都道府県別自然災害統計のデータベース構築とマクロ分析

Preparation and Analysis of Data Base for Statistical Data of Damages Due to Natural Disaster Among to the Administrative Divisions of Japan

天国 邦博¹, 漆間 惚人², 笠谷 学³, 荏本 孝久⁴, 望月 利男⁵ Kunihiro Amakuni¹, Takahito Uruma², Manabu Kasaya³, Takahisa Enomoto⁴ and Toshio Mochizuki⁵

¹東京都立大学大学院都市科学研究科·博士課程

Graduate Student, Tokyo Metropolitan University, Doctor Course

²東京都立大学大学院都市科学研究科·修士課程

Graduate Student, Tokyo Metropolitan University, Master Course

³神奈川大学大学院工学研究科·修士課程

Graduate Student, Kanagawa University, Master Course

'神奈川大学工学部

Faculty of Engineering, Kanagawa University

5東京都立大学都市研究所

Center for Urban Studies, Tokyo Metropolitan University

In this paper, we collected the statistical data of damages due to natural disaster occurred in Japan during 26 years from 1970 to 1995 in order to prepare the data base for the statistical data of natural disaster among to the administrative divisions of Japan. This data base is very important to the future research programs for the development of the methodology of disaster prevention potential evaluation technique and analysis of effect due to the fittest investment for disaster prevention. As the types of natural disasters, we treated and summarized into five kinds of disasters, namely typhoon, heavy rain, earthquake, heavy snow and the other phenomena. We could almost complete the first-step of data base preparation and investigated a brief and basic analysis using the statistical data of damages due to natural disasters from this data base.

Key Word: Natural Disaster, Statistical Data of Damages, Data Base, Regional Characteristics, Multi-Variable Analysis

1. はじめに

ある地域あるいは都市の諸々の災害危険度を誘因はもとより、被災素因すなわち人的・物的被害から被災地内外にわたる社会・経済的影響に至るまでを全国レベルで把握し、それを地域間で科学的に比較検討することは、国土利用・地域管理計画の立案、それをも考慮した適切な公共防災投資のあり方等の財政施策ならびに企業の危機管理計画などに資する意義は極めて大きいと考える。本研究で対象とする災害は、我国の「防災白書」・「消防白書」等^{例え}は1)、2)で取り上げられる自然災害に限定する。また、対象とする地域は、47都道府県とする。

本研究で対象とするほぼ全ての自然災害には、明らかに地域性がある。また、災害を地域あるいは都市問題として捉える時、地域社会が被る被害量は端的な人的・物的被害の総量、経済被害の総額で示される被害の絶対量では一面的で不十分である。これらの端的な被害量に内在する被災地の社会・経済的条件を考慮した地域構造・規模など地域特性に基づく災害の受容力と関連付けて、より多面的に地域にとっての総体的なダメージの重みとして被害量を評価する必要がある 30~50。さらに、中枢都市を含む都道府県等の大規模災害は被災地内の被害に止どまらず、その影響は広域に及び、時には海外にも波及する。その最近の事例としては、平成7年(1995年)に発生した阪神・淡路大震災が挙げられる。

本研究は、最近に至るまでの可能な限り長い期間にわたって我国各地の災害履歴に関する諸々の資料を各々その自治体等から収集して自然災害統計データベースを構築するとともに、それらの諸資料を分析する事により地域にとっての被害量あるいは災害の実態とそれに内在する災害の誘因および被災素因を明らかにすることを前段の目的としている。そして最終的な目的としては、地域の災害環境を含む空間・社会・経済構造とその変遷過程に着目し、これらの地域あるいは都市が保有する災害の受容力を考慮に入れて、この受容力と総体的なダメージの重みとしての被害量との関連性について考察し、防災力ポテンシャル評価と最適防災投資効果の分析を行うことである。

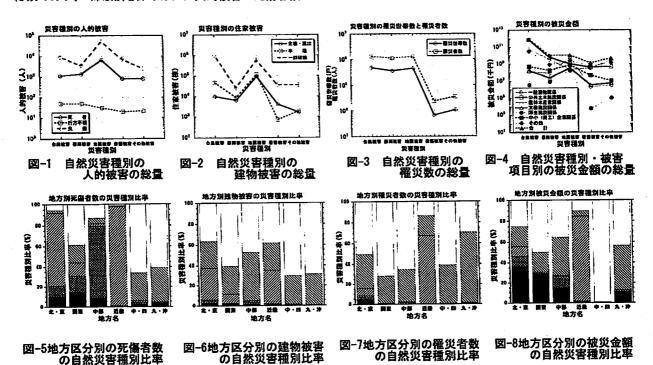
本稿では、以上のような観点から 47 都道府県の被害統 計資料の収集によるデータベースの構築とその基礎的な 分析結果について報告する。

2. 自然災害統計のデータ構造

ここで、分析の対象とした自然災害は①台風災害,②寮雨災害,③地震災害,④豪雪災害および⑤その他災害の5つの災害である。その他災害とした自然災害としては、冷害,凍害,融雪や寮雨・豪雪を除いた気象災害による被害である。また調査対象年度は昭和45年(1970年)度から平成7年(1995年)度の26年間である。被害統計量としては、

直接被害として人的被害と建物被害に大きく分かれている。人的被害は死者,行方不明,負傷者数であり、建物被害は全壊,流失,半康,全焼,半焼,床上浸水,床下浸水,土木施設(道路,橋梁,河川,山崩れ・崖崩れ,軌道被害)や船舶の被害量がある。被害金額は、一般建物関係,公共土木施設関係,農林水産業関係,文教施設関係,厚生施設関係,中小(商工)企業関係およびその他の7分類で統計資料がまとめられている。

これらの被害統計量は、基本的に都道府県別に同一の形式で統計データをまとめてあるが、資料の整理の都合上で地方別にまとめることもあり、その場合の地方別としては、以下の区分を用いている。

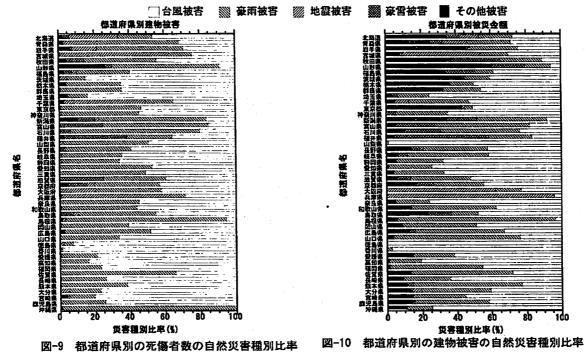

①北海道・東北地方(北海道, 青森県, 岩手県, 宮城県, 秋田県, 山形県, 福島県の7道県), ②関東地方(茨城県, 栃木県, 群馬県, 埼玉県, 千葉県, 東京都, 神奈川県の7都県), ③中部地方(新潟県, 富山県, 石川県, 福井県, 山梨県, 長野県, 岐阜県, 静岡県, 愛知県の9県), ④近畿地方(三重県, 滋賀県, 京都府, 大阪府, 兵庫県, 奈良県, 和歌山県の2府5県), ⑤中国・四国地方(鳥取県, 島根県, 岡山県, 広島県, 山口県, 徳島県, 香川県, 愛媛県, 高知県の9県) および⑥九州・沖縄地方(福岡県, 佐賀県, 長崎県, 熊本県, 大分県, 宮崎県, 鹿児島県, 沖縄県の8県) の6つの地方区分とした。

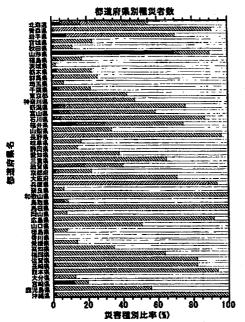
3. 自然災害による被害統計量の概要

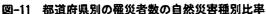
図-1は、調査期間とした26年間の自然災害種別の人的被害の総数であり、死者数(行方不明者数を含む),負傷者数は地震災害で最も多く、それぞれ約6500人と約6000人となっている。次いで台風災害、豪雨災害で多くなっている。また、図-2は建物被害(非住家を除く)の総数であり、一部破損を除けばほぼ人的被害の死傷者数の

一部破損および非住家被害などである。さらに、罹災関連として罹災世帯数と罹災者数の統計量がある。また、建物被害統計以外として耕地(田畑の流出、埋没、冠水)、傾向と同様に地震災害で最も多く、次いで台風災害、豪雨災害となっている。図ー3は、罹災世帯、罹災者数の総数で、ともに台風災害、地震災害および豪雨災害などで多く、罹災者数は26年間で約120万人、罹災世帯で約40万世帯に及んでいる。図ー4は、同様に自然災害別の被災金額の総額を示したもので、被害項目別で多少順位が変化するが総額では台風災害が最も多く約800兆円に上っている。また、地震災害では一般建物、公共土木施設および文教施設関係の被災金額の割合が高くなっているのが特徴的な傾向となっている。

図-5は地方区分別に見た死傷者数の災害種別比率を 示したもので、北海道・東北地方と近畿地方では地震災害 による人的被害が多く発生し、中部地方では豪雪災害、中 国・四国地方および九州・沖縄地方では台風災害, 豪雨災 害で多くなっていることを示している。図-6は同様に地 方区分別の建物被害の災害種別比率を示したもので、いず れの地方においても台風災害、豪雨災害による比率が 5 0%を超えており、特に中国・四国地方および九州・四国 地方では約90%以上を占めている。図-7は地方区分別 の罹災者数の災害種別比率であり、近畿地方における地震 災害、九州・沖縄地方の豪雨災害を除いて他の地方では台 風災害による罹災者数が高い比率を示しており、近畿地方 を除けば、いずれも台風災害と豪雨災害により 80%以上 の比率を占めている。図-8は被災金額の災害種別比率を 示したもので、近畿地方における地震災害、北海道・東北 地方および関東地方でその他災害による比率が高いが、全 体的には台風災害と豪雨災害による比率が高く、特に中 国・四国地方では台風災害による比率がほぼ 100%と全被 災金額を占める結果となっている。




-10-


4. 都道府県別被害都軽量の実態

ここでは、都道府県別に調査対象期間の26年間にどのような自然災害がどのような比率で発生してきたかを分析した。取り上げた被災項目は、死傷者数、建物被害、罹災者数と被災金額の4つの項目である。図-9~図-12に都道府県別に被害実態を整理し、自然災害種別の比率で示した。

図-9は死傷者数の災害種別比率であり、全体的な傾向 を見ると沖縄県・愛知県などでその他災害、兵庫県・大阪 府における地震災害による高い比率を除けば、中部地方以 北ではその他災害,豪雪災害による比率が相対的に高くな り、近畿地方以南では台風災害,豪雨災害による比率が高 い。図-10 は建物被害の災害種別比率であり、この建物 被害については兵庫県の地震災害を除いて、ほぼいずれの 都道府県においても台風災害および豪雨災害による被害 の比率が高くなっている。図-11 は罹災者数の災害種別 比率を示したものであり、山形県のその他災害を除けば建 物災害と同様に、ほぼいずれの都道府県においても台風災 害と豪雨災害による比率が高くなっている。図-12 は被 災金額の災害種別比率であり、図-9に示した死傷者数に おける災害種別比率の傾向と同様に、兵庫県,大阪府にお ける災害種別比率の傾向と同様に、兵庫県,大阪府にお ける地震災害の高い比率と山梨県の場合を除くと、中部地 方以北で台風災害と豪雨災害以外の災害による被災金額 の比率が高く、反対に近畿地方以南では台風災害および豪 雨災害による比率が高くなっている傾向を示している。

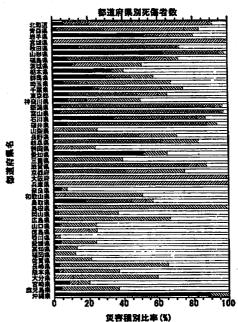


図-12 都道府県別の被災金額の自然災害種別比率

5. 都道府県別被害統計量の経年変動

ここでは自然災害による被害虽の変動として、罹災者数と被災金額を取り上げ、自然災害種別に昭和45年(1970年)から平成7年(1995年)までの26年間の経年変動について検討することとした。紙面の都合から罹災者数の経年変動について図-13~図-17に示した。これらの図では、各種自然災害によって発生した年度毎の罹災者数の図では、各種自然災害によって発生した年度毎の罹災者数の図では、各種自然災害によって発生した年度毎の罹災者数の累積値を用いて経年変化を示しており、61にまとめて、財和線が到達した最終年(最も右側)のる。したがって、折れ線が到達した最終年(最も右側)の数値が26年間の罹災者数の累積値を示している。また例の落差が大きい年度ほどその年に多くの罹災者数を発生させた災害が発生したことを示しており、折れ線の折点数が多いほど罹災者を発生させた災害が数多く、また恒常的に災害が発生して経年変動が激しいことを示している。

図-13 は台風災害の累積経年変動を地方区分別・都道府県別に示したもので、北海道・東北地方では北海道や秋田県で、関東地方では埼玉県や東京都で、中部地方では埼玉県や愛知県で、近畿地方では大阪府と兵庫県で、中国地方では香川県で、そして九州・沖縄県では鹿児島県、福岡県と大分県で被災者数が多くなっている。また、経ぼ恒常的に罹災者を発生させている。とを示している。図-14 は豪雨災害となっていることを示している。図-14 は豪雨災害の場合であり、北海道・東北地方では北海道、岩手県やな田県で、関東地方では東京都と神奈川県で、中国地方では鳥町県で、関東地方では大阪府で、中国・四国地方では鳥取県と広島県で、九州・沖縄地方では長崎県と能本よで、電災者数が多く発生している。台風災害の都府県に大き領向を経年変動は少なく、年によって特定の都府県に大き領向を

示している。図-15 は地震災害の場合であり、北海道・ 東北地方では岩手県、青森県や北海道で、関東地方では千 葉県で、中部地方では新潟県と長野県で、近畿地方では兵 庫県で、中国・四国地方では鳥取県と徳島県で、九州・沖 縄地方では大分県と熊本県で罹災者数が多く発生してお り、明らかに特定の地震災害により多数の罹災者数を発生 させる突発的な経年変動の傾向を示し、台風災害や豪雨災 害の経年変動の傾向とは異なっている。図-16 は豪雪災 害に関する累積経年変動であり、発生する罹災者数は相対 的に少ない。北海道・東北地方では北海道で、関東地方で は群馬県と神奈川県で、中部地方では新潟県と福井県で、 近畿地方では滋賀県と京都府で、中国・四国地方では鳥取 県で罹災者数が多く発生しており、九州・沖縄地方では豪 雪災害による罹災者数は発生していない。経年変動は地震 災害と同様に特定の道府県で特定の年に罹災者数が集中 して生じる災害が発生する傾向を示している。図-17 は その他災害の場合の経年変動を示したもので、北海道・東 北地方では岩手県と北海道で、関東地方では千葉県と東京 都で、中部地方では新潟県で、近畿地方では兵庫県で、中 国・四国地方では広島県と島根県で、九州・沖縄地方では 宮崎県と長崎県で罹災者数が多く発生している。経年変動 の傾向は台風災害や豪雨災害の傾向と同様にやや変動の 大きな災害となっていることを示している。

ちなみに、被災金額に関する同様な分析では、地方区分別・都道府県別の順位が罹災者数の場合とは若干異なり、自然災害発生の地域的な条件により必ずしも罹災者数と被災金額とは整合していないこと示している。しかしながら経年変動の傾向は、罹災者数の場合と同様に台風災害,豪雨災害やその他災害では変動は相対的に大きく、恒常的な自然災害である傾向を示し、地震災害や豪雪災害では特定の災害に被災金額が集中する突発的な自然災害となる傾向を示している。

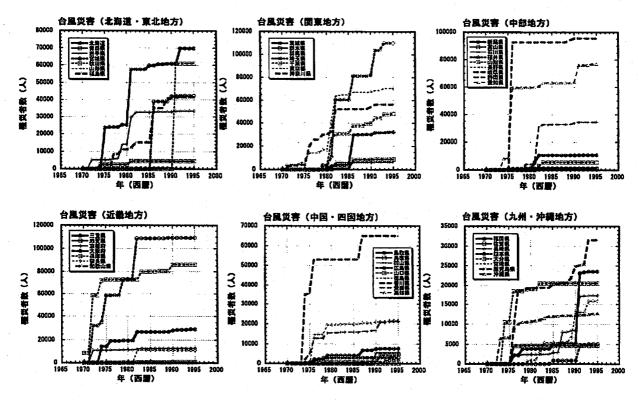


図-13 台風災害による罹災者数の累積経年変動

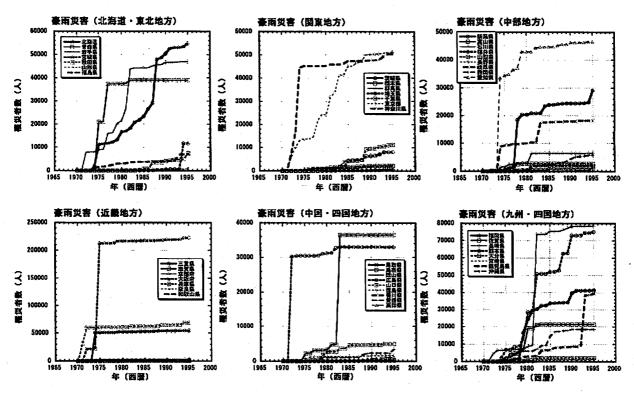


図-14 豪雨災害による罹災者数の累積経年変動

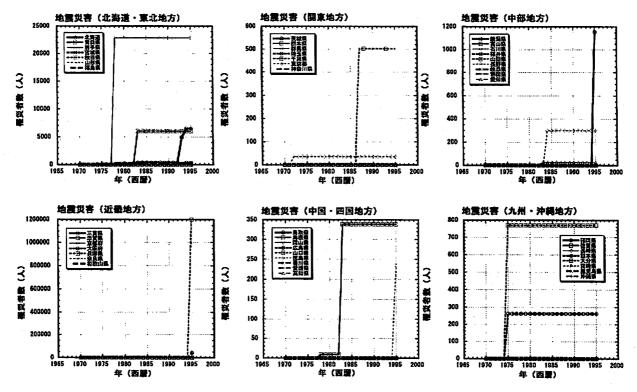


図-15 地震災害による罹災者数の累積経年変動

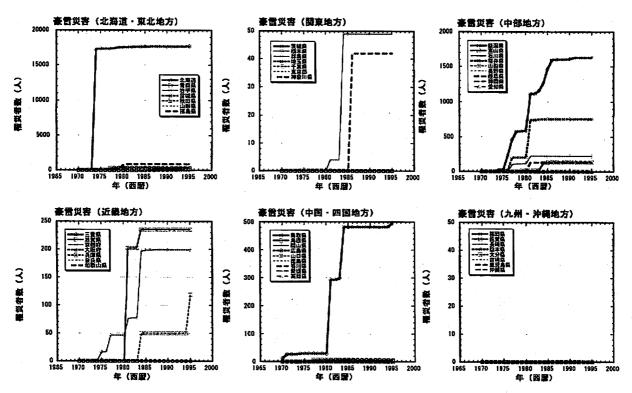


図-16 豪雪災害による罹災者数の累積経年変動

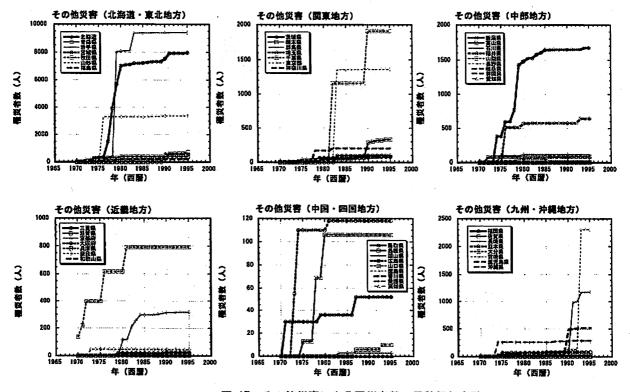
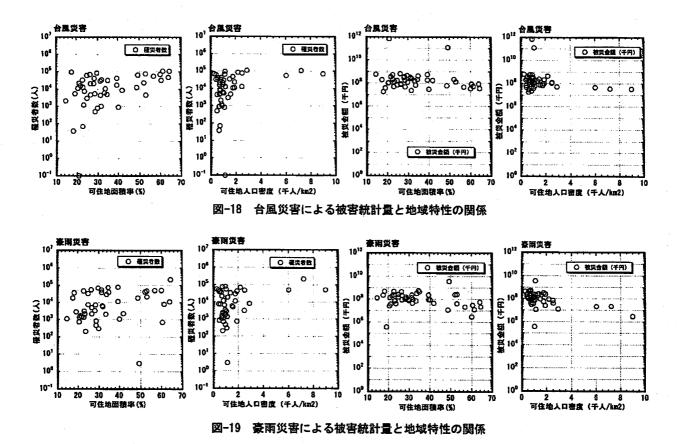



図-17 その他災害による罹災者数の累積経年変動

6. 被害統計量と地域特性の関係

ここでは、自然災害種別の被害量として取り上げた罹災 者数と被害金額について、都道府県別の地域特性と関係に つして若干の考察を行った。地域特性としては、各都道府 県の総面積に対する可住地面積の比率として可住地面積 率(%)と、可住地面積に対する人口密度として可住地人 口密度(千人/km²)の2つの指標を取り上げた。前者は、 都道府県の市街地化の進展の度合に対応して都市化の目 安となる。また後者は、人口の密集度の度合に対応して、 人口集積化の目安となるものと考えられる。なお、これら の都道府県毎の可住地面積率,可住地人口密度を算定する にあたって用いた総面積、可住地面積および人口の数値は 当然のことながら26年間の間に変化しているため、どの 年度の数値を用いるかには若干の検討が必要となるが、総 面積には大きな変化はなく、平成2年(1990年)以降は 可住地面積,人口にも大きな変化が減少し都道府県別の順 位の変動も比較的少ないことから平成2年(1990年)の 数値を用いて算定した6。結果を図-18~図-22に示し、 これらの図に基づいて簡単な考察を行うこととする。図-18 に示しす台風災害では、罹災者数はバラツキは大きい が、可住地面積率および可住地人口密度ともに増大するに 従って、罹災者数は増加する傾向を示している。一方、被 災金額については可住地面積および可住地人口密度に対 して大きな変化はなく、ほぼ一定の被災金額を示している。 図-19 に示す豪雨災害では、台風災害の場合と同様に罹 災者数は可住地面積率および可住地人口密度の増加に伴 って罹災者数は増加する傾向を示し、被災金額については 両者の変数には関係なく、ほぼ一定の傾向を示している。 また、図-20 に示した地震災害では罹災者数、被災金額 ともに可住地面積率に対してバラツキが大きく個々の地 震災害に固有の特性が強く、あまり明確な傾向は認められ ない。一方、可住地人口密度に対しては罹災者数、被災金 額ともにやや逆比例の傾向が認められる。図-21 に示す 豪雪災害では、罹災者数については可住地面積率および可 住地人口密度に関して明瞭ではないがやや正比例の傾向 を示し、逆に被災金額についてはやや反比例の傾向を示し ているものと思われるがいずれも明確ではない。図-22 に示したその他災害では、罹災者数、被災金額ともに可住 地面積率に対しては明瞭な関係を示す傾向は認められず、 可住地人口密度に対してはやや反比例の傾向を示してい

以上、被害量として罹災者数と被災金額を取り上げて、 可住地面積率と可住地人口密度による地域特性と関係に ついてややマクロな分析を行った。これらの関係について は上述したように、いずれもバラツキが大きく明瞭な傾向 を抽出するには至っていないが、自然災害種別によりそれ ぞれやや異なった傾向を示しており、より詳細な分析が必 要であろう。

-15-

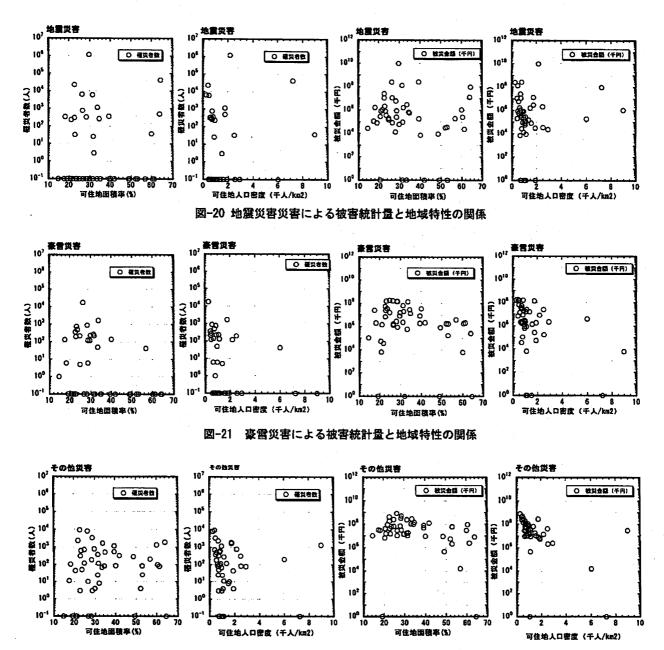


図-22 その他災害による被害統計量と地域特性の関係

7. 多変量解析による被害統計量の分析

ここでは、都道府県別の罹災者数および被災金額に対して、多変量解析である数量化II類を用いて自然災害による被害量の分析を試みることにしたっ。本解析における外的基準および説明変数としてのアイテム・カテゴリーは表ー1に示す変数を用いている。特に第1アイテムの地域区分では、第2章で述べた6区分を基本として、我国の気度区分や地震地体構造区分などを勘案して、13区分に設定した。解析結果を図ー23と図ー24に示した。なお、本解析においては各都道府県における罹災者数と被災金額の総数(累積値)を人口千人当りで基準化した数値を外的基準とした。また、この際に使用した人口は、表ー1のアイテム・カテゴリーに使用した人口,可住地面積率および可住地人口密度のデータと同様に平成2年(1990年)の資料に基づいた数値を用いている。罹災者数を外的基準とした場合のカテゴリー・スコアの結果を図ー23に示した。各

アイテムの外的基準に対する偏相関係数は、第1アイテム が 0.746、第2アイテムが 0.949、第3アイテムが 0.320、 第4アイテムが 0.629、第5アイテムが 0.805 となってお り、重相関係数は 0.952 である。図より第2アイテムであ る自然災害種別の寄与が大きく、第3カテゴリーの地震災 害で大きなカテゴリー・スコアを示している。これは人口 密度の低い地域の防災対策の不備によるものと思われる。 次いで、第5アイテムである可住地人口密度が大きな寄与 を示し、人口密度の低い地域の方が罹災者数の発生を高め ていることを示している。次には第1アイテムの地域区分 で、中国・四国地方および九州・沖縄地方の寄与が高くな っている。第4アイテムである可住地面積率では、可住地 人口密度と同様に可住地面積率が低い地域ほど大きなカ テゴリー・スコアを示している。また、被災金額を外的基 準とした場合の結果を図-24 に示したが、罹災者数を外 的基準とした場合に比べ解析結果は明確ではない。各アイ テムの外的基準に対する偏相関係数は第1アイテムが 0.511、第2アイテムが0.244、第3アイテムが0.332、第4アイテムが0.257、第5アイテムが0.151であり、重相関係数は0.614である。この結果では第1アイテムである地域区分が最も大きな寄与を示し、特に第11カテゴリー

の中国・四国地方(四国側)で高いカテゴリー・スコアを 示すが、その他のアイテム・カテゴリーのカテゴリー・ス コアは低く重相関係数も低いため被災金額に対して十分 な説明変数の設定とはなっていないものと思われる。

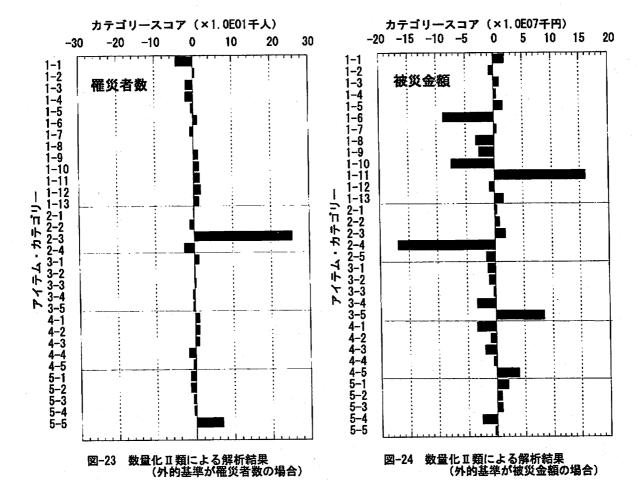


表-1 数景化 II 類解析に用いたアイテム・カテゴリー

			とアイテム・カテゴリー
外的基準	1. 罹災者数	人口1000人当たり	
	2. 被災金額	人口1001人当たり	
説明変数	アイテム	カテゴリー	区分
	1. 地坡区分	1 北海道·東北(日本海側)	北海道·青森·秋田·山形
		2 北海道·東北(太平洋側)	岩手·宮城·福島
		3 関東(沿岸側)	茨城・千葉・東京・神奈川
		4 関東(内陸側)	栃木・群風・埼玉
		5 中部(日本海側)	新潟・富山・石川・福井
		6 中部(内陸側)	山梨·長野·岐阜
		7 中部(沿岸側)	静岡·愛知
		8 近鎌(日本海側)	滋賀·京都·兵庫
		9 近畿(太平洋側)	三旗·大阪·亲良·和歌山
		10 中国・四国(本州側)	鳥取・鳥根・岡山・広島・山口
		11 中国・四国(四国領)	徳島・番川・愛媛・高知
		12 九州·沖縄(日本海側)	福岡・佐賀・長崎・熊本
		13 九州·沖縄(太平洋側)	大分·宮崎·鹿児島·沖縄
	2. 自然災害種別	1 台風災害	
		2 豪南災害	
		3 地震災害	
		4 豪雷災害	*第1外的基準の場合は省略
		5 その他災害	*第1外的基準の場合は第4カテゴリー
	3. 人口規模	1 大きい	7500~(千人)
		2 やや大きい	3000~7500
		3 中程度	1500~3000
		4 やや小さい	1000~1500
		5 小さい	~1000
	4. 可住地面積率	1 高い	50.0~ (%)
		2 やや高い	40.0~50.0
		3 中程度	30.0~40.0
		4 やや低い	25.0~30.0
		5 低い	~25.0
	5. 可住地人口密度	1 高い	3.00~ (千人/km2)
		2 やや高い	1.50~3.00
		3 中程度	0.75~1.50
		4 やや低い	0.50~0.75
		5 低い	~0.50

8. まとめ

本研究では、自然災害に対する防災力ポテンシャル評価 と最適防災投資効果の分析に向けて、都道府県を対象とし た自然災害統計データベースを構築することを目的とし て、1970 年から 1995 年の 26 年間において我が国に発生 した自然災害による被害統計量に関する資料を収集する とともにその基本的な整理と若干の分析を試みた。自然災 害の種別としては、台風災害、豪雨災害、地震災害、豪雪 災害およびその他災害の5つの種別として整理した。この 結果、自然災害種別では台風災害、豪雨災害と地震災害、 豪雪災害, その他災害では異なる地域性が認められ、中部 地方以北と近畿地方以南の東日本と西日本では明確に異 なる被害の発生パターンを示している。また、被害虽とし て罹災者数と被災金額を取り上げて、地方区分別・都道府 県別に26年間の累積経年変動を見ると、前者の自然災害 の経年変動は大きく恒常的に被害を発生させる自然災害 の傾向を示すのに対して、後者の自然災害は特定の地域に 特定の年に発生する災害により被害量が極めて大きく変 動する傾向が明瞭で、その経年変動は突発性を示している。 この代表的な事例は 1995 年兵庫県南部地震であり、被害 **赴として取り上げた罹災者数および被災金額への影響は** 極めて大きなインパクトを与えている。このことは前者の 自然災害については、恒常的な被害発生パターンを示す災 害として被害量および防災投資効果についての分析の可 能性を示唆するが、後者の自然災害に対しては、特に地震 災害については突発性が大きく関与することから、単純な 被害統計量の分析からだけでは不十分で、別の観点からの アプローチすなわち地域や都市が保有する災害の受容力 を評価に入れた防災力ポテンシャル評価手法と関連させ た形での災害に対する被害量予測方法の確立とその精度 向上や適切な防災対策項目の抽出,強化および実施過程の 段階的な評価などを考慮した上で防災投資効果を分析で きる枠組を構築することが必要となろう。

最後に、被害量として罹災者数および被災金額について 各都道府県の可住地面積率および可住地人口密度により 地域特性との関係について若干の分析を行ったが、自然災 審種別によりやや異なった傾向が認められるものの、バラッキも大きく明瞭な傾向は抽出できていない。また、合わせて数量化Ⅱ類の多変量解析により被害量の分析も実施したが、罹災者数については1995年兵庫県南部地震の影響を大きく反映した結果となり、これを除いた場合には結果が大きく異なることは十分予想できる。また、被災金額については、台風災害・豪雨災害の影響を反映した結果となり、十分な分析に至っていない。従って、今後は災害種別また地方区分別などを考慮して更なる詳細な分析が必要である。

謝辞:本研究のデータベース構築の基礎となった、47 都道府県における26年間の自然災害の被害統計資料は各都道府県の関係部局・課から御提供頂いた。部局・課の名称が同一ではないため(主として消防防災課)省略させて頂くが、多大なる御協力を頂きましことを心より御礼申し上げます。

参考文献

- 1)国土庁編,「防災白鸖・平成8年版」, 1996
- 2) 消防庁編、「消防白掛・平成8年版」、1996
- 3) 古田隆彦, 酒井 均, 「都市規模別地域防災力の研究」, NRS-83-14 総合研究開発機構助成研究, 社会工学研究所, 1985
- 4) 住本孝久, 石井 実, 望月利男, 「地震災害脆弱性評価の都市間 比較ーデータの収集と整理ー」, 地域安全学会論文報告集, 1995, pp. 395-402
- 5) 天国邦博、荏本孝久、望月利男、「地震防災ポテンシャルの評価手法に関する基礎的研究ー都市特製と被害量による定量評価ー」、総合都市研究第61号、1996、pp. 193-200
- 6) 財団法人矢野恒太記念会編,「データでみる県勢・第8版」,国 勢社,1998
- 7)駒澤 勉,橋口捷久,石崎龍二,「新版・パソコン数量化分析」, 朝倉掛店,1998

(原稿受付 1999.6.28)