P68. トレーサー試験を利用した地山深部の地下水流動性調査

Investigation of Flow Layer by Tracer in Deep Underground

○安元和己,人見美哉,山崎淳(ドーコン),河内邦夫(室蘭工業大学)
 Kazumi Yasumoto, Yoshiya Hitomi, Jun Yamazaki(Docon co., Ltd.),
 Kunio Kawauchi(MURORAN Institute of Technology)

1. はじめに

地下水流動性の調査は、環境問題に関連して地下水 保全対策や地下水汚染などで行われてきている. なか でもトレーサー試験は、観測点においてトレーサー物 質の検出有無を確認出来るため、地山の地下水浸透経 路の把握に有意な試験法の一つである. 試験ではトレ ーサー物質が地中に残留することや付近の河川へ流出 することが想定されるので,試験場所や使用するトレ ーサー物質を考慮して行う必要がある.

筆者らは、ダム基礎岩盤としての地山透水性状把握 を目的として、地山深部の地下水流動推定箇所を対象 に、塩水を用いたトレーサー試験を実施した.

本試験では,試験深度が一般的に実施されている深 度より深く,既存の試験機器では対応できない地山深 部で上記の試験を実施するために,新たにトレーサー 試験機器を作製し,試験を実施した.その結果,一部 の観測箇所でトレーサーの到達が明瞭に確認され,地 下水の浸透経路の推定に有効であったので報告する.

2. 調査地域における地山の地質および透水性状

調査地域の地形は左右岸ともに 30 度程度の斜面をな し、V字谷が形成されている.地質は、白亜紀堆積岩で あり、砂岩層が卓越し、層厚数m~十数mの泥質岩層を 挟在する.地質構造は河川横断方向に走向をもち、下 流方向に 70 度傾斜する同斜構造となる.岩塊の硬さは、 砂岩、泥質岩ともに新鮮部で硬く、とりわけ砂岩層は 風化による褐色化部にでも、新鮮部とほぼ同様な硬さ を呈する.また、砂岩層は露頭状況、横坑調査ならび にボーリング調査において、地形方向に沿った方向(斜 面方向と同方向)~ほぼ水平方向に連続性の良い節理 が地山深部まで発達していることを確認している.

地下水位は,砂岩分布箇所で低く,両岸斜面部では 河床レベルと同じ高さでほぼ水平に位置する.

3. 節理の性状と透水性状

地表地質踏査,調査横坑・ボーリング調査等から地 山に見られる節理は,砂岩部では連続性が比較的良く, うねりを有し,分岐・収束を繰り返す.節理は泥質岩 や断層によって途切れることが多い.

節理の分布は河床部では深さ 10m までであるのに対し、両岸斜面部では深度 100m 程度までも分布する.

今回行ったルジオン試験の結果から,砂岩部分はか み合わせの悪い節理,介在物の見られる節理,ボアホ ールカメラで開口が確認された節理が1本でも確認さ れた区間は高い透水性を示すことがわかっている.一 方,泥質岩では地表付近の風化部を除き,難透水性を 示す.また,砂岩部分は地形で透水性が異なり,河床 部で難透水性を示す一方,斜面部の砂岩分布箇所にお いては深部まで高透水性を示す.以上のことから地山 の透水性は開口性を有する節理の分布と調和的な構造 をしている.

4. トレーサー試験の概要

4.1 試験位置

本地域の左岸斜面部は地下水位が河床と同じレベル に位置する.この様な地下水の低い地山は,地山に流 速の大きな浸透経路が存在する可能性があり,ダムの 基礎岩盤としては,貯水池からの漏水が生じる事が懸 念される.そこで,トレーサー試験は「透水試験にお いても難透水性を示している泥質岩が遮水層として期 待出来るか」,「ほぼ水平な地下水レベルをもつ地山に おいて,地下水がどの方向に流動するのか」の2点を 把握することを目的として実施した.試験位置は,ト レーサー投入孔(B-91)に対し,上下流方向には泥質岩 で境されて位置するボーリング孔を用いた(B-92, B-93, B-94).左右岸方向へは,投入孔に対し,ほぼ同層準で, 山側ならびに谷側方向のボーリング孔(B-85, B-80)を 用いた(図-1, 2).

図-1 試験孔配置図 (試験箇所上部付近の水平地質平面図)

— 553 —

図-2 試験孔配置概略断面図(概念図)

4.2 試験機器

本試験を実施するに先立ち行った透水試験において 孔内水位の回復が早かったことから,測定では露出型 多電極方式にする必要があった.しかし,試験箇所が 深部であったため,試験機材が大がかりで,試験機材 が重くなること,ピックアップ部がボーリング孔の口 径に入らない等の問題が懸念された.

今回,上記の様な状況での計測を可能とするために, ピックアップ部を新たに作製した(写真-1).主な仕様 を以下に示す.電極対数60チャンネル,電極対間隔50cm, 測定区間29.5m,ケーブル線φ15.5mm,ピックアップ部 (測定深度60~89.5m)重量約45kg.

写真-1 測定器とピックアップ部

また,トレーサー到達の有無を確認する抵抗値の測定 器は,市販の接地抵抗器を改良して用いた.測定器の 許容差は各測定レンジで 2.5%である.測定深度の切り 替えは,60 チャンネルの切り替えボックスを作製し, 端子を切り替えて行った.

トレーサーは濃度 2%の塩水を作製し,2 時間にわた って 2000 リットル程度投入した.

測定頻度は、測定開始から3時間までは10~30分お き、24時間までは1~2時間おき、3日目までは4時間 おきと徐々に間隔を広げ、最終的に3ヶ月後まで測定 を行った.

5. 試験結果

測定の結果,投入孔から谷側の測定孔(B-80)におい て抵抗値の低下が確認された(図-3).抵抗値の変化は, まずトレーサー投入後1時間後に4箇所(試験区間の2m, 7m, 16m, 22m付近)で低下し,4時間程度で周囲が低下 した.その後,7時間後に抵抗値は回復に転じた.

次に投入孔から山側の測定孔(B-85)については,塩 水トレーサー投入から 2 時間後まで抵抗値の上昇が確 認された(図-4).抵抗値の上昇は測定区間の浅部から 22mの間で生じた.一方, 22m以深において変化は見 られなかった.

投入孔から上下流方向に位置する B-92, B-93(図 -5), B-94 の観測孔において,抵抗値の明瞭な変化は確認されなかった.

※図-3~5中の観測点データは、 実際に観測したデータ(1孔あた り60チャンネル)を一部省略し て示している

図-3 B-80 孔測定結果(図は投入直後の測定結果)

図-4 B-85 孔測定結果(図は投入直後の測定結果)

図-5 B-93 孔測定結果(図は投入直後の測定結果)

6. 考察

6.1 試験結果から推定される地山深部の地下水流動性

トレーサー投入孔から谷側に位置する観測孔(B-80) において、トレーサーの到達が明瞭に確認された.こ の観測孔の抵抗値の経時変化と、ボアホール画像から 得られた節理データを対応させると、開口幅の広い節 理分布深度において最初に抵抗値の低下が確認された. よって地下水は開口幅の広い節理を「水みち」として 谷側方向へ流動していたと推察される. つまり, 塩水 トレーサーは投入孔と観測孔の直線区間約 20m を 60 分 程度で流動していたこととなる. しかしながら,透水 試験における注水後の孔内水位回復状況から、地下水 はかなりの早さで流動していたと推察される. ここで 塩水到達に60分程度かかった要因として、塩水トレー サーが地下水とは異なった比重であったこと、また節 理がうねりや分岐・収束をしているためにトレーサー が複雑な浸透経路を経て到達していたことが推察され る.

また、トレーサー投入孔から山側に位置する観測孔 (B-85)において、塩水の到達現象とは異なり、トレー サー投入時に抵抗値が上昇した.ここで、塩水トレー サーの到達による抵抗値の低下が確認されなかったも のの、トレーサー投入時のみに抵抗値が明らかに変化 していたことから、孔間の連通性はあったものと推測 される.抵抗値が上昇した要因として、トレーサー投 入によって観測孔に圧力伝搬が生じ、孔内物が撹拌さ れ抵抗値が上昇したという事象が一つの考えとして挙 げられる.

トレーサー投入孔と泥質岩で隔てられた上下流方向の観測孔(B-92, B-93, B-94)については,抵抗値に明

らかな変化がみられなかったことから,泥質岩層で遮 水されているものと推察される.

以上のことから,試験箇所周辺地山における地下水の 流動性は,節理の連続性に関連し,左右岸方向の砂岩分 布域に連通性を有し,右岸(谷側)方向へと地下水が流動 していたものと考えられる(図-6).また,上下流方向の 地下水の流動は,節理の連続性が乏しくなる泥質岩部で 止められていたものと考えられる(図-6).

6.2 塩水を用いたトレーサー試験の有用性

前述のように、塩水をトレーサーとした試験は、節理 を「水みち」とする地下水の流動形態において、トレ ーサーの検出が比較的容易であると考えられる.しか しながら、地下水の流速の推定には、塩水が分散する ために流動する速度が地下水よりも速くなることや、 塩水が複雑に分布する節理に沿って流動することが考 えられるため、留意することが必要である.

〈参考文献〉

- ・地盤工学会(2004)地盤調査の方法と解説. 457-470.
- ・関東地質調査業協会(1995)新編ボーリング孔を利用する原位置試験についての技術マニュアル.
 233-240.

図-6 地山地下水流動性検討概略断面図