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Crystal plasticity is primarily determined by the Peierls stress and the number of slip systems operative. According to
the recent investigation of the present authors, the experimental value of the Peierls stress 7p is in good correlation with
the crystal-geometrical factor //b of the slip system (h being the spacing of slip planes and b the magnitude of the
Burgers vector), and the magnitude of 7p is roughly given by the classical theory of Peierls-Nabarro. For the crystals with
relatively low 7 the maximum temperature 7, of the Peierls mechanism is determined by the theory based on the smooth
kink model, while for the crystals with large 75, covalent crystals, T, is given by the abrupt kink model. To deform
crystals, especially polycrystals, it is necessary to operate five independent slip systems (von Mises) Thus, the intrinsic
strength of crystals is essentially determined by the crystal geometry, and one can derive a general rule to predict the
plastic deformability of crystals, if only the crystal structure in known. Following the general rule, the possibility of duc-
tile ceramics is argued, and the deformability of high-T. superconducting ceramics is investigated, as an example.

§1. Introduction

Ceramics are hard and brittle, in general. The reason
has, however, not been discussed on the basis of the
theory of dislocations or crystal plasticity. The strength
of crystalline solids is determined by the resistance to
plastic deformation which occurs uaually by the glide mo-
tion of dislocations. The Peierls stress 7p is the intrinsic
resistance to dislocation glide on a particular slip plane,
which is due to lattice periodicity. Thus, the Peierls stress
7p is an essential quantity to discuss plasticity or strength
of crystals, unless extrinsic hardening is dominant.

The present authors’? have recently found that the
Peierls stress tp is in good correlation with a crystal-
geometrical factor suggested by the classical theory of
Peierls? and Nabarro,*® as far as the order of
magnitude. Following this fact, one can predict the
magnitude of 7p for a given particular crystal and a given
slip system from the crystal-geometrical consideration.

Another important factor for the discussion of the
plasticity of crystals, especially of polycrystals, is the
number of independent slip systems, which concerns the
requirement of the von Mises condition.® The number of
independent slip systems in a given crystal structure is
also given by the consideration of crystal geometry only.

This paper is an argument about the plsticity of
crystalline solids, preferentially ceramics, from the
crystallographic view points. In sections 2-4, it will be
realized that the intrinsic strength of crystals is essentially
determined from the crystallographic consideration only,
and that one can predict the condition under which a
given crystal is easy to deform plastically. The general
procedure to predict the deformability of crystals is
presented in §5. In §6 the plasticity of ceramic or non-
metallic materials is discussed and the possibility of duc-
tile ceramics is examined. The final section will provide
an application to high-7. superconducting ceramics, as
an example.

§2. Peierls Stress and Crystal Geometry

Diamond is very hard, while copper is easy to deform
plastically. This is considered to be due to the difference
of the Peierls stress 7p between them, and 7p of diamond
is supposed to be about 10° times as large as that of f.c.c.
metals. This big difference of 7p is often attributed to the
nature of atomic bonding, i.e. covalent bonding or
metallic bonding. However, in the past, no critical argu-
ment was made about the essential factor which deter-
mines 7p of various kinds of crystals. At the present time
we have the experimental values of 7p for many types of
crystals, covering metals, ionic compounds, semiconduc-
tors and ceramics. Thus, it should be possible to discuss a
universal rule which may account for the difference of 7p
among the various crystal systems.

Peierls? and Nabarro*” estimated the Peierls stress 7p
without considering the details of the interatomic bon-
ding, as

w2 2n h
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where G is the shear modulous, v the Poisson’s ratio,
the spacing between atomic layers parallel to the slip
plane, and b the magnitude of the Burgers vector b. The
quantity 4/ b is given if only we know the crystal struc-
ture and the slip system. Thus, we can regard 4/ b as the
“crystal-geometrical factor’> of the slip system. This
classical model of Peierls and Nabarro was followed by
re-examinations ans modifications, which give similar (ex-
ponential) dependence of /G on #/b with different
numerical factors.”® These classical theories suggests
that the peierls stress 7p is strongly dependent on crystal
geometry.

With the development of electron computers, accurate
calculations of 7p have been performed for b.c.c. metals
and ionic crystals of NaCl-type, and compared with ex-
perimental values. However, since the computer simula-
tion is possible only when the interatomic forces and the
crystal structure are given, it is effective for the com-
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parison of 7p values among the crystals with same crystal
structure, but ineffective for understanding the difference
of 7p between diamond and copper. The relation of 7p
and crystal structure have never been discussed, probabl-
ly because the experimental values of t» were known only
for a limited number of crystal systems.

The Peierls stress 7p is the stress necessary to move
dislocations at the absolute zero. If we can measure the
critical shear stress 7. of high purity crystals near 0 K, we
can determine 7p. Actually, 7p values of b.c.c. metals,'""?
B2 compounds™' and for {110} slip in ionic crystals of
NaCl-type'®'® have been determined accurately by the
deformation tests at low temperatures. Even when plastic
deformation is difficult at sufficiently low temperatures,
7p can be estimated in some degree of accuracy by the ex-
trapolation of the temperature dependence of the critical
shear stress 7. with the aid of the theory of Peierls
mechanism.'*2Y The zp values for {100} slip in ionic
crystals of NaCl-type'®?? and semiconductors of zinc-
blende type?*?® have been deduced in this way. The crude
estimates of 7p for Si, SiO, and ALO; are still possible
from the data of the temperature dependence of the yield
strength at high temperatures.”””” The critical shear
stress of f.c.c. metals,’**" basal slip in Mg®® and alkali-
halides of CsCl type®*® are small (<1 MPa) and only
weakly dependent on temperature even around 4.2 K.
They are not controlled by the Peierls mechanism, but by
some extrinsic resistance to dislocation motion, for exam-
ple by impurities. In these cases, the critical shear stress
near 0 K should give an upper limit of 7p. The e values of
bee *He and that for non-basal slip in hep *He were deter-
mined by a unique technique for the deformation of solid
helium.?s*? The present authors"? have examined the cor-
relation between these experimental values of 7p and the
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crystal-geometrical factor #/b of the slip systems. The
result is shown in Fig. 1.

The values of #/b must be determined considering the
following remarks. When the dislocations split into par-
tial dislocations on the slip plane, b is taken to be the
value for the partials. Thus, for f.c.c, metals and basal
slip in Mg (h.c.p.) the Shockley partials are considered,
i.e. b=a/6<112)>. For ionic crystals of NaCl type, we
assume that dislocations of both primary {110} and sec-
ondary {100} slip are not dissociated. In CsBr and Csl,
<100>{011} dislocations can most probably split into two
half dislocations,? i.e. b=a/2<{100>. For Si and zinc-
blende structure, splitting into Shockley partials is con-
sidered. In these semiconductors, furthermore, the value
of h is different depending on whether dislocations can
glide at glide set or at shuffle set. In Fig. 1 the value of
h/ b for semiconductors is taked to be that for Shockley
partials gliding at glide set (0.353), but if they glide at
shuffle set, #/b=1.06. The choise of %/b for SiO, and
AlLOs is not simple, because their crystal structures are
complicated (a kind of hexagonal) and the possibility of
dislocation splitting is not clear. In Fig. 1, we assumed
that for Si0, and ALOs /1 is the widest spacing of atomic
layers perpendicular to c-axis and b the shortest transla-
tional vector.

Figure 1 shows that tp/ G of various crystal structures
is in good correlation with the crystal-geometrical factor
h/b and the order of magnitude of 7p/G is given by the
relation of eq. (1) by Peierls and Nabarro. Only the
primary slip system ({110} slip) in NaCl structure is ex-
ceptional. If <110) dislocations in NaCl structure splits
into two half dislocations on {110} slip plane, then
h/b=1.0 and the experimental values of 7p/ G come just
bove the straight line in Fig. 1. The possibility of the split-
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Fig. 1. 1p/G vs h/b. NaCl(1) and NaCl(2) denote <011>{011} and <011>{100} slip systems, respectively, in NaCl type ionic
crystals. Solid line indicates eq. (1) with v=0. 3. (Takeuchi and Suzuki?)
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ting of {110>{110} dislocations in NaCl was argued by
Haasen, *¥ but the calculation of stacking fault energy®”
and the computer simulations of the dislocation core
structure**Y oppose to the splitting. The core structure
of dislocations in NaCl structure and the magnitude of p
are mysterious.

The large 7p of semiconductors or some engineering
ceramics has often been attributed to the large covalency
of atomic bonding. However, Fig. 1 suggests that the
covalent bonding itself is not necessarily direct reason for
their large 7p, and that small 4/ b is rather essential. We
can regard that 7p is determined by the crystal structure
and the geometry of slip system, at least as an order of
magnitude. The nature of atomic bonding should affect
the magnitude of G, and details of interatomic potential
relate to the difference of 1p/G within one order of
magnitude among the crystals with same structure.

It must be noted here that Fig. 1 does not necessarily
confirm the validity of the classical theory of Peierls-
Nabarro. In the original theory of Peierls-Nabarro*>
and also in its modifications made by some workers,” p
was calculated from the changes of misfit energy accom-
panying the motion of rigid dislocations under zero ap-
plied stress. It is not clear whether such procedure gives
true 7p, the minimum stress necessary to move the disloca-
tion. More appropriate treatment is desired to give
theoretical basis to the relation of 75/G - 4/ b.

§3. Critical Temperature of Peierls Mechanism

At finite temperatures dislocations can overcome the
Peierls potential by the nucleation of kink pairs with the
aid of thermal energy, thus plastic deformation occurs
under the stress smaller than 7p. This mechanism is usu-
ally called the Peierls mechanism. The critical shear stress
7. determined by the Peierls mechanism is usually ex-
hibits strong temperature dependence, and there exists a
maximum temperature 7, at which 7. becomes zero.
Above this T, the observed flow stress is determined by
the extrinsic resistance to dislocation motion, and it
shows usually weak temperature dependence as com-
pared with that in the Peierls region. Therefore, the
critical temperature T, is a practical measure of the
deformability of the crystal. To be noted is that the
Peierls stress tp, thus the critical temperature 75, is given
for each individual slip system, different for different slip
system, even in a same crystal.

The thermally activated motion of dislocations sur-
mounting the Peierls potential can be devided into two
regimes: the smooth kink regime and the abrupt kink
regime. The smooth kink approximation is applicable to
the crystals with relatively low 7p, such as b.c.c. metals
and ionic crystals. The abrupt kink approximation is ap-
plicable to the crystals with large tp, such as semiconduc-
tors.

(1) Smooth kink model

According to the theories of Peierls mechanism based
on the line tension model of dislocations, 2" the activa-
tion enthalpy Hy, for a kink pair formation is given as a
function of stress 7, like a curve in Fig. 2. The total activa-
tion energy Ho= H,, (r=0), which is equal to twice the
energy of an isolate kink, is given by

My T

Ho To

Fig. 2. Relation between stress  and activation enthalpy for kink pair
formation H,,, according to the theories based on smooth kink
model (Ref. 19-21). 7 is the Peierls stress. H, is the total activation
energy given by eq. (2). Broken line indicates the asymptotic relation
for t=1p.

Hy=20d b, T, 2

where d is the period of the Peierls potential, Ty the line
tension of the disloation and the numerical factor o ex-
pressing the shape of the Peierls potential is about 0.5.
The estimate of 7 should be made by the theory of
anisotropic elasticity, but usually 7. ~ Gb? is assumed.
Under a constant strain rate Hy,(t)/ k7=constant (~30,
usually), thus Fig. 2 expresses the temperature
dependence of the flow stress 7. The critical temperature
T; at which =0 is defined by H,,(t)/kT=H,/kT ~30.
Using eq. (2), we have

To=H,/30 k=adVbdtp T, /15 k. 3)

It has been shown that the plasticity of pure b.c.c. metals
and ionic crystals of NaCl type satisfies the relation of
eq. (2) or eq. (3).2

(2) Abrupt kink model

When 75 is large and the smooth kink model is not ap-
plicable, we must consider the abrupt kink model. In this
case the energy of an isolate kink is roughly equal to the
energy of a segment of dislocation core of a length d,"?
and we can express the energy as

E.=yKbd, )

where the constant g is about 0.1 and K is the energy fac-
tor of the dislocation in the kink direction. The forma-
tion energy of a kink pair is then given by

Hy=2F,=2yKb, )
and under a constant strain rate, we have
To=H,/30 k=yKb*d/15 k. (6)

Takeuchi et al.? investigated experimental values of H,
for various semiconductors and showed that eq. (5) is
satisfied with y=0.1. The energy factor K should be esti-
mated by anisotropic elasticity theory, but often approx-
imated by the shear modulous G.

Castaing et al.”” performed the plastic deformation of
Si under hydrostatic pressures and measured 7. down to
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about 500 K. In Fig. 3 are compared the temperature
dependence of the critical shear stress 7. of Si with 7. for
{170){110} slip in MgO. The data of MgO is well
represented by the theory of the smooth kink model
(tp/ G~107%), while 7. of Si exhibits the temperature
dependence much steeper than the prediction from the
smooth kink model and experimental Tp (=800 K) is too
small to satisfy eq. (3).

The condition for the applicability of the smooth kink
model or the abrupt kink model is not clear, but for
7p/G=10"" the abrupt kink model is surely applicable.
In the case of the abrupt kink, we need not know the
value of 7p to predict the deformability, since T, of
eq. (6) is independent of 7p and the temperture depend-
ence of 7. is very steep.

§4. Number of Independent Slip Systems

The plastic deformability is closely related to the
number of slip systems which are actually operative or
possible to be activated. The activity of each individual
slip system is determined by the magnitude of 1p of the
slip system. Therefore, when the number of slip systems
with low 7p is limited, the slip systems with large zp are
necessary to operate, thus the crystal exhibits relatively
poor deformability.

To deform a crystal into any desired form, it is
necessary to operate five independent slip systems, as
pointed out first by von Mises.” The plastic deformation
of policrystals or sintered materials is impossible unless
the von Mises condition is satisfied. The independent
number of the slip systems in typical crystal structures
was investigated by Groves ef al.,*” as the results shown
in Table I.

In f.c.c. metals and b.c.c. metals the von Mises condi-
tion is satisfied by only one slip system: {110>{111} and
{111){110} slip system, respectively, of which indepen-
dent number is five. This is one reason for the relatively
high deformability of these metals. The slip systems of
diamond structure and of zincblende structure are the
same as that of f.c.c. metals, but these crystals possess
poor deformabilty because of their large 7p and high 7.
In h.c.p. metals and ionic crystals, the von Mises condi-
tion cannot be fulfilled by only one slip system which has
the smallest tp (primary slip system), thus the slip system
with larger 7p (secondary or higher order slip system)
must operate to satisfy the von Mises condition.

Table . Number of independent slip systems in typical crystal struc-
tures {(Groves and Kelly*).

Cire s syster ™
f.c.c. 011y {111} 5
b.c.c. 111> {011} 5
h.c.p. <1120> {0001} 2
{1120) {1100} 2}4
1120> {1101} 4
diamond 011y {111} 5
zincblende}
NaCl 011y {011} 2} 5
<011y {100} 3
CsCl (100> {011} 3

|
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Fig. 3. Temperature dependence of critical shear stress 7, of Si (Ref.
27), compared with that for <110>{001} slip in MgO (Ref. 23).

It must be noted that the primary slip system and the
secondary (or higher order) slip system are not always in-
dependent of each other. If the independent number of
the primary slip system is 7, and that of secondary is n,
then the cumulative independent number integrating
both slip systems is

A2 =Sny+1. )]

As seen in Table I, the equality holds for NaCl structure,
while the inequality for h.c.p. metals. In h.c.p. structure,
especially, the independent number of the slip system
with 5=<1120) is only four, as the cumulative number,
thus another slip system is necessary, which has a compo-
nent of b not paralell to the basal plane.

As a general rule, when the crystal has high
crystallographic symmetry, it has a large number of in-
dependent slip systems which have low crystallographic
indexes. On the contrary, in the crystals of low sym-
metry, the independent number of each individual slip
system is limited.

§5. Recepe for the Prediction of Deformability

Following the arguments presented in sections 1-4, we
can predict the plastic deformability of crystalline solids
in some degree, if only we know the crystal structure and
the shear modulus G. To be done is to find five slip
systems which are independent of each other and have
small 7. For one particular slip system, the independent
number n and the crystal-geometrical factor h/b are
given by the crystal geometry, then we can estimate p/ G
from eq. (1) and the critical temperature T, from eq. (3)
or eq. (6), depending on the magnitude of the estimated
‘Cp/ G.

It is only in limited cases that the von Mises condition
is satisfied by only one type of slip system, so that we
must examine two or more types of slip systems so as to
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Fig. 4. Scheme for determination of 7*. Tg) is the critical tempera-
ture and #; is the independent number of i-th slip system, nf is the
cumulative independent number up to i-th slip system.

find five independent slip systems. The examination
should be made from the slip system of low
crystallographic indexes which probably gives large //b,
thus small To. Then, we must calculate the cumulative in-
dependent number starting from the slip system of the
lowest T, in the order of the magnitude of 7, untill it ex-
ceeds five, as shown in Fig. 3. In this way we can find Ty
of the fifth independent slip system. This 7,, which will
be refered to as T*, is the temperature above which the
crystal is easy to deform plastically.

The whole procedure can be summerized as follows:

(1) Consider the slip systems with low
crystallographic indexes, and determine the crystal-
geometrical factor 4/ b for each slip system. The possibil-
ty of dislocation splitting must be examined.

(2) Estimate 75/ G from eq. (1) for every slip systems
and also for splitted partial dislocations.

() If ©»/G<107", then Ty is estimated from eq. (3)
for the smooth kink model.

(4) 1If t/G=107", then Ty is estimated from eq. 6)
for the abrupt kink model.

(5) Arrange the slip systems in the order of the
magnitude of 7.

(6) Accumulate the independent number of the slip
systems in order starting from the primary slip system un-
till it becomes five or exceeds five.

(7) The T of the fifth independent slip system, de-
fined as T*, is a measure for the deformability of the
crystal.

In this procedure, the uncertainty of the dislocation
splitting causes large ambiguity to the prediction of T*,
so that this recepé is not almighty, but a kind of guide to
grasp the situation.

§6. Possibility of Ductile Ceramics.

Ductility or plastic deformabily is one of the important
requirments for engineering materials. We can regard
that the 5000 years history of metal technology has been
based on the deformabilty or machinability of f.c.c. and
b.c.c. metals. As described in sections 2-4, ductility or
deformability of crystals is essentially determined by the
crystal structure and its symmetry. When the crystal has
high crystallographic symmetry, then it could have a slip
system with large 4/ b, thus small 75/ G, and the indepen-
dent number of this slip system could also be large. On
the contrary, in the crystals of low symmetry the indepen-
dent number of the primary slip system should be limeted

(<5), thus the secondary slip system which has large
7p/ G must be activated to deform the crystals.

As far as the von Mises condition, only <110)>{111}
and <111>{011} slip systems in cubic crystals can satisfy
this condition. The deformability of non-cubic crystals
is, therefore, determined by the activity of the secondary
or the higher order slip systems which has larger zp than
the primary slip system. Furthermore, in crystals of low
symmetry 4/b might be small even for the primary slip
system. The crystal structure of ceramics are generally
complicated and poor in symmetry. It is, therefore, quite
natural that ceramics of hexagonal type such as a-AlLO;
and «-Si0O, are hard and brittle.

In ionic crystals of NaCl type (cubic structure), <110}
{110} and <110>{001} slip are usually the primary and
the secondary slip systems, respectively. If <110{111}
slip is possible in NaCl structure, the crystal should have
high ductility, but there is no evidence that {111} slip oc-
curs in alkali-halides of NaCl type. However, in AgCl
{110>{111} slip is much easier than {110} or {001} slip at
low temperatures, and the estimated p (=45 MPa) for
{111} slip agrees with the prediction from eq. (1), provid-
ed that the dislocations split into two Shockley partials
on {111} plane.* The Ty for {111} slip in AgCl is about
100 K, thus it is quite easy to deform AgCl polycrystals at
room temperature. The reason why {111} slip is
operative in AgCl, but not in alkali-halides, is an in-
teresting problem.

In jonic crystals of CsCl type (CsBr and CsI), <100
{001} slip has small 7p, but its independent number is
three. The secondary slip system is not known. If <111
{011} dislocations in CsCl structure split into two halves
as in 8-CuZn, we can expect high ductility, but it seems
impossible because such splitting brings ions of same sign
face to face.

Ceramics are generally not mono-atomic but are com-
pounds of two or more kinds of elements. In most mono-
atomic crystals, except diamond lattice, the Burgers vec-
tor b is the vector from one atom to its nearest neighbour
atoms. In compounds, contrary, nearest neighbour
atoms are usually of different kinds. The Burgers vector
should be the vector between the second or third
neighbour atoms. Therefore, b in compound crystals is
relatively large, even in cubic crystals. This is one reason
for small #/b of ceramics, and diamond lattice as well.

As a conclusion, dactile ceramics can be possible,
when the crystal has a cubic or nearly cubic symmetry
and %/b is relatively large, even though not the largest.
The splitting of <110>{111} or <1T1>{110} dislocation is
preferable to gain large A/ b. These requirements for duc-
tile ceramics are rather severe. It seems considerably hard
to find ceramic materials which are ductile around the
room temperature, even though they can possibly be duc-
tile at elevated temperatures. There are some ceramics of
cubic structure, such as perovskite, but they are still not
sufficiently ductile, as shown in the next section.

§7. Formability of High-T, Superconducting Ceramics.

For the engineering application of high-7. supercon-
ductiong ceramics, their formability is one of the impor-
tant problems. Some trials have been made to produce
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wires of superconducting ceramics, but there have been
made no discussion about the plasticity of such materials
from the viewpoint of the theory of crystal plasticity. In
this section we will try to predict the deformability of
high-T.  superconductors  of perovskite  type,
YBa,Cu;O0,_,, following the recepé presented in §5.

We will first consider the simple perovskite structure
(Fig. 5), ignoring the layered structure and oxigen
failures in YBCO superconductors. The slip systems in
perovskite lattice examined here are listed in Table IIL.
The spacing of {001} planes is the widest and a<100) is
the shortest translational vector, thus @{100>{001} slip
has the largest #/b, which gives /G ~3 X 1072 Since
the independent number of this slip system is only 3,
another slip system must operate. The spacing of {011}
planes is the second widest and that of {111} is the third.
On {011} planes, b=a<100> is the shortest and
b=a<011) is the second shortest. On {111} planes, the
shortest b is a<011).

For a{011) dislocations we must consider the possibili-
ty of splitting into partials. In BaTiO; the splitting of
a<011) dislocaions on {011} planes into two half disloca-
tions has been observed by TEM using weak beam
method.® For partial dislocations of this type,
h/b=0.5, being equal to that for perfect @<100>{001}
dislocations. On {111} planes, a<011)> dislocations can
probably split into two Shockley partials, a/ 3¢121) and
a/3<112), as the splitting of /2¢011) dislocations in
f.c.c. metals. The splitting of @{100) dislocations seems
difficult on any plane.

The results of the examination are given in Table II.
The lattice constant « is taken to be 0.385 nm, the length
of the g-axis of YBa,Cu;07_,.*® For the evaluation of
eqs. (3) and (6), we assume the conventional relations
T.=GW and K=G, and G=40GPa of sintered
YBa,Cu;05—,.*® The period of the Peierls potential valley
d in egs. (3) and (6) is taken to be equal to b, the
magnitude of the Burgers vector. In the last column of
Table II the equation applied to estimate 7o is indicated.

The temperature dependences of the critical shear
stress 7. predicted from the 7 values in Table IT are
drawn in Fig. 6, schematically. If {011){011} disloations
split into two halves, as observed in BaTi0,,* it gives the
lowest Ty, but the independent number of this slip system
is only 2. The second smallest T is that of <{100>{001}

Cu

0o

@ Y/Ba

(a) (b)

Fig. 5. Perovskite structure. (a) {100>{011} slip system. (b) Burgers
vectors on {111} plane; b=2a<011) for perfect dislocation, and b,=
1i(112) and b,=1«(121> for Shockley partial disloations.

Table II. Slip systems in perovskite structure. Independent number 7,
crystal-geometrical factor h/b, ratio of Peierls stress 7, to shear
modulus G and critical temperature 7, estimated by the indicated
equation.

h/b

i
plane b/a n /G TyK)  eq.
{001} <100> 3 0.50 3x1072 950 (3
{110) 3029 2x107' 3140 (6)
{011} <100> 2 035 1x1070 1560 (6)
011> 2 025 3x107! 3140 6)
o1 2 050 3x107% 610 (3)
{111} 011> 5 020 5x107! 3140 6)
S 5035 1x107' 1090  (6)
* half dislocation.
*%) Shockley partial dislocation.
Tc
{011} {001 {111} {011}
517 ¢100) 12y 400
\ \
\ \
2 L3 \
- A—r— \
10 G n=2, 3 \5 2
\ \
\ \ T*
0 (AN I\/ 1
0 500 1000 1500 T(K)

Fig. 6. Temperature dependences of the critical shear stress 7. of four
slip systems in perovskite structure. n is the independent number of
individual slip system. Solid lines denotes perfect dislocations and
broken line dissociated partials.

slip systems. The cumulative independent number of
<017>{011} and <100>{001} slip systems is still 3, less
than the requirment of the von Mises condition.
Therefore, the operation 01"%(1 12>{111} slip is necessary
to satisfy the von Mises condition, and it is sufficient as
well, since the independent number of this slip system is
5. After all, 7, for ;<112){111} slip is T* (=800°C) for
YBa,Cu;Oy with simple perovskite structure, regardless
the possibility of the splitting of <011>{011} disloca-
tions. If <011>{111} dislocations do not split into
Shockley partials, then <100>{011} slip should be ac-
tivated, and 7% be much higher than 1000°C, being
higher than the melting point.

Superconducting YBa,Cu;0; -, is not of simple perov-
skite type, but has a three-layered structure containing ox-
igen failures. These modulations of the structure will
dissolve the degeneracy of T, among the slip systems of
same type. For example, T, for [100](001) slip should be
slightly different from that for [0011(100) slip. However,
such changes should not alter the estimate of T* seri-
ously. We conclude here that 800°C or higher tempera-
ture is necessary to make plastic forming of ¥YBa,Cu;O7—«
or other superconducting ceramics of perovskite type.

Finally, we report the results of deformation tests of
YBa,Cu;O;-,. The specimens were produced by Vacuum
Metallurgical Co. Ltd. following the usual sintering pro-
cedure. The density of the specimens is about 74% of the
ideal density. The compression tests of the specimens of
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Fig. 7. Results of deformation tests of sintered YBa,Cu;0,_,. (a)
Stress(a)-strain(e) relations. (b) Maximum stress o,,,, of g-¢ relations
against temperature 7.

3% 3 x5 mm?® were performed in air at the strain rate of
107 sec™!. Figure 7(a) shows the stress-strain relations
observed at several temperatures. Below 700°C,
specimens break without any indication of yielding. Be-
tween 700 and 900°C, a maximum appears and failure oc-
curs just after the maximum. At 930°C, resistance to
deformation becomes small and the specimens deform
up to several tens per cent. Quite interesting is that above
950°C the specimens deform even up to 100% by only
very small stress (<0.1 MPa). The muximum value g,
of the stress-strain relation decreases steeply with increas-
ing the temperature, as shown in Fig. 7(b), and 930°C is
the critical temperqture at which the resistance to defor-
mation almost vanishes. It is not clear that the observed
maxima of stress-strain curves correspond to true plastic
yielding due to dislocation glide. However, if so, the
agreement of the predicted 7*(800°C) with the observed
critical temperature (930°C) is satisfactory, and it implies
that the recepe presented in the preceding section is quite
prospective.
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