130 ## シI-3 ## **Intracellular Oxygen Supply and Respiration in Exercising Muscle** Shin-ya Kuno Cent. for Tsukuba Advanced Research Alliance (TARA), Univ of Tsukuba During exercise the ability of the working muscle in human to increase its oxygen uptake is limited by either a central or a peripheral mechanism. The central mechanism represents the systemic increase in oxygen delivery to the muscle, which includes enhanced blood flow through the capillaries. The peripheral mechanism focuses on the diffusion of oxygen from Hb to the mitochondria and the metabolic regulation of oxidative phosphorylation. Even though both models entail an O2 gradient role, the diffusion model emphasizes the gradient from the capillary to the mitochondria, which is a driving force of O₂ transport. The observation implies that the cell can modulate its O₂ gradient and suggests that Mb facilitated diffusion, which becomes increasingly pronounced as the cellular pO₂ falls, might contribute significantly to O₂ transport to the mitochondria. The ¹H-NMR has presented an approach to shed light on the competing mechanisms. During plantar flexion with a constant load at a deferent repetition rate, VO2 increases linearly with exercise intensity. The ³¹P NMR indicates that PCr decreases to 32 %, while muscle pH decreases linearly. Muscle ATP, however, remains constant during exercise. The deoxy Mb signal decreases in proportion to increments in power output and VO₂. At the highest exercise intensity and peak VO₂, Mb is approximately 48% desaturated. The dynamics of the Mb desaturation kinetics shows that the cellular O₂ supply decreases rapidly, within 30s as VO2 increases. The whole body VO₂ kinetics time constant is almost 4 times longer and mirrors the PCr kinetics. During recovery, the PCr recovery rate also lags the Mb resaturation rate. These findings, taken together, suggest that the O₂ gradient from Hb to the mitochondria can modulate the O₂ flux in order to meet the increased VO₂ in exercising muscle. The time scale of the Mb desaturation is rapid relative to the expected alteration in convective flow. But declining cellular pO_2 during enhanced mitochondrial respiration also suggests that availability does not limit VO₂ during exercise. Quantitative measurements of muscle O_2 consumption with noninvasive methods and their applications for studies in exercise physiology Takayuki SAKO¹⁾ Takafumi HAMAOKA²⁾, Toshihito KATSUMURA²⁾ - 1) Dept. of Food & Nutrition, Japan Women's University 2) Dept. of Preventive Medicine and Public Health, Tokyo Medical University - Skeletal muscle O_2 consumption is a key parameter of metabolism under various conditions. Near infrared continuous wave spectroscopy (NIRcws) was developed for measuring changes in muscle oxygenation and, in human studies, a method of nonivasive estimation for the quantitative values of muscle O_2 consumption (VO_{2NIR}) in exercise has been expected to be a useful alternative in the study of exercise physiology. Validation of VO_{2NIR}: Quantitative measurements of NIRcws were examined in our previous studies. Changes in the ratio of the decline rate of HbO₂ during arterial occlusion post exercise, as to at rest were closely related with the changes in PCr and ADP concentrations. Quantitative values of VO_{2NIR} also had a high correlation with the oxidative metabolic rates as the gold standard measured by ³¹P-MRS. Peak \dot{VO}_{2NIR} during incremental exercise: The changes in VO_{2NIR} in relation to cytosolic pH and high-energy phosphates of human skeletal muscle during incremental handgrip exercise were examined by both NIRcws and $^{31}P\text{-}MRS$. Exercise load was increased by 5% of MVC every minute from 0% MVC until exhaustion. The exercise period was 48 sec at each load and VO_{2NIR} was measured during 7 sec following exercise by NIRcws using the partial arterial occlusion method. The VO_{2NIR} at exhuastion were not the peak values during handgrip exercise. The negative effect of lower cytosolic pH on the VO_{2NIR} at exhuastion could overcome the positive effect of lower PCr. Effects of muscle oxygenation level on VO_{2NIR} : The VO_{2NIR} at the different oxygenation levels (m-O₂) were examined at 20% MVC during 20 sec of isometric exercises. The HbO₂ level at rest was determined as 100% and the lowest level as 0% during 6 to 7 min of arterial occlusion. The VO_{2NIR} significantly decreased at the 60% of m-O₂ compared with those at 100% of m-O₂. The lower the m-O₂, the lager the decrease in VO_{2NIR} . Under conditions in which VO_{2NIR} measured during isometric exercise with arterial occlusion, the decrease in O_2 partial pressure could be one of the limitations of VO_{2NIR} during exercise.