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Introduction

There is a close association in the physiolo-
gical, biochemical, and morphological properties
between a motoneuron and the muscle fibers it
innervates. This association has been hypothe-
sized to be so because of the activity imposed by
the motoneuron on the muscle fibers. Among
those studies which support this view are those
in which chronic electrical stimulation at low fre-
quency (1-10Hz) changes the properties of fast-
twitch muscles toward those of slow-twitch mus-
cles (24,25,59,77,86,95). Some of the characteris-
tics of muscle fibers are also altered following
cross-innervation (9-12). Buller et al. (10) sug-
gested that neural influence on muscle could be
due to neurotrophic effect as well as via the
nerve impulses. These experiments demonstrate
that there is a significant level of neural and
muscular interdependence.

The pattern of muscle activity is also re-
ported to influence the morphological, metabo-
lic, and contractile properties of skeletal mus-
cles. For example, the metabolic capacity of
muscles is affected specifically by the types of
exercise training (45, 46). Increased activity or
over-loading by removing the synergists causes a
compensatory hypertrophy (19,31,32,37,50, 65,
71,96). Hypertrophy is also induced by stretch-
ing of matured muscles in vivo (3,29) and cul-
tured myotubes and fibroblasts (38,113-115). On
the contrary, the exercise-induced metabolic
adaptation of muscles are lost when exercise
training is stopped (18). Further, muscle atrophy
is induced by some models of reduced neuro-
muscular activity. But it is apparent that the
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level of use is not the only factor involved in the
atrophic process. In the current study, the re-
sponses of skeletal muscles to gravitational un-
loading or reduction of contractile activity and
mechanism responsible for the changes are brief-
ly reviewed.

|. Effects of Gravitational Unloading

A. Morphological properties ,

Gravitational unloading by exposure to
weightlessness causes an atrophy mainly in anti-
gravity muscles (4-6,16,22,23,36,48,51,57,61,67,
72,89,91). These studies show a greater atrophy
of a slow extensor, modest atrophy of a fast ex-
tensor, and lesser or no atrophy in an ankle dor-
si-flexor following spaceflight. Muscle atrophy is
also induced by simulation models such as hind-
limb suspension (20,34,35,39,40,51,56,68,72,78,
80, 82, 84, 94, 108, 117, 118), denervation (71),
deafferentation (71,73), spinal cord transection
(93), tenotomy (33,73,75), or joint immobiliza-
tion (7,8,42,83,84).

The differences in the muscle weight be-
tween the suspended rats and the age-matched
cage controls are greater in the ankle extensors
than the flexors (49,78). The weights of ankle
extensors in the hindlimb-suspended rats are sig-
nificantly less than those of pre-suspension
levels, suggesting that the muscles atrophied
(83). The weights of suspended ankle flexors are
also less than those of the age-matched cage
controls. However, these weights are not diffe-
rent from the pre-suspension levels. Thus, one
could argue that the lower weight of ankle flex-
ors of suspended rats is caused by growth re-
tardation but not due to atrophy.

The cross-sectional area (CSA) of both
slow- and fast-twitch fibers of rats after 14-day
spaceflight and hindlimb suspension was less
than those in the age-matched ground controls

NI | -El ectronic Library Service



Japan Soci ety of Exercise and Sports Physi ol ogy

2 Y. OHIRA and V.R. EDGERTON

(72). However, the degree of atrophy was grea-
ter in slow- than fast-twitch fibers even in the
antigravity muscle (61,72). Therefore, soleus
composed of approximately 80% of slow-twitch
fibers atrophies more than other ankle extensors
(48,61,91,97). Although there is a clear selective
atrophy of muscle that is related to the predomi-
nant fiber type generally, the magnitude of the
atrophy can not be attributed primarily to the fi-
ber type.

Riley et al. (91) reported that regional inter-
stitial edema was noted in adductor longus (AL)
and soleus, but not in plantaris and extensor
digitorum longus (EDL), of rats orbited for 12.5
days and returned to Earth 2 days before the
sampling. More aberrant fibers, consisting of
small angular fibers, were seen in flight AL
(approximately 3.6%) and soleus (approximately
6.8%) than in the respective synchronous con-
trols (approximately 0.17 and 0.9%, respective-
ly). These fibers often contained central nuclei
and more than 80% of the aberrant fiber
population demonstrated some necrotic fibers
with invasion by mononucleated cells. Mean Z
line length was significantly less in these flight
AL than in ground controls. Further, myofibrils
often showed longitudinal streaming and loss of
sarcomere banding in the midbelly region of the
flight AL. Muscle fiber damage was similar to
that observed 1-2 days after strenuous eccentric
exercise (2,70). Therefore, it is speculated that
such muscle damage may be caused by weight-
bearing exercise during 2 days after spaceflight
(91). Unloading of muscle by spaceflight or
hindlimb suspension may not directly cause fiber
damage, but may increase the susceptibility to
exercise-induced injury.

B. Metabolic properties
Enzyme activity

In young adult rats, the specific activities of
mitochondrial enzymes measured in whole
homogenates are generally lower in unloaded
muscles than normal levels (20, 28, 69, 78, 99).
However, succinate dehydrogenase (SDH) activ-
ity measured in single muscle fibers is often
maintained or even elevated in atrophied muscle
(35,39,61,67,72,94). These different observations
and phenomena may be caused by the greater
decrease in fiber size and relative increase in
connective tissues or interstitial volume (28,41,
60,103).

Some observations on fibers of young adult
rats following 14 days of flight suggest that sub-

sarcolemmal mitochondria may be preferentially
altered (5,90,91). The effect of spaceflight on
the distribution of mitochondria in soleus muscle
fibers were studied by Bell ef al. (5). The dis-
tribution of SDH activity determined quantita-
tively was studied throughout the cross section
of the fibers. The fibers were also classified as
slow-twitch oxidative or fast-twitch oxidative-
glycolytic in histochemically prepared tissue sec-
tions. In all fibers, the distribution of SDH activ-
ity was significantly higher in the subsar-
colemmal than intermyofibrillar region. After
12.5 days of spaceflight, the entire regional dis-
tribution of SDH activity was significantly
altered in the slow-twitch oxidative fibers. The
fast-twitch oxidative-glycolytic fibers of the
spaceflight muscles exhibited a significantly low-
er SDH activity only in their subsarcolemmal re-
gion. These data suggest that the relative loss of
SDH activity in the subsarcolemmal vs. inter-
myofibril region following spaceflight is fiber
type dependent. Riley et al. (91) also reported
that the distribution of mitochondria in the sub-
sarcolemmal area of flight AL was 31% less than
that of synchronous controls. Thus, the activities
of SDH and NADH dehydrogenase in the
peripheral region were also decreased.

It has become evident that the adaptive re-
sponse of skeletal muscle to spaceflight is diffe-
rent across muscles, within different fibers in a
muscle, and between different proteins in a fi-
ber. These findings also suggest that, when con-
sidering the influence of spaceflight on oxidative
enzymes, it may be of functional importance to
consider how and where those enzymes are dis-
tributed within a fiber. The functional effect of a
selective loss of mitochondria in the subsar-
colemmal vs. the more central intermyofibrillar
regions is not clear.

Phosphorus compounds

The high-energy phosphate contents in calf
muscles of rats measured by using *!'P-nuclear
magnetic resonance spectroscopy tended to be
elevated by approximately 30 days of suspension
(84). The PCr/(PCr + Pi) ratio, which indicates
the relative content of PCr, was significantly ele-
vated (where PCr: phosphocreatine and Pi: in-
organic phosphate). The ankle dorsi-flexors were
not influenced by suspension. The Pi/PCr ratio
in the ankle extensors, but not in flexors, was
significantly decreased by hindlimb suspension.
The rate of adenosine triphosphate synthesis,
estimated by using the method reported by
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Chance et al. (13) as 1/(1+0.6 X PCr/Pi), was lo-
wered in unloaded muscles. Such results may
suggest that the metabolic rate, as well as the
mitochondrial biogenesis indicated by decreased
enzyme activities (20,28,69,78,99), in ankle ex-
tensors might be lowered by unloading.

B-Adrenoceptors

The function of p-adrenoceptors ( SAR) in
skeletal muscle is not fully understood. Howev-
er, its density in muscle is positively correlated
with the activities of mitochondrial enzymes (55,
116). The density of SAR is considerably grea-
ter in slow-twitch oxidative soleus than in fast-
twitch gastrocnemius (116). The SAR density in
type I fibers is three-fold greater than in type II
fibers in the same muscle (62). It is, in general,
increased by exercise training (104,116) and con-
tinuous electrical stimulation at 10 Hz (55) which
both stimulate the mitochondrial enzyme activi-
ties (55,104, 116), although Martin et al. (62)
showed that the SAR density in human muscles
was unchanged by 12 weeks of exercise training
which increased the activity of citrate synthase.
Our previous study showed that the maximum
binding capacity (Bmax) of SAR in frog and rat
hindlimb muscles was decreased by both space-
flight and hindlimb suspension (80). Because the
dissociation constant or affinity of SAR was un-
changed, the reduction of Bmax appears to have
been due to a decrease in the number of recep-
tors. Such decrease in SAR density may be
closely associated with the reduction of specific
activities of mitochondrial enzymes measured in
whole muscle homogenates (20,28,69,78,99).

C. Fiber phenotype

Hindlimb unloading by spaceflight and/or
suspension causes a progressive decrease in the
% distribution of slow (type I) fibers in soleus
(61,72,103), but not in fast muscles such as me-
dial portion of gastrocnemius and tibialis anter-
jor (TA) (34,51,94). Similar results have been
indicated by both qualitative and quantitative
histochemical staining of myosin adenosine
triphosphatase (ATPase) as well as immunohis-
tochemical analysis using antibodies specific to
myosin heavy chain (MHC) (51,72). The fibers
stained intermediately dark by qualitative stain-
ing for myosin ATPase with alkaline pre-
incubation (pH 8.75) increased by approximately
9-14% in the soleus muscles following 2 weeks
of spaceflight and hindlimb suspension. These fi-
bers stained darkly after acid pre-incubation (pH

4.35), and reacted positively with both fast and
slow MHC antibodies. The results indicated that
the % distribution of fibers which expressed only
slow MHC was decreased because some of the
“pure” slow fibers began to express fast MHC as
well after unloading.

The activity (Mean = SEM) of myosin
ATPase in fast soleus fibers of control rats (29.8
+2.9%X 1073, AOD/min) measured quantitative-
ly was significantly greater than in slow fibers
(15.8+1.4X 10, p<0.01, Table 1). However,
that in the intermediate fibers (16.7£1.7X107?)
was similar to the level of slow fibers. The acti-
vities (AOD/min) of SDH and a-glycerophos-
phate dehydrogenase (GPD) also tended to be
greater in fast than slow fibers. The SDH and
GPD activities of the fibers that expressed both
slow and fast MHC also tended to be intermedi-
ate. However, none of the quantitatively mea-
sured activities of myosin ATPase, SDH, and
GPD in any types of fibers changed significantly
following spaceflight or hindlimb suspension
(72).

These studies suggest that some fibers were
shifted from slow to fast type, although the type
was not completely reversed. If the transforma-
tion of fibers occurs normally, the myosin
ATPase and mitochondrial and glycolytic en-
zyme activities may change in a predictable man-
ner. For example, if fiber becomes fast, its gly-
colytic enzyme activities increase. It is also indi-
cated that the shift of MHC expression may be
resulted from a relative increase of fast charac-
teristics due to a loss of slow MHC expression,
although the absolute level of fast MHC express-
jon may not have been affected dramatically.
Although 9-14% of slow fibers expressed both
slow and fast MHC after unloading, the remain-
ing slow fibers were unchanged even though
they also atrophied.

These changes in muscle fiber type seems to
be due to a transformation of some fibers from a
pure slow to a hybrid (expresses slow and fast
MHC), but not due to a de novo synthesis of
new fast fibers. It is not clear why some slow fi-
bers respond differently. Some possibilities are
that the slow fibers that remained unchanged did
not possess the fast MHC expression genetically,
or that slow MHC expression in these fibers did
not respond to unloading.

It is found that 10 days of hindlimb suspen-
sion resulted in an increased expression of type
[la and IIx MHC in the soleus of hypophysecto-
mized rats (Talmadge, Roy, Grindeland, and
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Table 1 Fiber-type composition and enzyme activities of soleus in cage control

and hindlimb-suspended rats with or without ankle-joint immobilization

Control Susp-Free Susp-DF Susp-PF
Slow-twitch fibers
n 287 234 186 212

CSA 2,269 +42 1,563 £47%** 2,307 61111 1,768 =£55*** +, 88§
% fiber 88.3£5.0 71.7+5.0* 76.9+7.2 86.5%8.0

SDH 33.8+4.8 34.0£3.8 49.1£1.4* 1t 45.3+0.6™, 11, §

ISDH 76.7£2.0  53.1+1.8%** 106. 8£3. 1% ** 44+ 75.3£1. 7111, §§§

GPD 0.4%0.2 0.9%0.3 1.0£0.1* 1.0£0.1*

IGPD 0.910.1 1.4%0.1** 2.5%0.2%** 1t 1.740.1%*%* + 8§88
ATPase 15.8+1.4 15.1£1.8 19.54+0.2* ¥ 15.5 £0. 188§
IATPase 35.940.6 23.6£0.8%** 46.241.2%** 1 27.240.8%** +t, 88§

Fast-twitch fibers
n 33 66 35 18

CSA 1,373 =+46 094 £39%*** 1,835 +163** +++ 1,044 +71%** 8§
% fiber 10.21+4.5 20.31+2.1 15.0£5. 0t 7.4+4.2

SDH 57.0%6.9 45.3+4.6 57.1%5.1 61.4+4.1

ISDH 78.3%3.2 45.0+1.8%** 93.3%8. 8ttt 60.642.7%** ++1,§

GPD 1.4%0.5 3.1%0.3 1.440.2 1.740.7

IGPD 1.940.2 3.140.3%* 2.610.3 1.7+0.5%

ATPase 29.842.9 31.94+3.6 23.1£1.2* 22.7%1.6
[ATPase 40.9+1.3 3L.7H1.4%** 44,913 511 24.7H3.5%** 1 88§
Slow & fast-twitch fibers
n 5 26 19 14

CSA 1,078 +£164 906 =+76 1,657 £213+1+ 1,031 =£1158
% fiber 1.540.7 8.013.6 6.1%£3.9 §.1+2.4*

SDH 54.0+12.6  38.8%4.3 54.246.3t 63. 74, Tttt

ISDH 58.2+20.7  35.2%3.3 78.41£9. 3ttt 62. 17, 114+

GPD 0.9£0.3 1.84+0.4 1.1£0.4 0.7%+0.3

IGPD 1.0X£0.5 1.6%0.3 1.720.5 1.1£0.5
ATPase 16.7+1.7 17.6£1.4 20.2+1.3 17.1£0.68
IATPase 18.0%2.8 15.9+1.1 34.243.6%, +1t 17.041.5888

Mean = SEM. Control: cage control, Susp-Free: hindlimb-suspended without ankle joint immobilization,

Susp-DF: hindlimb-suspended with ankle joint immobilization at a dorsi-flexed position, Susp-PF: hindlimb-
suspended with ankle joint immobilization at a plantar-flexed position. n: number of analyzed fibers, CSA:
cross-sectional area ( #m?), SDH: succinate dehydrogenase; & optical density (OD)/minX 1072, ISDH: inte-
grated SDH (A OD/min X zm?), GPD: a-glycerophosphate dehydrogenase (2 OD/min X 1073), IGPD: inte-
grated GPD (A0D/minX gm®), ATPase: myosin adenosine triphosphatase (A0D/minX1073), IATPase: inte-
grated myosin ATPase (A0D/minX gm?). *: p<0.05, **: p<0.01, and ***: p<0.001 vs. Control, t: p<
0.05, t1: p<0.01, and t1+: p<0.001 vs. Susp-Free, and § p<0.05, §§: p<0.01, and §§§: p<<0.001 vs. Susp-
DF (Yasui, W., Y. Ohira, R.R. Roy and V.R. Edgerton. In preparation for publication).

the exposure of carp fishes to microgravity for 8
days did not affect the fiber types of various
muscles (Ohira et al., Unpublished observa-
tions). Hindlimb unloading is accompanied by a
progressive decrease in the concentration of
myofibrillar and myosin protein soleus (106-108,
110, 111). The activity of myofibrillar ATPase

Edgerton, Unpublished observations). The ex-
pression of MHC IId (most likely analogous to
IIx) has also been observed in the soleus of rats
suspended for 21 and/or 28 days (101). The fiber
phenotype of the human vastus lateralis muscle
also tended to be shifted toward fast-type simi-
larly after 11 days of spaceflight (23). However,
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(72,105,107,108) and the composition of myosin
light chain isoform (87,107-109) in soleus muscle
homogenates and single fibers appear to be un-
changed.

D. Contractile properties

Following the induction of atrophy, the
magnitude of decrease in the maximum tetanic
tension is greater than that in muscle mass (41,
85, 117). Thus, the specific tension per unit
weight or CSA is lowered. Such phenomena may
be due to the greater decrease in the concentra-
tion of myofibrillar protein (108,112) and/or the
relative increase in the non-contractile tissue (28,
41,60,103) and interstitial volume (53). The re-
sults reported by Stevens et al. (98) showed that
the specific tension of skinned soleus fibers in
rats suspended for 15 days was similar to the
cage controls. The specific tension in predomi-
nantly fast muscles such as medial gastrocnemius
(41,85,117), TA (117), and EDL (27) are not in-
fluenced by suspension and may even be in-
creased (66).

The speed-related properties in slow soleus
are shifted toward fast-type, although fast mus-
cles, both ankle extensors and flexors, are not
markedly affected by unloading (21,27, 41, 85,
103,117). The time-to-peak tension is reduced.
The maximum shortening velocity of whole mus-
cle (27,41,85,117) and single fibers (30,64,87) is
increased following unloading. Interestingly, the
change in myosin ATPase activity has not always
been observed to be proportional to an increase
in shortening velocity after unloading (21,72,107,
108). Further, one-half relaxation time is de-
creased may be due to changes in sarcoplasmic
reticulum kinetics.

The fatigue resistance remains remarkably
high after a chronic unloading even in soleus
muscle (26,41,85,117), although it seems to be
affected more after a prolonged fatigue test (63).
The maintenance of fatigue resistance in
atrophied muscles may be attributable to, in
part, 1) lowered absolute tension production, 2)
relatively stable oxidative enzyme levels in fi-
bers, and/or 3) shorter diffusion distance to the
center of fibers due to decreased CSA.

E. Locomotor capability

Postural stability of Skylab crew members
was found to be particularly compromised after
spaceflight when the eyes are closed (47). Simi-
lar phenomena were seen after 18-day Soyuz-9
mission (14,15). Such effects were marked im-

mediately after flight but were normalized after
approximately 10 days. After 140 and 185 days
of spaceflight, Kozlovskaya et al. (54) found
that the ratio of electromyogram (EMG) ampli-
tude to the perturbation force during standing
posture was more than double compared to the
pre-flight level. They also reported that the time
taken for balance recovery after external disturb-
ances increased and that the thresholds of cor-
rective EMG responses decreased and the EMG
amplitudes and durations were longer than in
pre-flight.

Sensory informations from the otolith
organs and other sensory receptors that respond
to gravitational loading and vectors under nor-
mal gravitational conditions are altered dramati-
cally in a microgravity environment. Such
changes can be expected to contribute to mod-
ifications of motor behavior during weightless-
ness which result in altered patterns of muscle
activity and morphological and metabolic prop-
erties of muscles. For example, there are low-
ered levels of soleus activity and elevated levels
of TA activity (58) and a diminished H-reflex
excitability in the medial gastrocnemius muscle
after vestibular stimulation during spaceflight
(88). Furthermore, there appears to be an
adaptation of the H-reflex response to vestibular
stimulation throughout the duration of space-
flight resulting in major increases in the response
after the return to normal gravity which takes
many days to return to pre-flight levels (88).

The results obtained in one flight rhesus
monkey from the COSMOS 2044 flight indicated
a significant modulation in the recruitment
strategy used activating a slow and a fast ankle
extensor muscles following 14 days of spaceflight
(44). Upon return to 1-G environment, there
appears to be an increased activation of the me-
dial gastrocnemius muscle relative to the soleus
muscle. This adaptation of the motor system
persisted up to 5 days after the return to normal
gravity and returned to a normal pattern within
2 weeks in 1-G environment.

Il. Why Does Muscle Atrophy?

A. Electromyogram activity

The EMG of soleus and medial gastrocne-
mius disappeared immediately in response to
hindlimb suspension of rats (1). And the total
amount of daily EMG activity in these muscles
remained significantly reduced on the day of sus-
pension. The activity remained lower than nor-
mal for up to 2 weeks. However, the EMG
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activity was gradually increased and maintained
near-normal thereafter. In contrast, daily EMG
activity of ankle flexor, TA, was above the nor-
mal during suspension. From these results it re-
mains unclear as to whether the direct cause of
the atrophy is related to disuse of the muscle.
The soleus muscle atropied following spaceflight
within 4 days (52) during the period of a marked
reduction in the EMG activity. However, a grea-
ter atrophy was still seen after 28 days of hind-
limb suspension (117). It is clear that the recov-
ery of EMG toward normal is not associated
with a recovery of the muscle mass lost.

The tonic EMG activity in human soleus,
which account for about 80% of plantar-flexor
torque, was reduced during spaceflight, whereas
that in TA, dorsi-flexor, was higher than in pre-
flight trials during a standardized postural test
such as standing erect (17,58). Such reversal in
the roles of ankle extensors and flexors has also
been seen in parabolic flight in human (17) and
monkeys after 14 days of spaceflight (44). Riley
et al. (92) reported that the EMG activity in rat
soleus was shifted from “tonic to phasic” follow-
ing hindlimb suspension. Generally, these stu-
dies suggest that chronic changes in gravitational
loading in the adult has a significant effect on
the way the nervous system recruit units in one
motor pool compared to another. This raises an
obvious question of the role of 1-G environment
in guiding the development of the motor system.

B. Electrical stimulation

Effects of electrical stimulation through the
sciatic nerve at the gluteal region during suspen-
sion on rat hindlimb muscles were studied (74,
77,79,102). In one group of rats, twitch contrac-
tion was induced at 1 Hz for 4 hours continuous-
ly. In the other groups, train stimulation was
performed at either 50 Hz (2-sec stimulation and
3-sec rest) or 100 Hz (1-sec stimulation and 4-sec
rest) for 4 hours. The same patterns of stimula-
tion were repeated again after 6 hours of recov-
ery in the same day. Such electrical stimulation
for 8 hours per day was performed for 10 con-
secutive days.

The weights and fiber CSA of plantaris, gas-
trocnemius, TA, and EDL in limb stimulated at
1 Hz were significantly less than in the contra-
lateral muscles. The 50-Hz stimulation prevented
the suspension-related decrease, relative to the
age-matched cage controls, in the weight of TA
and EDL, but not of the soleus, plantaris, and
gastrocnemius. No beneficial effect was obtained

in any muscles by 100-Hz stimulation.

Stimulation at 1 Hz caused an increase in ci--
trate synthase activity in tissue homogenates of
the TA but not the plantaris, while lactate de-
hydrogenase was unaffected. However, the sus-
pension-induced effects on enzyme activities and
mitochondrial volume in whole muscle or single
fibers were not prevented by any types of elec-
trical stimulations generally (102). These experi-
ments suggest that electrical stimulation through
the sciatic nerve is not an effective countermea-
sure for the muscle deadaptation that occurs
during hindlimb suspension. The patterns or
magnitude of tension production of suspended
muscles in response to electrical stimulation are
likely to be different from those in the cage con-
trols.

C. Force development due to stretching

It is well-known that in vivo stretching
(3,29) or increased load by elimination of syner-
gistic muscle (19,31,32,37,50,71,96) causes mus-
cle hypertrophy. Stretching of cultured myotubes
and fibroblasts without nerve innervation also in-
duces hypertrophy (114,115). However, atrophy
was seen in our study when denervated sartorius
muscles of adult frogs were stretched (approx-
imately 110%) in an organ culture system (76).
These results indicate that not only tension pro-
duction or loading, but an intact nerve supply is
requested for the normal regulation of muscle
mass.

As mentioned before, the EMG in ankle ex-
tensors is reduced immediately by hindlimb sus-
pension (1,81). This may be due, in part, to
shortening-relared unloading (1,81,92). Immobi-
lization of the ankle joint in a plantar-flexed
position also reduced the EMG activity in the
soleus (43,81). On the other hand, stretching of
muscle by dorsi-flexion helped to maintain EMG
activity (43,81) during hindlimb suspension (81).
In both cases, the muscles were active electrical-
ly. However, plantar flexion causes a passive
shortening of ankle extensors and tension pro-
duction of these muscles are inhibited as is
shown below.

The chronic tension that muscle produces or
is imposed on it seems to regulate the muscle
mass. During hindlimb suspension, the ankle
joints of rats are extended (81,92), so that the
length of ankle extensors are passively shor-
tened. For example, the length of soleus muscle,
excluding the tendons, of rat with body weight
of 318g was approximately 28 and 20mm when
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the anterior angle of ankle joint was fixed at 50°
and 160° during suspension, respectively (81).

Tension was produced by the plantaris mus-
cle with the ankle joint fixed at 90°, when the
EMG was present (81) (Fig. 1). A greater ten-
sion was developed when the angle of joint was
changed to 30°. However, no tension was de-
tected when the joint angle was 160°, which is
approximately equivalent to the angle of freely
suspended ankle. It is suggested that such a re-
duction of tension production, even with active
EMG, may have a close association with atrophy
in ankle extensors.

The wet weight of ankle extensor, soleus,
was significantly decreased from the pre-
suspension level following hindlimb suspension
at a shortened muscle length (Fig. 2). Although
the number of sarcomeres or optimum length of
muscle was not measured, the reduced muscle
weight was closely associated with fiber atrophy
or decreased fiber CSA. This atrophy was pre-
vented, if the muscles were stretched by dorsi-

Force

EMG

IEMG =TT

Ankle joint angle

flexion of the ankle joint. Although the weight
of soleus was significantly lighter than the post-
suspension cage control, the suspension-induced
atrophy of soleus, compared with the pre-
suspension level, was prevented by stretching.
But the atrophy of plantaris and gastrocnemius
was not fully prevented by dorsi-flexion,
although the weight of stretched muscles were
significantly greater than that of shortened mus-
cles. Similar results were also reported by Stum-
pet al. (100). These results indicate an important
role of tension development for maintenance of
muscle mass, regardless of the type of muscles.
The weights of ankle flexors, TA and EDL,
suspended for 10 days were identical to the pre-
suspension controls, but were less than the age-
matched controls as mentioned before (83). It is
suggested that these muscles did not atrophy but
the growth rate was inhibited by hindlimb sus-
pension. However, atrophy was induced if the
ankle joint was maintained in a dorsi-flexed
position (43, 83). Thus, it is indicated that the

Fig. 1  Isometric force production and electromyogram (EMG) in rat plantaris
muscle with various ankle joint angles. I EMG: integrated EMG. Cited

from Ref. 81.
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Fig. 2 Wet weigth of rat soleus muscle. Mean +
SEM. ***: p < 0.001 vs. pre-suspension
cage control, fff: p < 0.001 vs. post-
suspension cage control, and, §§: p<0.01 vs.
suspended at 140° ankle joint.

length or degree of loading of ankle flexors was
also reduced by dorsi-flexion.

Atrophy of soleus single fibers, as well as
whole muscle (Fig. 2), was prevented by stretch-
ing (Table 1). The CSA of fast fibers was even
increased by stretching. Although the specific
activities of SDH, GPD, and myosin ATPase did
not change following free suspension, those acti-
vities, as well as the total levels in whole CSA,
were even enhanced in response to stretching.
Fiber phenotype determined histochemically and
contractile properties of the stretched muscle
were not different from those of the cage con-
trols. Further, stretching of muscle prevented
the suspension-induced changes in the levels of
phosphorus compounds and/or the Bmax of
BAR in the soleus muscle (Fig. 3)

These data indicated that stretching of mus-
cles was useful to prevent the atrophy of whole
muscle and single fibers and changes in the
metabolic properties induced by suspension. It is
further suggested that the unloading of muscle
also caused a lowered turnover rate of high-
energy phosphates, even though the muscle was
active electrically. But the turnover rate and/or
content of high-energy phosphates remained nor-
mal when the muscle was stretched.

adrenoceptors in soleus muscle. Mean =
SEM. ***: p<0.001 vs. Control, t1: p<
0.01 vs. Susp-Free, and §§: p<<0.01 vs. Susp-
DF. Susp-Free, Susp-DF, and Susp-PF: hind-
limb-suspended with free or ankle joint im-
mobilization at either dorsi- or plantar-flexed
position, respectively.

D. Afferent input

Compensatory hypertrophy in soleus and/or
plantaris following the tenotomy of gastrocne-
mius did not occur if deafferentation was per-
formed (73), suggesting an important role of
afferent input for the induction of hypertrophy.
Further, a similar degree of atrophy was induced
in the gastrocnemius by tenotomy and deaffe-
rentation (73). Since our results suggest that
afferent input may be reduced if the muscle is
shortened during hindlimb suspension in some
respect (82), tenotomy at the early stage could
be similar, functionally, to deafferentation by
dorsal root transection. Within a few days,
however, the muscle begins to regrow connective
tissue reforming connection with other tissues
which recovers the ability to produce forces.
Although the plantaris EMG and efferent neuro-
gram measured at Ls were maintained during 3
days of hindlimb suspension, the magnitude of
the afferent neurogram tended to be reduced.
These results may also indicate an involvement
of afferent input in the regulation of muscle
mass.

Conclusion
The responses of skeletal muscle to gravita-

NI | -El ectronic Library Service



Japan Soci ety of Exercise and Sports Physi ol ogy

Neuromuscular Adaptation to Gravitational Unloading 9

tional unloading and the possible mechanism re-
sponsible for the neuromuscular adaptation were
discussed. Skeletal muscles atrophy rapidly in re-
sponse to gravitational unloading. Ankle exten-
sors are more susceptible to unloading than flex-
ors. The magnitude of the decrease in CSA is
greater in slow- than fast-twitch fibers. There-
fore, a prominent atrophy is induced in soleus
muscle which is composed of approximately 80%
of slow-twitch oxidative fibers. Shifts of contrac-
tile and metabolic properties toward fast type
are associated with the atrophy. Although the
activities of mitochondrial enzymes measured in
single fibers do not change generally, these
levels analyzed in whole muscle homogenates
are lowered by unloading. Such disagreement
may be caused by a greater atrophy of fibers,
not the connective tissues, which results in a re-
lative increase in the non-fiber volume.
Although the EMG activity in rat ankle exten-
sors disappears in response to unloading, it is re-
covered gradually during suspension. Ankle
joints are extended during suspension. Thus, the
ankle extensors, especially soleus, are passively
shortened and tension development is inhibited
even when the EMG is present. A reduction of
afferent input was also seen following the pas-
sive shortening of muscle or unloading. These
results suggest that the adaptations of morpholo-
gical, metabolic, and contractile properties of
skeletal muscles to unloading may be closely re-
lated to the decreased levels of tension produc-
tion and/or afferent input.
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