozymes found in the wall
with different activities and expression patterns.
Several  cell-wall-modifying enzymes, such as
polygalacturonase, pectin methylesterase, XTH, and J3-
1,4-glucanase were evaluated by a transgenic technique
and showed less contribution of the enzymes to fruit
softening. Among them, transgenic fruit, which

suppressed the accumulation of an expansin or the
activity of p-galactosidase, kept relatively higher
mechanical strength than the wild type during ripening;
however, fruit softening could not be prevented entirely.
Consequently, limited contribution of each enzyme to
fruit softening was shown. At present, it is suggested
that the degradation of several cell-wall polysaccharides
is necessary, and that numerous cell wall-metabolism
enzymes are implicated in fruit softening. Therefore, the
softening process requires the cooperative action of
several enzymes (isozymes) to degrade -cell-wall
polysaccharides or the sequential degradation of wall
polysaccharides.

On the other hand, several enzymes also contribute
to the modification of cell-wall structures during plant
development in addition to the softening observed during
ripening. In the case of B-galactosidase, according to the
expression pattern and substrate specificity, each
isozyme is active against various galactosyl-containing
polysaccharides and plays arole in cell-wall modification
in several aspects of plant development besides
softening. The roles of a-L-arabinofuranosidase in fruit
ripening/softening are still unclear. It may contribute to
a change in fruit texture involving softening according
to the role of arabinosyl residues in wall polysaccharides,
such as cell-to-cell adhesion. In vitro experiments
revealed that a-L-arabinofuranosidases possess broad
substrate specificities. The expression of a-L-
arabinofuranosidase in non-fruit tissues indicates that
the enzyme also plays a role in not only fruit softening
but also plant development.

Although transgenic experiments are a good tool to
assess whether cell-wall-modification enzymes contrib-
ute to fruit softening, this technique is not sufficient to
clucidate their biochemical characteristics, such as
substrate specificity. Moreover, the transgenic technique
is useful for limited fruit species such as tomato.
Numerous fruit species and cultivars are found with their
own unique characters related to their softening pattern
and textual changes; therefore, it is necessary to make
genetically modified various plant species, in which the
introduced individual enzyme (isozyme) gene is
regulated, and to evaluate them. It is also necessary to
investigate the cooperative effects or interaction of
multiple enzymes on fruit softening. Transgenic plants
with introduced multiple cell-wall-modifying genes or
the progeny of plants crossed by a previously
transformed parent may reveal the more precise
mechanism of fruit softening. These experiments will
also be helpful for producing high quality fruit.
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