15. トンネルにおける酸性恒常湧水の化学分析結果について

Determination of Chlorine and Sulfate Ions in Acid Groundwater Seepage from a Tunnel by Ion Chromatography

○倉橋稔幸, 田本修一, 矢島良紀 (寒地土木研究所) Toshiyuki Kurahashi, Shuichi Tamoto, Yoshinori Yajima

1. はじめに

日本国内の温泉や地下水には酸性を示すものがあ るため, トンネルの掘削工事で酸性の地下水が湧水す ることがあり、供用後にまで酸性水を発生させている ことがある $^{1)2)}$.酸性水の成因として硫化鉄(FeS₂)の酸 化や火山性起源が考えられている. 前者は岩石中に含 まれる黄鉄鉱(FeS2)が酸化し硫酸を発生させ、後者は 地下深部のマグマからの火山ガスに含まれた HCl や SO₂が塩酸や硫酸を発生させる.特に HCl は地表では 生成されず,地下深部の火山ガスに含まれることから, 火山性ガスの痕跡を示す. 例えば玉川温泉や川原毛温 泉のような酸性泉は、高温の火山ガスが浅層の地下水 と混合して生成されたと考えられている³⁾. また,塩 酸は硫酸よりも電離度が高く同じ濃度でも酸化力が強 いことから, コンクリートに与える影響が大きい 4). ゆえに、酸性湧水の塩化物イオン(CI)と硫酸イオン (SO_4^{2-}) の構成比を明らかにすることには意義がある.

そこで本報告では、イオンクロマトグラフにより国道等の既設トンネルの酸性恒常湧水中の塩化物イオンと硫酸イオンの成分を定量し、酸性泉として知られている玉川温泉や草津温泉等の分析値³⁾⁴⁾と比較することで酸性恒常湧水の成因を考察した.

2. 分析方法

これまでに酸性恒常湧水が認められる北海道から北陸地方の3本の国道や地方道等の既設トンネルから13試料を採取した⁶⁾. 湧水をトンネル坑口の集水枡や排

水溝から採水カップ等で採水し、水温、pH、電気伝導度(EC)、酸化還元電位(ORP)を計測した. 計測後、ろ紙によりろ過し 1μ m 以上の浮遊粒子を取り除き、500ml のポリプロピレン製のボトルに詰め、実験室へ持ち帰った. 実験室でイオンクロマトグラフ (Dionex 社製 DX320J)を用いて塩化物イオン(CI)と硫酸イオン(SO_4^2)を定量し、両イオンの量比から酸性恒常湧水の成因を考察した.

3. 分析結果

3.1 水素イオン濃度との相関

表-1 に採取した酸性恒常湧水の水質と分析結果を示す. pH は $3.2\sim5.2$ を示した.

一方,イオンクロマトグラフ分析の結果,塩化物イオン(Cl)の濃度は $1.065\sim20.393$ mg/l で, $3.04\times10^{-5}\sim5.83\times10^{-4}$ mol/l であった.また,硫酸イオン(SO_4^{2-})の濃度は $25.635\sim115.19$ mg/l で, $2.67\times10^{-4}\sim1.20\times10^{-3}$ mol/l であった.

図-1 に水素イオン(H⁺)濃度と $Cl^++SO_4^{2-}$ 濃度との関係を示す. 水素イオン濃度が増加するのに伴い, $Cl^-+SO_4^{2-}$ 濃度は 3.02×10^{-4} mol/l から 1.65×10^{-3} mol/l まで増加した. 試料の $Cl^-+SO_4^{-2}$ 濃度は玉川温泉等の分析値と比較して低いが、水素イオン濃度と正の相関を示す.

その他、トンネルはいずれも北海道駒ヶ岳、倶多楽、草津白根山等の活火山から約 20km 以内に位置することを考慮すると 7 、試料は塩酸や硫酸を混酸として含んでおり、火山性起源であると推定される.

五 1 万 5 m 加 元 五 五 1 万 5 m 元 五											
サンプル	トンネル	採水日	温度 (℃)	pН	ORP _{SHE} (V)	EC (uS/cm)	H ⁺ (mol/l)	Cl' (mol/l)	SO ₄ ²⁻ (mol/l)	Cl'+SO ₄ ² · (mol/l)	Cl'/SO ₄ ² ·
#1	#AD	2013/12/18	6.8	3.7	0.683	235	2.14E-04	3.20E-04	5.40E-04	8.60E-04	0.593
#2	#AD	2013/12/18	6.6	3.5	0.718	321	3.31E-04	5.83E-04	5.98E-04	1.18E-03	0.974
#3	#AD	2013/12/18	8.3	4.4	0.473	108	4.17E-05	3.10E-05	3.37E-04	3.68E-04	0.092
#4	#AD	2013/12/18	4.9	4.1	0.686	106	8.71E-05	3.49E-05	2.67E-04	3.02E-04	0.131
#5	#AD	2013/12/17	6.3	4.2	0.626	136	6.17E-05	3.25E-05	3.92E-04	4.25E-04	0.083
#6	#AD	2013/12/17	4.4	4.3	0.590	121	5.25E-05	3.16E-05	3.72E-04	4.04E-04	0.085
#7	#AD	2013/12/17	6.0	4.7	0.480	107	2.14E-05	3.77E-05	3.53E-04	3.90E-04	0.107
#8	#AD	2013/12/17	6.4	5.2	0.448	96	6.61E-06	3.04E-05	3.03E-04	3.33E-04	0.101
#9	#AD	2013/12/17	7.5	3.2	0.623	360	6.03E-04	3.54E-05	8.60E-04	8.96E-04	0.041
#10	#AD	2013/12/17	6.8	4.4	0.502	181	4.27E-05	3.66E-05	6.51E-04	6.88E-04	0.056
#11	#G	2013/12/3	9.8	3.3	0.681	393	4.79E-04	4.55E-04	1.20E-03	1.65E-03	0.379
#12	#G	2013/12/3	7.6	3.3	0.740	412	5.13E-04	2.71E-04	1.19E-03	1.46E-03	0.229
#13	#J	2013/11/22	5.0	5.2	0.640	68	6.61E-06	7.49E-05	3.51E-04	4.26E-04	0.213

表-1 分析結果一覧表

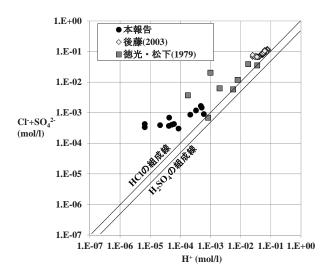


図-1 水素イオン濃度と Cl-+SO₄2-濃度との関係

3.2 塩化物イオンと硫酸イオンの量比

図-2 に $C\Gamma/SO_4^2$ -比と $C\Gamma+SO_4^2$ -との関係を示す. 本報告の $C\Gamma/SO_4^2$ -比は $0.083\sim 0.974$ を示し、いずれも 1 を下回った(図-2). しかし、後藤 $(2003)^3$)の玉川温泉や川原毛温泉の分析値に比べると極めて小さく、徳光・松下 $(1979)^5$)の霧島温泉の分析値と同程度である(図-2、図-3). 本報告の試料は硫酸イオンが相対的に多く含まれ、酸性から弱酸性の硫酸塩泉として特徴づけられる.

このうち、#ADトンネルの試料#2の CI*濃度は 5.83×10^{-4} mol/l を示し最大となった。その CI/ SO_4 ²比は 0.974 である。塩酸は硫酸よりも酸化力が強くコンクリートに与える影響が大きいことから、#ADトンネルは他の#Gや#Jトンネルに比べて覆エコンクリートや支保工の鋼材に最も酸性湧水の影響が及んでいると推定される。

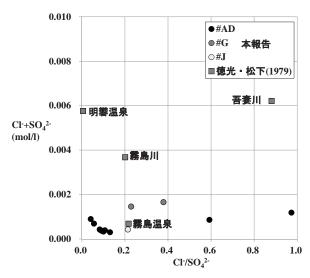


図-2 Cl⁻/SO₄²⁻比と Cl⁻+SO₄²⁻との関係

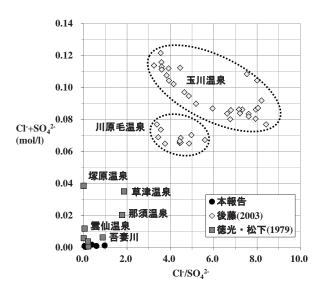


図-3 Cl/SO4 比と Cl+SO4 との関係

4. まとめと今後の課題

本報告の酸性恒常湧水の Cl'/SO_4^2 比は $0.083\sim0.974$ を示した. 酸性湧水は塩酸や硫酸を混酸として含み,火山性起源による酸性から弱酸性の硫酸塩泉として特徴づけられる.

塩酸は硫酸よりも酸化力が強くコンクリートに与える影響が大きいことから、今後は塩化物イオンと硫酸イオンの構成比と濃度を踏まえ、酸性湧水の覆エコンクリートや支保工の鋼材に及ぼした影響を解析する予定である.

汝献

- 鈴木道雄,諏訪義雄(1971): 三国トンネルにおける巻き立てコンクリートの侵食とその対策,道路とコンクリート, No.13, pp.15-22.
- 2) 原田勇雄(1989): 北海道における主要プロジェクトに関する土質・基礎の話題, 5.オロフレトンネルの設計施工-鉱化変質帯のトンネル施工例, 土と基礎, Vol.37, No.9, pp.101-104.
- 3) 後藤達夫(2003): 世界的にみて最も大規模な火山 性強塩酸酸性泉の玉川温泉の水質特徴ならびに玉 川の水質改善効果について(1), 水, Vol.45, No.13, pp.61-68.
- 4) 蒔田 実, 坂本浩行(1972): コンクリートの耐酸性 について, 第27回建設技術研究会報告, pp.115-121.
- 5) 徳光善治, 松下博通(1979): 温泉地帯とコンクリート, コンクリート工学, Vol.17, No.11, pp.31-35.
- 6) 倉橋稔幸, 岡﨑健治, 田本修一, 伊東佳彦(2013): 既設トンネルの酸性恒常湧水における微量元素の 定量分析について, 日本地下水学会秋季講演会講 演要旨, pp.254-257.
- 7) 浅森浩一・石丸恒存・岩月輝希 (2009):日本列島 における火山周辺の酸性地下水分布,サイクル機 構技報, No.15, pp.103-111.