55. 3次元地形モデルを活用した斜面崩壊地のトンネル調査事例

A Case of Surveying a Tunnel in the Slope Failure Area, Utilizing Three Dimensions Terrain Models.

○地主 卓弥 (ジェイアール東海コンサルタンツ), 佐野 淳 (東海旅客鉄道),林 勇次 (国際航業) Takuya Jinushi, Shun Sano, Yuji Hayashi

1. はじめに

ひび割れ等の変状が発生していた鉄道トンネル区 間の表層部において,斜面崩壊が発生した。この変状 は,土被りの薄い直線トンネルの坑口付近に分布し崩 壊地斜面との斜交した位置関係による「偏圧」か,崩 壊地頭部の段差や亀裂,滑落崖等の地すべり性地形の 分布から推察される「地すべり滑動」のいずれかによ って発生した可能性があり,それらの因果関係を把握 する必要があった。

現場作業の安全性確保と地すべり調査に資する高 精度な地形図データを取得するため,航空レーザー測 量により取得した地形図データをもとに3次元地形モ デルを作成し,斜面崩壊地を調査・考察した事例を報 告する。

2. 調査地の変状概要

本調査地は標高 600m 程度の山地地帯に位置し,河 川が数度蛇行しそれに挟まれた尾根地形の付け根状部 分で,河川の攻撃斜面にあたる。地質は三波川変成岩 類(砂質片岩,泥質片岩,緑色片岩)からなり,河川 沿いには岩級区分 CM 級の砂質片岩,崩壊面には CL 級 主体の砂質~泥質岩盤が分布する。

崩壊地の規模は,頭部で幅 50m,中腹部で最大幅 60m, 末端で幅 50m,崩壊鉛直深さは 1~2m 程度,崩壊面の 傾斜は 45~50 度であり,崩壊地頭部には段差や亀裂, 滑落崖等の地すべり性地形が認められ,古い岩盤すべ りの痕跡の可能性があった(図-1,図-2)。

図-2 頭部滑落崖

昭和 30 年頃に完成した全長 193mのトンネルには, トンネル起点から 135~193m の崩壊地直下付近の特 に山側のアーチに延長方向のひび割れや圧ざが認めら れたが,地すべり変動に特徴的な雁行状亀裂は認めら れない。対策が必要なトンネルの変状箇所には補修対 策が行われ,内空変位やひび割れ開口幅のゲージによ る動態観測が行われているが,崩壊前後に急激な変化 は認められない。

3. 調查方法

3.1 航空レーザー測量・現地補足測量

狭い調査範囲において, 微地形を高密度に把握でき るように回転翼によるレーザー測量を行った。樹木に より地表部が遮蔽された箇所では, グラウンドデータ の精度向上のため, トータルステーションにより現地 補足測量を 900 点程度補完し微地形座標を取得した (図-3)。

図-3 補完前後の地形データの比較

3.2 3 次元地形モデル化

トンネルと変状範囲の位置関係と,現況(崩壊後) の土被り厚さを把握できるように,3次元地形モデル を作成した。土被り厚さを正確に表現出来るようにす るため,任意の地点における断面図作成機能を持たせ た解析用の断面図を作成した。

さらに、オルソフォト画像やトンネル内部の変状画 像情報を組合せて、地形表層部からトンネル内部まで を確認できるようにした。トンネル内部形状は、両坑 口部をトータルステーションにより計測し3次元でト ンネル形状を再現し、そのモデルに配置する内部の変 状を図示した写真画像を、コンピュータグラフィック スを用いて坑口からの距離数値の配置、色調及び画像 位置補正等の処理を行い表現させた。そして地表面と トンネルの両3次元モデルのレンダリングにより、簡 易的なバーチャルリアリティを作成し、表示や視点の 移動を可能にした。

3.3 地表踏査・ボーリング調査

想定される地すべり範囲を把握するため、レーザー 測量による高精度地形図を用いて地表踏査を行った。 地山状況及びすべり面の検出を目的としたボーリング 調査は、崩壊斜面内は落石等の危険があり調査不可能 であったため、鉄道への影響を確認できるようにトン・ ネル坑口を挟む位置で河川深度まで実施した。

また、トンネル内の地山状況の把握のため、変状区間を対象にコアカッターにより数m程度のボーリングを実施した。

4. 調査結果

4.1 航空レーザ測量・3次元地形モデル化

作成した3次元地形モデル(図-4~6)から,崩 壊地とトンネルの立体的な位置関係やトンネル内部の 変状位置と土被りの関係を可視化させてトンネル・地 質解析を行った。

図-4 3次元地形モデル (立体的表示, 左:TIN モデル, 右:オルソ画像モデル)

図-5 トンネル内外部の画像

4.2 地表踏査・ボーリング調査

地表踏査では地すべり地形とそれが滑動的なもの かどうかを調査し、亀裂面が新しいものは崩壊により 発生した引張り亀裂,植生等があり古いものは過去に 発生した地形と判定した。

坑口付近で実施したボーリングの結果,一部山側の 深部に破砕帯が分布したが,川側のボーリングではそ れに整合する軟質部はなく地すべりの範囲外であるこ とが判明した。トンネル内部のコアカッターによるボ ーリングの結果,部分的には割れ目が入っている箇所 も認められたが,概ね良好な中硬岩〜硬岩コアが主体 であり,地すべり滑動による軟質部や劣化部は認めら れない。

4.3 崩壊とトンネル影響の関係

3 次元モデルを活用し,地すべり性微地形や崩壊範 囲をもとに地すべり平面範囲を推定した(図-7)。末 端部は,幅狭となる側壁の地形の特徴や河川沿いから 連続する堅岩部の位置から推定した。また,一般的に 地すべりはその深さと幅に力学的な相関関係があり, 地すべりの平面範囲からすべり面の深さを推定した結 果,トンネルへの地すべりの影響はなかった。

図-7 平面図(左:地形図,右:陰影図)

5. おわりに

トンネル区間と斜交した斜面崩壊の関係を把握する ために3次元地形モデルを作成した。トンネル調査や 地質解析の精度が向上でき,「見える化」したことで結 果が判定しやすい資料になった。

また,崩壊拡大や地すべり滑動により,今後土被り が変化した場合には,地上型レーザー等により地形デ ータを再取得し変化量の差分を比較することにより, トンネルと斜面変状の維持管理ツールとして活用して いくことが期待できる。