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Illuminance calculation for an arbitrarily
shaped flat surface source

— Modification of the contour integration ‘method —
(Follow-up paper)

Sho KAMISAKI*

My preceding paper disclosed a simple method for calculating the
iiluminance of a flat surface source of arbitrary shape which could be
expressed by x and y using the following new formulae:

(1) When the surface source is parallel to the illuminated plane:

L (* (intercept on y axis)
E _750 2+y+22 ax
(2) When the surface source is inclined to the illuminated plane by /3:
N L ® (intercept on y axis)
<E>_? cos B Sa, (x2+y2+1;yz Sig p+22 dx
(3) When the surface source is perpendicular to the illuminated plane:
vy L (® 1
E==57) e
where E' =the illuminance component for the interval A to B on the boundary
of the flat surface source, L=Iluminance of the source, z=the [distance
from the illuminated point to the origin located just above the illuminated
point for cases (1) and (2), and the distance from the origin to the illumina-
ted point iocated on the normal to the origin for case (3).

This note provides some calculation examples to find the illuminance of
flat surface sources of various shapes by means of this new method, and
discusses the case having the primitive function F(x)-

i. Preface

My previous paper? demonstrated a simple meth-
od for calculating the illuminance of any type of
flat surface source by modifying the contour inte-
gration method expressed by the product of dw
and cos 8 into a new formula expressed by , ¥
and 2. The present note describes some concrete
examples of calculating the illuminance of a flaf
surface of any shape and at any position, using
the new calculating methode. Fig. 1 Three positions of the co-ordinate

plane including o source.

2. General description of the new If the distance between the illuminated point P
calculating method and the origin O is taken as |z|, the length of the
intercept made by the tangent at point A on the
boundary intersecting the y axis is taken as %, and
the distance between point A and the illuminated
point P is taken as l, the illuminance component of
the minute segment AB on the boundary is as
follows:
For case (1):

Figure 1 shows the cases in which a uniformly
diffused flat surface suorce is:

(1) parallel to the illuminated plane,

(2) inclined to the illuminated plane, and

(3) perpendicular to the illuminated plane,
and the axes z and y are on the plane including a
flat surface source S, the origin 0 is positioned just

above the illuminated point P in cases (1) and (2), E = L S b TL g evreeeesrreeeeroninnesiiiaa s 1)
and at the foot of the perpendicular from the PRENS
illuminated point P in case (3), and the axes z For case (2):
and y are defined as being positive in the direction ~ L b
of the arrows. (E ):fcosﬁga?dx ................................. (2)
* 2.339, 3-chome, Naruko, Kitaku, Kobe-shi For case (3):
A part of this noto was described in J. Illum. L (*1
Engng. Tnst. Jpn. 67’ 3 (1983). (EIDZ__Z_zSa_Zde .................................... (3)
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The boundary itself has no illuminance, and each
of the values obtained from formulae (1) to (3)
is no more than a component in the calculation
process, and thus, they are defined as illuminance
components and given a prime symbol, and the
distinction among cases (1) to (3) is made by
adding parentheses and double parentheses.

The minus sign in formula (8) is to compensate
for the fact that the luminous surface illuminating
the illuminated point P in case (8) faces the direc-
tion opposite to those in cases (1) and (2), as
shown in Fig. 1.

The length of AP=1 is:

For cases (1) and (3): [=+va?+y?+22 }
For case (2): [=+va*+y*+2yzsin g+

If the rectilinear part of the boundary is parallel
to the y axis, the length m of the intercept on the
2 axis is used, and the following formulae are
applied using the length m of the intercept on the
z axis and substituting the definite integral rela-

tive to ¥ according to dx:«fg- dy,

For case (1):
L

al
Elzf_gbl %dy ....................................... (5)
For case (2):
/ L o' m
(E>:7003435b’ By woovsssssssssmmssnes (6)
For case (3):
al
(EN= _éing, ’11:_ . %gdy ........................... @)

3. Routine procedure for calcula-
tion

The procedure for obtaining the illuminance by

means of the definite integral relative to z is as
follows:

(1) Obtain equation y=f(z) and its deriva-
tive ¥,

(2) Obtain the length of the intercept n on the
y axis from the equation n=y-y -2.

(3) Obtain 12 from formula (4).

(4) Substitute the above values into formulae
(1) to (3).

(5) Set the lower limit of the interval of the
definite integral at the point where 2 is
smaller.

(6) Obtain the values of the illuminance com-
ponents using a computer.

(7)  The arithmetic sum of the illuminance com-
ponents belonging to the lower half part of
the boundary may be deducted from the
arithmetic sum of the illuminance compo-
nents belonging to the upper half part.

For the definite integral relative to y, equation

x=f(y), its derivative 2’ and the intercept m
(=2-2"-y) on x axis may be obtained and sub-
stituted into formulae (5) to (7), with the lower
limit of the interval set at the point where y is

15 ' J. Light & Vis. Env.

smaller.

The definite integrals produced by the above-
mentioned procedures, can be classified into two
types, (A) where the primitive function F(z) of
f(x) can be obtained and (B) where such a primi-
tive function ¥ (z) cannot be obtained. The method
of solution is the same for both types.

4. Examples for calculating the
illuminance of flat surface
sources of various shapes

In each example calculation given below, the unit

of the co-ordinate values is taken as meters, with
|2|=6(m) ; the source luminance L=1,000(nt) ; and
for the inclination angle B8 in a case where the sur-
face source is inclined to the illuminated plane,

/ B=380°,

4.1 In the case of a polygonal surface
source
For the polygonal source shown in Fig. 2, cal-
culations are described for in which each side of
the boundary is parallel to, inclined to, or per-
pendicular to the co-ordinate axis.

N

y
A(3,5)

v

c
(-1,-2)|H

D
(3,-2)

Fig. 2 Co-ordinates for a
polygonal source.

4.1.1 The case in which the source is
parallel to the illuminated plane
Substituting y=0.524+8.5 and %#=3.5 into for-
mula (1) gives the illuminance component of the
oblique side AB:
3
Bw=130  srraseis 5 ¥
=130.11
Substituting =83 and m=38 into formula (5)
gives the illuminance component of the perpen-
dicular side AD:
r 1000 (°
Eap==5 S-z 32+y32+6
For the perpendicular side BC, substituting
2=—1 and m=—1 into formula (5) and setting the
interval of the definite integral at from —2 to 3,
gives:

E'5c=—63.77

7 dy=208. 02

Vol. 9 No. 1 1985 15

NI | -El ectronic Library Service



The Il lum nating Engineering Institute of Japan

For the horizontal side CD, substituting y=-—2
and n=—2 into formula (1) and setting the inter-
val of the definite integral at from —1 to 3, gives:

E’CD: —94.83
E=FE 48+ E 4p— FE ¢p—E 5y=496.73(1x)

Since the above-mentioned definite integrals be-
longs to group (A), the primitive function of the
definite integral for obtaining the illuminance com-
ponent, for example, of the side of HD (a right
half of side CD), is:

L™ on

E' up= 5 SO P Ry dx
_L 7 -1 x "
—2 [«/n2+z2 tan vVttt :L
L n 1 L/ RO
2 (Vb ) ®)
Thus, the known formula for a rectangular source
can be obtained.

4.1.2 The case in which the source is
inclined to the illuminated plane
by £30°

For an inclined source, the calculation should be
made according to the above-mentioned procedure
by the definite integration with 2yzsin 8 added to
case (2) of formula (4) and with cos 8 added to
formulae (2) and (6):

(E'48)=78.41, (E'4p)=165.01,
(E'op)=—114.98, (E'pe)=-—54.11
(E)=(E'4p)+(E'40)—(E'¢p) — (E'sc)
=412.51(1x)

These definite integrals will belong to group (A),
but the formula derived from a primitive function
turns out to be very intricate as shown previously
with examples? for calculating the illuminance of
an inclined right-angled triangular source.

4.1.3 The case in which the source is
perpendicular to the illuminated
plane

The rectangle MDCG of the part submerged
beneath the illuminated plane contributes nothing
to the illuminance in the upward direction from
the illuminated plane.

If sides AM and BG are parallel to the y axis,
the length of the intercept on the y axis is con-
sidered to be m=co, then substituting n=o into
formula (7) gives:

(E/AM):(EIBG>: _L,Zga, m, .l,dy:O ......... (9)
27)s o 2

Consequently, calculation of the illuminance with
the illuminance components of the remaining two
sides only is as follows:

CE' 45)=—223.05, (E' me)=—314.40
(E)=(E 18)~(E xs)=91.35(Ix)

The above-mentioned definite integral belongs to
group (A), and the known formula for the sides
parallel to the z axis is given by substituting 2 for
n in formula (8).

For the side AB inclined to the 2 axis, the fol-
lowing formula can be derived, taking the tangent
to the inclination angle as ¢:

‘1’ _'—'L ‘ 1
Ea=—37| e

dx

_ tint+A+Hx e
1 TN )L
[tan NI+t 12 ]_b
N 7
I
o tnt+d+Pa
1 ATl )a
(tan VIE LR+ 5t
o tn—QA+b

—tan VT ) .................. )

4.2 In the case of a circular surface
source

As shown in Fig. 3, if the center @ of a circular
surface source with radius r is put in an arbitrary
position (¢, ¢):

r=3$ c=57 q=4

Fig. 83 Co-ordinates for a circu-
lar source in anm arbi-
trary position.

Z=c+7rcos ¢, y=qg+rsin ¢, %=—rsin ®s
oy g 48 @t rtecose
n=YTY R Singo al)

4.21 The case in which the source is
parallel to the illuminated plane

The illuminance. component of the upper semi-
circle may be obtained by substituting expression
(11) into formula (1) as follows:

’ _L ¢t gy
Ea=g| %
__L (o gsin p+7+ccos ¢
TS” (c+;fcos<o)2+(q+rsin¢)2+zzdgo

......................................................... i)

The interval of the definite integral for obtain-
ing E'c of the lower semicircle is between 7 to
2z, but instead of using E'n—E’c to obtain E,
if the latter interval which is reversed can be
added and made continuous from 2z to 0, F,
(=182.551x) in which the illuminance component
of the total circle can be obtained by a single
process.

16 Itlum. Engng. Inst. Jpn. 16
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The previous paper? demonstrated that the de-
finite integral for a circular surface source in any
case belongs to group (A), and if formula (12) is
modified so as to give U=c*+@*+r*+2?, V=2¢r
and W=2cr,

2°r-U

sz) ..................... a3
Particularly, if the center of a circular surface

source is on the origin 0, the known formula shown

below can be obtained by substituting U=»r?+2°

and V=W=0 into formula (13):

Eo=r "‘%(1—1-

Er;:rcL——i—

ettt et et as 4
72 +22 14

4.2.2 The case in which the source is
inclined to the illuminated plane

The calculation shall be made according to the
above-mentioned formula to which cos /6 and
2(4+3sin ¢) X6 sin /6 are added to the equation
for a parallel source: :

(E0)=123.08(1x)
The formula based on the primitive function

F(z) is, with U=c*+q*+ir*+2°+2qasin 8, V=
2r(g+zsin B) and W=2¢r:
(Eo)=zLr {W—__%E—ﬁ
qV+cW . U
+ e (1 g ey feos 5t

As shown in Fig. 4, if the illuminated point is
on the line normal to the center @ of a circular sur-
face source inclined to the illuminated plane by /8,
then ¢=0 and g=—zsin B, hence V=0 and W=0,
and thus the denominator in formula (15) becomes
zero, thereby making it impossible to perform any
operation.

j RN~

Fig. 4 The case in which
q=-2z sin B.

Consequently, F'(x) can be obtained once again
after substituting ¢=0, ¢g=—2sin 8 into the origi-
nal formula (12):

_L rzsinfcosp [ 0
(Eo)=75 r( r’+z2cos? § [ cos SD:J%

SO T Y 0 L 1 R
7+z%cos? g LY zn)—”l’ 72 +2% cos® B 19
17 J. Light & Vis. Env.

4.2.3 The case in which the source is
perpendicular to the illuminated
plane

If formula (3) is substituted by the integral of ¢
according to equation (11), we have:

_ L ¢ ' —7sin g
(Eo)= ZzSzfz (¢+rc0sgp)z-f-fq-%-rsin(p)z-!—zzdgo

=108. 25(1x)
The formula based on the primitive function

F(x), which is expressed using U, V and W as in
case of a parallel source, is:

(E):@er VZ'IYW2< '\/UZ—}:[]]Z-— 777 _1> ...... )

4.3 In the case of an elliptical surface
source

If the Center @ of an elliptical surface source

with a major axis 2¢ and a minor axis 2b, as

shown in Fig. 5, is at the arbitrary position (e,
q), then:

i
]
'
1

v

d=4, b=3, c=6, =4

Fig. 5 Co-ordinates for an elliptical

-0d  fidD4Q2Q4D UD UL 29.4M0S
sition.

2=c+acose. y=g+bsin and

dx'—‘— J11 7n csssssceecsescenssoccserccsasonssensanasees
r asin ¢ a9
n:y——ylax: aqSIH¢+‘Z_b+bccos¢ ......... (2[))
asm o

4.3.1 The case in which the source is
parallel to the illuminated plane

If formula (20) is substituted into formula (1)
as in the case of the above-mentioned circular sur-
face source, we have:

E:_QS" aqgigge+ab+bcgos¢ d

2 Jox (ct+acos p)?+(g+bsing)?+22 ¢
............................................................ (21)
=197.57(1x)

For the formula based on the primitivé function
F (x), when the center of an elliptical surface source
is on the origin 0, if ¢=0 and ¢=0 are substituted
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into formula (21) to obtain the illuminance com-
ponent of a quarter of the ellipse located at the
first quadrant, then it follows that:

__Ly° ab

Eh=—5 Su/z azcosz¢+bzsin2¢+22d9"
___ Lab [ PP+t
2V +22 LY a?+2?

tan“1<«/ bz—:_zzz tan )LO

2

L3

L = «/b2+”
Eo=4xE'=zL ab

0 AV R NV E R

4.3.2 The case in which the source is
inclined to fhe illuminated plane

Since the terms cos—xz/6 and 2(4+3sin¢) X

6 sin—x/6 may be added to the above-mentioned ex-

pression (21), we obtain:
(E)=136.95 (Ix)

4.3.3 The case in which the source is
perpendicular to the illuminated
plane

If formula (8) is substituted by the integral
of ¢ according to equation (19), then:

L
(E)‘__ ZZSZK

—asin ¢
l2

dp=118. 45(1x)

4.4 In the case of a finite parabolic
surface source
If the co-ordinates for the vertex of the para-
bolic surface source shown in Fig. 6 are set at
(¢, ¢) then the side BC which closes the finite end
will be parallel to the x axis, and it follows that:

N

y 9(4,9) -5

h
i

B -
: C
o (1,1.) i (7,1.5)

X
G=3,p=03, C=4, =9

Fig. 6 Co-ordinates for a
parabolic source in
an arbitrary posi-

4.4.1 The case in which the source is
parallel to the illuminated plane
Substituting equation (23) in to formula (1)
and letting BC=2a, a=38, p=0.3, ¢c=4 and ¢=9,
gives:
L Sc‘r“ dpg—c'+a’

!
Ee=73),., 4p

1 -
. 2+ {g— (@— ) Ap)r+27 dx=308. 81(Ix)

As the distance & from the vertex @ to the side
BC is h=a?/4p=".5, the illuminance component of

the side BC obtained by formula (1) by taking
n=(9-7.5)=1.5 is:
E/B0:83. 29,
E=FE'q—E 5:=225.52 (Ix)
4.4.2 The case in which the source is
inclined to the illuminated plane
Since the terms cosp and 2yzsing are added to
the above-mentioned expression, it follows:
(E'¢)=207.30, (E’'pc)=61.42
(B)=(F¢)—(E pr)=145.88 (Ix)

4.4.3 The case in which the source is
parpendicular to the illuminated
plane

By similar calculations,

(E¢)=—162.88, (E'ps)=—333.17
(E)=(F¢)—(E'5:)=170.29 (Ix)

4.5 In the case of an infinite para-
bolic surface source
As shown in Fig. 7, if the vertex of an infinite
parabolic surface source is set at the origin O, the
distance between point A (z, ¥) on the parabola
and the directrix (shown on the d axis) is equal

to the distance between point A and focus F, and
FA=x+p.

A
'd

-
&
1
|
1
[
[
|
|
!
n
!

DI Of
>

I
|
]
1 \
I
]
1
!

A
/A

tion. i
~"‘i._.
2—c)? r—
y=q—=< 1 D C R 5 o, _
p bt s D Fig. 7 Parameters in the
4pg—c+x case of an infinite
g ep= T Y iiiieeseeseriteinaneneae
n=y-y T 4p 2 parabolic source.
18 Itlum. Engng. Inst. Jpn. ’ 18
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As the orthogonal projection FB of the vector
FA on the z axis is, FB=z—p, it follows that:

_x—p 1+cos 90
cos p= x+p’ ‘bl —cos ¢’
ﬂ(’___ sin ¢ e eteeieseeterianrerasaaareerenae
do 2p(1 cos ¢)* 4
_ o Dsing
y=2vpw = 21 —Cos ¢
gy gyl PSP S i
REYTY 1—cos¢ b &
Substituting the above-mentioned expressions
into formula (4) gives:
515 —2(22—p") cos o+ (2 —3p") cos” p+2°
(1—cos ¢)?
............................................................ 9

Substituting expressions (24) to (26) in formula
(1) for a source parallel to the illuminated plane,
and letting p=0.3 gives the illuminance component
of the parabola within the first quadrant:

vV L(°
e o L3
Ep= 250 T dw S (1—cos®)
1 —2psine d
x exp. (26) X (1—cosp)? 4
=— LY
S" 1+cose
e (5PP+27)—2(*—p*) cosp+ (2~
de=236. 81 (Ix)
Hence, E=2xE’,=473.62 (Ix)
Moreover, the straight lines connecting the illumi-
nated point P to both infinite ends become one on
the illuminated plane with the included angle being
equal to zero, which thus makes no contribution
to the illuminance.
As the definite integral in this case belongs to
group (A), it follows that:

Ey= 250 T

S (o]

S Al

AP TPR (where A=V 4PE—2%)

4P —2pz
AP -2

psine

3p*)cos? ¢

- N
A

E= 2><F’1—1 "y 2bz

eetieiitiiiaaes @)

4.6 In the case of a finite hyperbolic
surface source

In Fig. 8, if the distance between both vertexes
H and H’ is taken as 2a, the length of the vector
OG connecting the point G on the line normal to
the vertex H to the center O is taken as x, and the
angle between the vector and the original line OH
is taken as ¢, then r=a sec ¢.

GH=atan o=+ 2"— ¢,
y:%vzzt;izb BATL @ +erereeerererrenenenennns 09

19 J. Light & Vis. Env.

- -

Fig. 8 Parameters for a

hyperbola.

The rotating angle ¢ of the vector OG ranges
from O to n/2 on the first quadrant, from = to
87 /2 fi on the second quadrant, from 7 to 7/2 on the
third quadrant, and from O to —z/2 on the fourth
quadrant.

4.6.1 The case in which the source is
parallel to the illuminated plane

As shown in Fig. 9, if the center of a hyperbolic
surface source is at (¢, ¢), then:

g=4, b=2, [ c=3, q=7, h=375,w=85

Fig. 9 Co-ordinates for a finite hyper-
bolic source in an arbitrary po-

sition.
x=c+asecy, %=asinsosec2¢ -------------- 9
=g-+btan ¢, y’=§cOsec¢
n=y—yl - w=0qsiNp—abcoso—be .. .. 60

asin @

In a symmetrical hyperbolic surface source, AB=
2w, and AD=2h, thus ¢ corresponds to cos™ a/w
for point A4, to —cos™ a/w for point D, to (z+
cos™ g/w) for point B, and to (r—cos™ a/w) for
point C.

Hence, substituting expressions (29) and (80)
into formula (1) gives:
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o L SCOS‘ia/W (ag sing—ab cos p—be) sec” o
=

2 cos-ta/w (¢+aq sec ¢)2+Cq+btan ¢)2+z2 dgp
......... ...................................................(31)
=—-173. 86(Ix)

As the integral interval for the left-side curve
ranges from 4.222432 to 2.060754, E';,—=—101.48.

The illuminance components of the two sides AB
and CD closing the top and bottom are E’,,=511.47
and E’,,=408.10 according to the type of polygonal
source.

o Eoopar =E' 4p—E'z—E'1—E'op
=378. 71(1x)

4.6.2 The case in which the source is
inclined to the illuminated plan®

The terms cos g and 2yzsin g are added to the
above, giving: (E'z)=-128.99, (E’,)=—64.10,
(E'45)=—323.63 and (E’;p,)=268.45, and conse-
quently, (E)=243.27(Ix).

4.6.3 The case in which the source is
perpendicular to the illuminated
plane

Substituting expressions (29) and (30) into for-
mula (3) gives:

1a/
OB = L S a0

In the same way, (£'1)=87.12, (E'45)=—285.47,
and (E/op)=—753. 41.
(E)=CE4B)—(E'z)—(E'L)—(E op)
=354, 04(1x)

4.7 In the case of an infinite hyper-
bolic surface source
As shown in Fig. 10, in the first quadrant with

the center of a hyperbola located at the origin O,
x=o0, hence p=x/2.

=4, b=2, X=co

Fig. 10 Euxplanation of the calcula-
tion for an infinite hyper-
bolic source.

E,IZLSW —absecop
2 )0 a*sec’ -+ tan? p+22
= —103. 635(1x)
Since the infinite ends of a hyperbola are re-
garded to be on the asymptote, it follows that the

dgo ...(32)

subtending angle & from the illuminated point P
to which the boundary that closes the infinite ends
is w=2tan'a/b and is included in the illuminated
plane. Thus, the illuminance component of that for
the first quadrant is:

E’w=§tan‘1—‘g—=4—1’goo tan™! i—553 574
E=4x(E'.—E'})=2628.84(1x)

Moreover, the illuminance E, in a case in which
the section shown by (A) at the outer right side
of the hyperbola is the source, is:

E = (1,000r —above-mentioned E) =2
=512.75 (Ix)

This definite integral belongs to group (A), but
depending on the relative extent of the distance 2
to the illuminated plane, the formula is changes
remarkably as shown below, with F(z) turning
into a formula including a logarithm or an inverse
tangent.

In case of 2>b:

Formula (82)

Z+ 2|\ =/2
Lab i Slnga \/ _zz
= T L2 A/ 72 | 108
AV @+22 Ve —p smgp+\/ai—zz
L ab (Va5 —vVZE—p*)°

T AV R V) log P

In case of 2=b:
Formula (32)

In case of z<b:
Formula (32)

_ L ab
VE+22 VI —22

: {tan ‘1<«/ EZ——_—*_——Z—Z; sin ¢>] i

Lab Wr=r:
=~ AT = Wi b2+§2 """ &2

4.8 In the case of a four-leaf-shaped

source

This method of calculation can also be applied
to flat surface sources of various shapes, such as
a four-leaf or a heart shape, which are expressed
by polar co-ordinates.

For a four-leaf-shaped source as shown in
Fig. 11, r=a cos 24, therefore if the center @ is at
an arbitrary position (¢, ¢) it follows that:

Z=c+acos260 cos§, y=qg+acos2¢sing
%7—asin 9(1—6 cos’ 6)

dy _ cos §(1—6sin” §)
‘dx sin 6(1—6 cos? §)
n:

gsin 6(1—6cos’ §) —acos’ 20—c cos (1—6 sin’ )
sin §(1—6 cos? 9)

20 ' . Mum. Engng. Inst. Jpn. 20
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r=dcos2 4
i A

a=3, c=2, 9=4

Fig. 11 Co-ordinates for a
four - leaf - shaped
source in an arbi-
trary posttion.

4.8.1 The case in which the source is
parallel to the illuminated plane
By substituting expressions (36) and (37) into
formula (1) and making the integral intervals of
each respective leaf continuous, it follows that:
L
’—._._.
E'= 50
g sin §(1—6 cos® §) —a cos? 20
S —c cos’9(1—6 sin? §) dg
2 (c+a cos 20 cos §)* +(g+a cos 20 sin 07 +2% ..

=162. 09(1x)

In particular, the definite integral in a case in
which the center is located at the origin 0 belongs
to group (A), consequently, with ¢=0 and ¢=0
and with the primitive function F'(x) for the first
leaf extending from the first to the fourth quad-
rant, it follows that:

=L S T —g' cos’ 20
=2 k af cos? 20 +2*

5 do

/2

=-fl:‘{[ «/azz-l-_éz— .tan‘l( «/a2z+ 77 tan 20)] ;/2
-0 )

E=4XE’1:7;L<1—752’%—"Z—;> ............... 69

4.8.2 The case in which the source is

inclined to the illuminated plane

Adding cos /6 and 2(4-+3 cos 2¢ sin §) X6 sin /6
to expression (39) gives (F)=39.10(Ix).

4.8.3 The case in which the source is
perpendicular to the illuminated
plane

By similar calculations, we can obtain:
(E)=96.03 (Ix)

5. Conclusion

According to this new method of calculation, the
definite integrals for a flat surface source of any
shape and any condition that can be expressed by
f(x) can be obtained easily using memorizable
formulae and procedures, and the calculation can
be done by computer.
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