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                abstract

  ir is known'that the uniyerse  cannot  change  irs

topology  in classical  theery of  general relativiLy.

In this t,alk we  show  explicit  exaniples  oftopology

changing  processes by quantutn  t･unneling in the

(2+1)-dimensional Einstein gravity model  with

negat･ive  cosmological  constant･  in the "･XKB  ap-

proximat,ion. It･ t･urns out  that i/he wave  fuiietioti

oft･he  universe  exhibit･s  a  localization property in

t}ie moduli  space  of  the two  dimensioi}al universe.

1.Iigtroduc±ion

  Probably  one  af  the  most  fascinating (devas-
t,ating?) phenomena  in Nature will  be topology

change  of  the IJniverse, if it, really  occurs.  It

is known,however,  t･hat topology  cannot  change

in classical gravit･y unless  one  allows  singulari--

,ties or  closed  tirne-like curves,  as  proven  by Ge-

roch  [1]. However,  topo]ogy-changing  proce.$ses

may  be allowed  in quant･uTn  mechanics  of  geom-

etmy,  e.g.  by quantulli tum]eling. In the pat]i-

illtegral approach  to quantuin  graviry, runnel-

 lng pherion'ienon, can  be seini-c] assical}y  described

 b.v a  transition between Loreiitzian (real time)

 and  EllclideanCimaginary time)signature regiolls

 of  space-tiine  and  the  tunlleling  transition  allipli-

 t･udes cai'i be evaluated  by looking for solutions  of

 tlke Einstein equation  in Euclldean sigiigture  re-

   
i
 Based  on  the work  in eollaboration  -'it,h  Y. Flljiwara,

 S. Higuchi  T, Mishima  artd  M.  Siino.

gion with  appropriate  boundary coiiditioiis.  U]i-

fbrtunately it is not  easy  to find such  Euclidean

4-geometry  which  represellts  topology-changing

processes in (3+1)-dimensio"al quantum  gravity.

  XNie ure  going down  to the (2+1)-dimensional
Einstein gravit,y t,o invesLigate po$sible topology

changes  by quariturn tunneling in the  IVKB  ap-

proxit'nation. 
'l'his

 is a  suMciently  simple  toy

model  wliich  contains  only  globul degrees of free-

doni with  iio  Newtoiiian forces and  tio gravita-

tional wave  modes.  The topo]ogy of  two  din'ieti-

sioiLal  closed  orientable  surfuces  are  conipletely

classified  by  genus so  that the  tepology 
"change"

}.'edi]ces to challge  of  genus  and  mimber  ef  con-

nect･ed components  of  spatial  surfaces.

  2. Tunneeing  as  a  Transitiei'i

       between  Euelidean

and  Lorentzian Signature Regions

  In t,he palh integral approa.  ch  t･o quant,uni grav-

ity, the t･unneling pheiioinena rnay  be described

by trallsitions between  Euclideaii and  Loreiir,zian

fiignature  regions  in the ]vVKB  approximation,

Gibbons arid  Hartle [2] providft(l a  very  restrictiye

ceiisLralnt  on  the  boundary  sutEace  E  between

the two regions(kiag.1).  On  the bouiidary hyper-

surface  X, where  the NfiFJick voLatioit  t. .  -i7" t･akes

place, we  dernaiid t,hat the spat.ial  metric  hab be

smooth  on  E at  t ]  T  =  O. Or  equiva]e]')tly,  we

deinand t,he continuit,y  of  the exLrinsic  curvature

Kab, which  is the  time derivative of  spatial  tnet-

ric.  ivN'e obtain

       KLab( £ ) -- KEab( £ ) =  -UL'Lab, (1)

froill whic]i  aD  important  consequence  follows

               Kab( £ ) =:  O･ (2)

[['hat ts, all the coinpone]its  of  the  extrin$ic  cur-

vat･ure  niust  vallish.  The surface  satisfying  t,he

above  coi]ditiot'i  is called  a totaJl.v geodesic hy-

persurface.

  The totally geodesic property of  tbe boundary

surface  is eusily  uTider$tood  in physical ternis.
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h) genera], the dynarnical motion  momentarily

stops  at  the turning point when  the system  goes

in and  out  of  the tunnel. Therefbre our  prob-
lem reduces  to fiRding a  Euclideaii signature  3-

manifbld  g with  totally  geodesic boundaries.

  The  timneling amplitude  is then  given by

          T( i, f) =  iV exp(-SE).  (i3)

with  IVr being  a  prefactor in the NVKB  approxi-

matton  which  is ill principle calculable  and  SE is
the classical Euclidean actien.

         3. Eu(:lidean Solutions

             '
  Let us  coi]sider  a  simple  model  of  the Ein-

stein  gravity with  a negatlve  cosrnalogical  coii-

stant  given by the action:

      SE :=  -l6#G  f(R- 2A)v[ii d3,, (4)

From  the variation  of  the actioll  (4) we  obtain

the  (2+1)-dimensional Einstehi equation:

              Rap=2Agap-  (5)

NVe can  easily  see  that  the sectiona]  curvature  is

constant  by looking at t･he  identity to t}]e Rie-

nlann  t･ensar:

     Rpvp. =  gi,pRua +  gvo n-p  
-

 gpcr ltvp

       
-g.pR".+g(gp.g.p-gi,pg"cr)

 (6)

Nvhich  holds only  for the  three diinensional space-

time. Frorii the Elnstein equatioii  the right,  band

side  can  be expressed  by  the  met,ric  tenser. "[e

obtain  a  constant  negative  curvature  space-timez

        Rp.p.  =  A(gppg..  -  g".a.p), (7>

witli  negative  sectional  curvat･ure  tN.

       4. A  Double-Torus  Universe

            from  Nothing  [3]

  Our  problem  is to  find a  compact,  orientable

3-n}anifold which  satisfies  the Einstein equation

A. HosoyA79

5 with  a  tot･a]ly geodesic bouiidary surfaces  E.

in three dimensioits, as  already  shown  in i3, an

1i:lnstein space  with  negative  cosmological  con-

stant  is a  Riemaiinian manifold  with  ]iegative

constant  sectional  curvature  and  therefore a  hy-

perbolic irmnifold.  
'I'he

 three dlniensienal hyper-

bolic space  can  be canontcally  realized  by the

Kleiti rnodel  whie}t  is equipped  with  tlie nietric:

 ,,2.  fidunX?,i), ((,X'liM:,,)i;,, (i -- i,2,3), (s)

defined inside Lhe sphere  at  infinity Soo,

       mL' =  (xi):t t(:r2)2 +(x3)2  <  l. (9)

  lti this niodel  the geodesic curve  is a Euclidean

fst.raight  line. 'i'he

 Tnetric  (8) is a  solution  of  the

Euclidean sign  ature  version  of  t･he Einstein equa-

tio]i  (5) iti tlte un"',  A =  
--1.

 ]t ft)llews thaL to-

tally geodesic surf'aces  in the  Kleiriian inodel  ave

Euclidea,n planes.

  As  un  example,  we  woi]ld  ]ike to const,ruet  a

hyperbolic 3-maiiifold which  has a  double-･torus,

a  closed  st]rface wit･]i tlie genus  =  2, as  t,he totally

geodeslc beundar:,' [4] NVe consLt'ucL  t!'iis by ap-

propriaLely gluiiig two  regu]ar  t･runcated tet,rahe-

dra together whic}i  tu'e ernbedded  in the K]einian

model  D3. VVe embed  a  regu]ar  tet･rahedron  and

tl}e Kleiriiari rnodel  D:3 into Ri3 so  that,  both ef

them  woLiid  center  around  the  origiti.  "re ar-

range  tl]e tetrahedron so that the angle  betweei]

each  pair of the  faces of tl]e tetrahedron to T!6

arid  truncate  eaclt  vertex  of  the  tetrahedron by

Ihe  comLnon  perpendiculars to the edges  (Fig.2).
NVe prepare two suc]i  regular  tmmcated  r,et t'ahe-

dra . 'I'heil

 we  id{,･ntify each  pair of  Lhe  faces se

as  to rnatch  Lhe  /･Lrvows  iridi<;aLed ii] Fig.3 aud

 ldentify all  the  edges.  This  gives a  topological  3-

inanifold  with  a  boundar.v. 1･Ve can  easily  cbeck

 the glui]}g collsist.ency  to see  thut this 3-inanifold

 act,ually  ad  inits  a  hyperbolic struct･ure  with  a  te-

 tally geodeslc bo"ndavy. XXie ean  sliow  that the

 boundary is {,opogogicaliy  a  double-torus by  do-

 ing a  
tpatch

 wor}t'  as Mustrated in FigA which

 follow$ frorn the  identification mile.



The Japan Society of Applied Physics

NII-Electronic Library Service

The  JapanSociety  ofApplied  Physics

80JjAP  Series 9

  By  using  similar  tactics  we  can  construct  hv-

perbolic 3-manifoIds which  can  be interpreted ks
variolls  topology changing  processes[5]; a  split-

ting of  a  double-torus universe,  a transition of  a

double torus  universe  eo a  tripge-torus universe

etc.(Fig.5)

5. Tunneling  Amplitude

  In this section,  we  wi]1 explieitiy  calculate  the

tunneling amplitude  in the WKB  approxima-

r･ion. We  assume  that the arnplitude  of  topo]ogy

change  can  be described by the IIartle-Hawking

path-integral [6]:

  w(h)-2f                     Dg  exp(-SEr[g])  (IO)
         MR  

Jg=honOMR

where  h is the two dimensional metrie  on  a  space-

like hypersurface Z and  SE  is the Euclidean ac-

tion which  has been explicit,ly  given in (10) be-
low. [I]he path  integral is over  smooth  3-metric

g on  the  Riemannian space-time  manifbld  .lcCR

with  a  boundary OMR,  arid  the  summatien  over

MR  means  that we  should  aiso  surn  ever  different
topologies of  space-time  MR.  The  Euclidean ac-

tion  is given in (4) in our  present rnodel.  Due  to

(5), the c]assical  action  SE is simply  proportional
to the volume  of  MR:

             . IV

            
$E

 
:::

 4.G pm, (11)

wheve  V is a  numerical  value  representing  the

volume  of  MR  in the case  of  A =  -1.

  Therefore the arnplitude  reduces  to

    
T(
 
z,
 f) 

=IVexp(-4.lc
 th) (12)

wgth  N  being a  pvefactor in the WKB  approxi-

snation  which  is in principle calcuiable.

  The tunneling amplitudes  are  suppressed  for
large 3-volumes V. This implies that contribu-

tions from comp}icated  3-manifolds are  exponen-

tially small.

6. Localizaion of  Wave-function  of  theUniverse

A. HosoyA

  One  might  conclude  from the  previous section
that  the 3-rnanifbld of  the smallest  volume  would

dominate the path-integra} for the wave-function
of  the universe.  However, the life is not  so sim-

ple in the three dimensional hyperbolic space-

time. The moduli  of  the totally geodesic bound-
ary  surface,  which  give a  shape  of  the two  di-

mensional  universe  in the present model,  ean-

not  be continuously  deformed, They  are  rigid.

Their variety  is countably  infinite and  dense in
the moduli  space  the surface[7].  Somewhat  sur-

prising thing is that for some  moduli  the volume

distribution has an  infinite number  of  accumu-

lation points,v.,v.?.,.,each of  which  correspond

to a  single  cusp,  t･wo cusps...  In oLher  words,

there are  tnfinite nuniber  of  distinct hyperbolic
manifolds  which  have almost  t-he same  volurne  for
sorne  moduli  of  the totally  geodesic boundary. So
the wave-function  of  t･he univevse  becomes diver-

gent fbr such  values  of  moduli.This  is a  kind of

iocalization. A  localizat,ion of  the wave-function

of  the universe  in the moduli  space.  This aspect

ofthe  three dimensional gravity has recently  been
stressed  by S.Carlip [7].

7. Comclnsion

  NVe have considered  the  topology  change

of  universes  by quantum  tunneling in (2+1)-
dimensionai Einsteiri gravity with  negative  c os-

mological  constant  in the WKB  approxim&tion.

It is also  found that the wave-function  of  the  uni-

verse  exhibits  a  kind of]ocalization  in the moduli
space  ef  the spatial  hypersurface. This may  be

physicaily interpreted in the fo11owing wa>r.  Only
a  ceuntable  set  of  varieties  ef  universe  can  emerge

from nothing  by quantum  tunneiing. This  state-

    'ment
 is astrong  restviction  to the initiai value  of

elassical  Einstein equation.
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          FIGURE  CAPTIONS

 Figure.1 £  is the spacelike  surface  sandwiched

by the Euclidean(MR) and  Lorentzian(Ml;) sig-

nature  regions  of  space-time  manifolds,

  Figure.2 A  regular  truncated tetrahedron

with  the dihedral angle  rr16 in the Kleinian model
of  hyperbolic space.

  Figure.3 Giuing two  identical tetrahedra.･

Each face (e,g.A) of  the one  of  the tetrahedra

is identified with  its corresponding  face (As) of

the other  one  so  that the three arrows  match.

  Figu:e.4 Patchwork of  the boundary pieces.
The  re$ult  is a  double torus.

  Figure.5 Various topology  changing  processes
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