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abstract

It is known'that the universe cannot change its
topology in classical theory of general relativity.
In this talk we show explicit examples of topology
changing processes by quantum tunneling in the
(241)-dimensional Einstein gravity model with
negative cosmological constant in the WKB ap-
proximation. It turns out that the wave function
of the universe exhibits a localization property in

the moduli space of the two dimensional universe.

1.Introduction

Probably one of the most fascinating (devas-
tating?) phenomena in Nature will be topology
change of the Universe, if it really occurs. It
is known however, that topology cannot change
in classical gravity unless one allows singulari-
.ties or closed time-like curves, as proven by Ge-
roch {1].

may be allowed in quantum mechanics of geom-

However, topology-changing processes

etry, e.g. by quantum tunneling. In the path-
integral approach to quantum gravity, tunnel-
ing phenomenon can be semi-classically described
by a transition between Lorentzian (real time)
and Euclidean(imaginary time)signature regions
of space-time and the tunneling transition ampli-
tudes can be evaluated by looking for solutions of

the Einstein equation in Euclidean signature re-

1Based on the work in collaboration with Y. Fujiwara,
S. Higuchi T. Mishima and M. Siino.
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gion with appropriate boundary conditions. Un-
fortunately it is not easy to find such Euclidean
4-geometry which represents topology-changing
processes in (341)-dimensional quantum gravity.

We are going down to the (2+1)-dimensional
Finstein gravity to investigate possible topology
changes by quantum tunneling in the WKB ap-
proximation. This is a sufficiently simple toy
model which contains only global degrees of free-
dom with no Newtonian forces and no gravita-
tional wave modes. The topology of two dimen-
sional closed orientable surfaces are completely
classified by genus so that the topology ”change”
reduces to change of genus and number of con-

nected components of spatial surfaces.

2. Tunneling as a Transition
between Euclidean

and Lorentzian Signature Regions

In the path integral approach to quantum grav-
ity, the tunneling phenomena may be described
by transitions between Euclidean and Lorentzian
signature regions in the WKB approximation.
Gibbons and Hartle [2] provided a very restrictive
constraint on the boundary surface % between
the two regions(Fig.1). On the boundary hyper-
surface ¥, where the Wick rotation t — —i7 takes
place, we demand that the spatial metric hq; be
smooth on ¥ at t = 7 = (. Or equivalently, we
demand the continuity of the extrinsic curvature
K43, which is the time derivative of spatial met-

ric. We obtain

Krap(X) = Kgap(¥) = —iKpas, (1)

from which an important consequence follows

Ka(2) = 0. (2)

That is, all the components of the extrinsic cur-
vature must vanish. The surface satisfying the
above condition is called a totally geodesic hy-
persurface.

The totally geodesic property of the boundary

surface is easily understood in physical terms.
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In general, the dynamical motion momentarily
stops at the turning point when the system goes
in and out of the tunnel. Therefore our prob-
lem reduces to finding a Euclidean signature 3-
manifold g with totally geodesic boundaries.

The tunneling amplitude is then given by

T(i, f) = Nexp(~Sg). (3)

with V being a prefactor in the WKB approxi-
mation which is in principle calculable and Sg is

the classical Fuclidean action.
3. Euclidean Solutions

Let us consider a simple model of the Ein-
stein gravity with a negative cosmological con-

stant given by the action:

Sg = 16TG/(R MG Pz (4)

From the variation of the action (4) we obtain

the (2+41)-dimensional Einstein equation:
Rap = 2Agap. (5)

We can easily see that the sectional curvature is
constant by looking at the identity to the Rie-

mann tensor:

Ruupa = gupRug + guoRup - guaRJ/p
_gvapJ + %(guogup - gupguo) (6)

which holds only for the three dimensional space-
time. From the Einstein equation the right hand
side can be expressed by the metric tensor. We

obtain a constant negative curvature space-time:
Ruvpe = Mupgvo — Juodvp), (7)

with negative sectional curvature A.

4. A Double-Torus Universe
from Nothing [3]

Our problem is to find a compact, orientable

3-manifold which satisfies the Einstein equation

A. Hosoya

5 with a totally geodesic boundary surfaces X.
In three dimensions, as already shown in §3, an
Finstein space with negative cosmological con-
stant is a Riemannian manifold with negative
constant sectional curvature and therefore a hy-
perbolic manifold. The three dimensional hyper-
bolic space can be canonically realized by the

Klein model which is equipped with the metric:

(dm’;)z
ry

(xidzt)?

ds? =
’ (1= 22

(i=1,2,3), (8)
defined inside the sphere at infinity S,
x? = (2D + (%) + () < L. (9)

In this model the geodesic curve is a Euclidean
straight line. The metric (8) is a solution of the
FEuclidean signature version of the Einstein equa-
tion (5) in the unit A = —1. It follows that to-
tally geodesic surfaces in the Kleinian model are
Fuclidean planes.

As an example, we would like to construct a
hyperbolic 3-manifold which has a double-torus,
a closed surface with the genus = 2, as the totally
geodesic boundary [4] We construct this by ap-
propriately gluing two regular truncated tetrahe-
dra together which are embedded in the Kleinian
model D®. We embed a regular tetrahedron and
the Kleinian model D? into R® so that both of
them would center around the origin. We ar-
range the tetrahedron so that the angle between
each pair of the faces of the tetrahedron to 7/6
and truncate each vertex of the tetrahedron by
the common perpendiculars to the edges (Fig.2).
We prepare two such regular truncated tetrahe-
dra . Then we identify each pair of the faces so
as to match the arrows indicated in Fig.3 and
identify all the edges. This gives a topological 3-
manifold with a boundary. We can easily check
the gluing counsistency to see that this 3-manifold
actually admits a hyperbolic structure with a to-
tally geodesic boundary. We can show that the
boundary is topologically a double-torus by do-
ing a ‘patch work’ as illustrated in Fig.4 which

follows from the identification rule.
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By using similar tactics we can construct hy-
perbolic 3-manifolds which can be interpreted as
various topology changing processes[5]; a split-
ting of a double-torus universe, a transition of a
double torus universe to a triple-torus universe
etc.(Fig.5)

5. Tunneling Amplitude

In this section, we will explicitly calculate the
tunneling amplitude in the WKB approxima-
tion. We assume that the amplitude of topology
change can be described by the Hartle-Hawking
path-integral [6]:

T(h) = ;Aﬁmam Dy exp(-Sglg]) (10)

where A is the two dimensional metric on a space-
like hypersurface £ and Sg is the Euclidean ac-
tion which has been explicitly given in (10) be-
low. The path integral is over smooth 3-metric
g on the Riemannian space-time manifold Mg
with a boundary 6 Mg, and the summation over
Mg means that we should also sum over different
topologies of space-time Mg. The Euclidean ac-
tion is given in (4) in our present model. Due to
(5), the classical action Sg is simply proportional
to the volume of Mp:

- 1 vV
= 11
% =56 Tk (1)
where V' is a numerical value representing the
volume of Mg in the case of A = —1.

Therefore the amplitude reduces to

T(1i, f) = Nexp (12)

1 1%
56 7w
with V being a prefactor in the WKB approxi-
mation which is in principle calculable.

The tunneling amplitudes are suppressed for
large 3-volumes V. This implies that contribu-
tions from complicated 3-manifolds are exponen-

tially small.

6. Localizaion of Wave-function of the Universe

A. Hosoya

One might conclude from the previous section
that the 3-manifold of the smallest volume would
dominate the path-integral for the wave-function
of the universe. However, the life is not so sim-
ple in the three dimensional hyperbolic space-
time. The moduli of the totally geodesic bound-
ary surface, which give a shape of the two di-
mensional universe in the present model, can-
not be continuously deformed. They are rigid.
Their variety is countably infinite and dense in
the moduli space the surface[7]. Somewhat sur-
prising thing is that for some moduli the volume
distribution has an infinite number of accumu-
lation points,v,,v,2...,each of which correspond
to a single cusp, two cusps... In other words,
there are infinite number of distinct hyperbolic
manifolds which have almost the same volume for
some moduli of the totally geodesic boundary. So
the wave-function of the universe becomes diver-
gent for such values of moduli.This is a kind of
localization. A localization of the wave-function
of the universe in the moduli space. This aspect
of the three dimensional gravity has recently been
stressed by S.Carlip [7].

7. Conclusion

We have considered the topology change
of universes by quantum tunneling in (2+1)-
dimensional Einstein gravity with negative ¢ os-
mological constant in the WKB approximation.
It is also found that the wave-function of the uni-
verse exhibits a kind of localization in the moduli
space of the spatial hypersurface. This may be
physically interpreted in the following way. Only
a countable set of varieties of universe can emerge
from nothing by quantum tunneling. This state-
ment is a strong restriction to the initial value of

classical Einstein equation.
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FIGURE CAPTIONS

Figure.l I is the spacelike surface sandwiched
by the Euclidean(MRg) and Lorentzian(My) sig-
nature regions of space-time manifolds.

Figure.2 A regular truncated tetrahedron
with the dihedral angle /6 in the Kleinian model
of hyperbolic space.

Figure.3 Gluing two identical tetrahedra.-
Each face (e.g.A) of the one of the tetrahedra Fig.4
is identified with its corresponding face (A4/) of
the other one so that the three arrows match.

Figure.4 Patchwork of the boundary pieces.
The result is a double torus.

Figure.5 Various topology changing processes

M.

Fig.1

Fig.5
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