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Some Remarks on Changing Populations

Ernesto Trucco

Division of Biological and Medical Research, Argonne National
Laboratory, Argonne, Illinois

This paper represents a summary of my recent work on the dynamics of
cellular populations. I have deliberately chosen the title to be the same as that
of an article written in 1959 by H. Von Foerster® which contains the essential
points of the theory in an intuitive (rather than strictly rigorous) manner. Actually,
of course, there is a vast literature on these problems, going back to the work

of A. J. Lotka, summarized in his book, reference®.

By deme (see®) we mean the totality of cells in a cellular population answering a
well-defined but necessarily incomplete state description, i. e., all the cells of a given
type (cf*®). The equation derived by H. Von Foerster for the age density
function, n(¢,a), of a deme is similar to the continuity equation in hydrodynamics.
It has the form

fn_+_@”~=_gn, ...................................................... (1)

ot oa

where n(t¢,a)da represents the number of cells with ages in the range (a:--a+da)
at time ¢ (¢ and a denote time and cellular age, respectively). The quantity 2,
called the loss function, measures the probability that a cell will leave the deme
during the time interval d¢ for any cause whatever.

Later, and independently, P-E. E. Bergner®* as well as A. G. Fredrickson and
H. M. Tsuchiya™ obtained and used essentially the same formulation. The latter
authors also made specific assumptions about the various contributions to the loss
function.

We assume quite generally that 1 is the sum of three terms

l:ﬂ—}-p—i—t ............................................................ (2)

These correspond to three mutually exclusive events: mitosis, permanent removal,
and emigration (for details see®). u is called the generation coefficient. The

quantity 7n(¢,0)=a(¢) represents the generalized birth rate or influx function.

* 1 am much obliged to Dr. Bergner for allowing me to read his manuscript before publication.

** Work supported by U. S. Atomic Energy Commission.

t In my paper® Fredrickson and Tsubhiya’s article” is referred to as an “unpublished manuscript.”
Professor Tsuchiya kindly informed me that this work had appeared in the A. I. Ch. E. Journal.
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For a deme of cells dividing by binary fission without influx from a precursor
population, it is postulated that

oo

a(t>=28ﬂ’nda ........ R RARL LR ELERL R T PPR TR PP (3 )
a=l
We also put n(0,a)=p(a); this is the initial age distribution. The solution of
equation (1) is completely determined if «(z), f(a), and 4 are known. The total
number of cells in the deme, N(¢), is given by

N(t) =Sn(t’ a)da, ...................................................... ( 4 )
a=0
and we have
__._.—dN —_— ——m ................................................
N —a® Sjn da. (5)
The function

fE — AT e, ( 6)
S An da
am

which depends on time, age, and possibly other parameters specifying the system,
is called the Uhlhorn probability density. Its first moment with respect to the

variable a,

gives the average age of the cells disappearing from the deme during the time
interval d¢. It is shown in® that equation (7) is equivalent to a relation derived
by U. Uhlhorn (unpublished) and quoted without proof by P-E. E. Bergner (re-
ference®, page 976).

The general solution of equation (1) can be found very easily if the loss func-
tion, 4, depends only on ¢z and a, but not on n. This, of course, is a very restrictive
assumption. The corresponding hypotheses in the stochastic treatment of population
dynamics are those of a multiplicative or branching process (T. E. Harris**,
and J. E. Moyal™™). In other words, the behavior of one cell is not influenced
by the presence of other cells. The function n(¢, a) is then given by equation (9)
of reference®. Two special cases of this result are of interest.

1) Suppose that 2 depends explicitly on ¢z and N(z), but not on a or n. In
the present formalism the age variable specifies the structure or the constitution

of the deme (reference®, pp. 44-45, see also™). Therefore, by suppressing all age
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dependence of the loss function we are essentially considering what H. M. Tsuchiya'

has called a completely unstructured model. For simplicity, let 2 be a function of
N only:

A=g(N) =m(N) +7(IN), eeeerrrrreererrecnnnene Ve, (8)

where m is the generation coefficient [72=px] while 7 represents losses from death
or emigration. N(z) is expressed in terms of n by equation (4). Then (3)
determines the birth rate:

(D) =2 (IN) - N, oreveeersreeenmeeernnnen et (9)

and from (5) we obtain

_%7_:“(;) —g(N) N=N-[m(N) —r(N)]. cereeeererreneens (ivo)'

Equations of the form (10) are frequently used in population dynamics; this is
the familiar formulation stating that the behavior of the population depends only on
the total number of cells, N(¢). In fact, the problem will be solved completely if
N(t) is found from the ordinary differential equation (10) with the initial condition

N,y=N(0) =SB(a) da. Once N(¢) has been determined, the loss function, g(N(2)),

am=0

becomes a known function of ¢ only and the age density can be computed from

equation (9) of®. The result is

a(T) peyy = . RO
ooy | BT RO =2m(N(T)) N(T) iy for £ l---(n)
Bla—t)-R() for a>t,j

where T=t—a and R(t)=expl‘:—-§g(Nv(y))dy:l.

y=0
t

Notice that this solution is consistent, in the sense that on computing Sn (¢t,a)da

a-O N .
-{—Sn(t, a)da, with n(¢,a) given by (11), we obtain N(¢). This can readily be

«(T) _ d [N(T)
R(TY ~ dTLR(T)

equation is obtained by taking m(N) =A=<_:onstanf>0, and »(N) =B- N, where 'B
is a positive constant. This gives: a(t) =24N, dN/dt=AN-BN? N(¢) =AN0/
[BN,+ (A—BNyexp(—At)], and R()=(N()/No)exp(—2A¢).

2) A second simple situation is .that in which 2 depends on.age only:

verified using the fact that :\ As an example, the logistic

1=0(a) = p(a) +p(a) +r(a)>0. ceeens ‘ (]_2)

I call these intrinsic loss functions. From equation (9) of® we now have

NI | -El ectronic Library Service



The Society for Bioscience and Bi oengi neering, Japan

Vol. 44, 1966) Some Remarks on Changing Populations 221
a(t—a) ¢(a) for t>a
t, = S N B PP P PR PR 13
pla—t)
where
¢(a> =exp[—80(x)dx] ............................................. (]_4)

zm(

[1t is assumed that the integral Sﬂ(x)dx diverges.] In particular, the steady

zm(

state solution, 7(a), is given by 7m(a) =a¢(a) =B(a), a; being a constant. Thus,
the Uhlhorn probability density for the steady state becomes

Fla) =0(a) v(a) = __d_‘/(’i(ai)_zg(a). .............................. (15)

[The notation §(a) was originally introduced by H. Von Foerster; d(a) should
not be confused with a Dirac delta function.] The first moment, D, of é(a)
is the mean life span; it represents the average age of cells leaving the deme if
there is a constant influx, a,, of newborn cells. This is equivalent to a congenerate

sample in the sense of Von Foerster (reference®, p. 387). Thus we have

=Saa(a)da=gw(a)da=1v/wo, .................................... (16)

a=0 a=(

where N= S‘ﬁ(a)da. Notice that our assumption A=60(a) excludes the occurrence

am=(

of correlation between the life spans of related cells, e. g. sister cells, whereas in
fact such a correlation is frequently observed (E. O. Powell™, H. E. Kubitschek™).

If 2 is given by equation (12), the birth rate, a(¢), can be obtained from an
integral equation of the renewal type. Inserting the expression (13) for zn(z,a)
into equation (3) we find

t

a(t) =G() +28,u(a)a(t—a)qo(a)da .............................. a7n
with
G@) = 28- 2(a) Bga t% PAETE (@) da. seerererenereeniee (18)

The solution of equation (17) for some simple special cases is discussed in re-

ference®.
Assume that the intrinsic loss function, 6#(a), i1s the sum of two terms

corresponding to mutually exclusive mechanisms of cell removal, say
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0(a) =6,(a) +6,(a). Define ¢;(a) =exp[— §0; () dx:! and

xm(

- 8;(a) =0,(a)¢;(a), for i=1,2. Then we have ¢(a) =¢:(a) -¢s(a), and

3@ =0, 1~ fou(xddz | +]1- [z e,

z=0 z=0

Some examples of these relations are given in reference’.

A further application of the Von Foerster formalism with intrinsic loss function
is the equation derived first by Y. Maruyama* and later by E. O. Powell™ for
the exponential growth of a bacterial population without losses from death or
migration. It is also assumed that the generation coefficient, u#, depends on age

only. Thus we have

A=0(a) = p(@). cv-voeeeervreemerineieiiiii (19)

We put as before

o(a) = exp[- S”(x)dx] ............................................. (20)
and
0(a)=pula)p(a)= _Li%g_‘il. ....................................... 2D
a

The Marwyama-Powell age density function is defined to be
n (t, a) = ZCNOe“e_“(p (a) [M = constant>0] , eeeeereseesenen (22)

where the positive constant ¢ is determined uniquely by the equation

ZSe“"a(a) T O PN (23)

a=(

It is easily seen that the expression (22) for the age density n(¢,a) satisfies
equations (1) and (3). From (4), (22), and (23) we obtain N(#) = N, so that the
value of ¢ found from (23) is related to 7, the mean doubling time of the culture,
by the equation ¢7=In2. The properties of n(¢,a), as given by equation (22),
and of the Uhlhorn probability density derived from it, are discussed at the end of
reference®. Notice that in this case the Uhlhorn function coincides with Powell’s
“carrier distribution.”  According to Powell (page 497 of*®), the carrier distribu-
tion governs the generation times for the immediate ancestors (mothers) of the

cells actually extant at any given time. The meaning of this statement 1s not

** Maruyama’s name is not mentioned in my paper® because I did not know the contents of his
article!™. I am very grateful to Dr. Maruyama for supplying this reference which could not be obtained
in the United States. It should be pointed out that the results of Maruyama and Powell are already
contained in the earlier work of Harris, T. E. (e. g., reference®, Theorem 12).
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quite clear to me.

A special case of equation (22) is obtained when all the cells have identical
generation time, say D. This is approximately true in many cases and has been
called equivivancy by H. Von Foerster. Then we have ¢(a)=1 for 0<la<<D,
¢(a)=0 for a>D, and (22) reduces to

2cNyet'e™ for 0<<a<<D }

t,a)=
n(t, @) 50 for a>D,

with ¢=(1/D)In2.

A very simple but interesting application of equation (24) is given in refer-
ence™.

Consider again a population characterized by equations (19)-(21), but assume
now that B(a)=6(a—y), where & denotes the Dirac delta function and y is a
non-negative constant. Formally, this means that at time zero there is one cell of

age y (even though the theory is applicable only for large populations). Put

M(t’ y, x) = Sn (t’ a)da’ ............................................. (25)

which is the equivalent of the quantity M(¢,y, ) introduced by T. E. Harris
in his theory of branching processes [reference®, equation (5.13)]. We shall
show that the function M(¢,y,x) defined by (25) satisfies the integral equation

b

e T e(yT+E) d(u+y) _
M(t,y, x)=J(x—y—t) o) —i—ZS peD) Mt —u, 0, x)du, (26)

k=0
where J(§)=0 if ¢<0 and J(&)=1 if §>0. This is the same as equation (5.23)
of reference®.

Remembering the assumption on 8(a), equation (18) now becomes

o 8 Y) e,
G@)=2 RO 27

and equation (17) can be written in the form
a(t) =G(t) + (20%a), «+orerrerererreemaimaiiii (28)

where the symbol * denotes convolution. The solution of the integral equation

(28) 1s given by

() =G() + (GHQ), ++++rrrrrrrerrrasaeaeiimiiiiiiiie e (29)
where @, the resolvent kernel, is itself a solution of the equation
Q) =26(2) + (284QQ) . +reeeereemmreieeeeeeee ettt eaeeaeae e (30)

If y=0 we have G(2)=28(¢), in which case the two equations (28) and (30)
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have the same form. This means that Q(¢)=[a(¢)],.,, and therefore, using
equation (13):

-2

M(t, 0, x)=SQ(t—a)qo(a)da-}—J(x-—t)cp(t), ........................ (31)

am(

where ¢ is the smaller of the two numbers x and ¢. In particular,
M, 0, 2)=M(t,0,t) +¢() TS f.eeeeersrnerniiiiieiineian. (32)

Assume now x<<¢t. Then we have from equations (13) and (29)

x t—a

M, y, ) =S¢(a) (G(t—a) + SG(u)Q(t—a—u)du] da,

am( umQ

or, inverting the order of the integrations over a and u, and using equation (31),

x t—x

M, y, z) =S (2)G(t—a)da-+ SG(u)M(t——u, 0, z)du

Gm Hm()

t

+ SG(u)M(t—u, 0, ¢ —)du.
In the last integral, M(¢—u,0,t—u) can be replaced by M(t—u,0, x) —¢(—u),
according to equation (32), and so we are left with

t

M(t,y, )= g(;(u) Mt —10,0, L)z, wvererereremsemmereseeesinsininnn, (33)

4o

This is the same as (26) if x<<t.
The case x>t is treated in a similar manner, remembering that

x

Sn (t,a)da=

{[1/¢(y)]<p(y+t) if t+y<z, %
otherwise. )

Thus we see that the quantity M(¢,y, x) computed from the Von Foerster
equation coincides with the expected value M(z,y, x) obtained from the theory
of branching processes.

In general, the age of cells is not a variable that can be measured directly.
It would be interesting to extend the theory assuming that cellular types are
characterized by quantities other than age. The type would then be represented
as a point or state vector in an abstract space™™. No equations of motion are
known for these representative points, so that we can only try to develop their
statistics without the corresponding mechanics (cf. the introductory remarks in E. H.
Kerner’s paper, reference®).

O. Scherbaum and G. Rasch® as well as Fredrickson and Tsuchiya (reference”,
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page 464) discuss the distribution of size, s, within a cellular population. 'D. G.
Oldfield® has a?ttenipted a generalization of the Von Foerster equation by straight-
forward analogy with the continuity equation of hydrodynamics.

In principle; the statistical theory of cellular (or othef) systems is completely
developed by J. E. Moyal'®, where no restrictions of any kind are imposed on the
state space. It is assumed in most cases that the stochastic population process is
Markovian and is therefore characterized by a transition probability P(A,z/x,s).
This is the probability of transition from state x at time s to some state y in the
set A at time ¢, satisfying the so-called Chapman-Kolmogorov equation. Theore-
tically these assumptions are not a severe restriction because almost any process
can be made Markovian by appropriate choice of the states [see reference®, pp.
59-60]. In practice, however, the states are more or less prescribed by the nature
of the system.

J. E. Moyal® also gives a theory of Markov processes in which transitions
may be sudden [“jumps”] or continuous. For example, a change in number of cells
is always a jump, but variations in size are usually continuous. The possibility of

using Moyal’s very general results for biological applications deserves serious study.
Note added in proof:

After completing the present manuscript I was informed by Dr. C. F. Mountain
that, due to several unforeseen difficulties, the Proceedings of the Second Annual
Symposium on Biomathematics and Computer Science in the Life Sciences cannot

be published. Therefore, reference’® of this paper will not appear in print.
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