44. 平野の河川周辺における地形と表層地質との対応関係

A Relationship between Landform and Surface Geology around River Channel in Alluvial Plain

1. はじめに

河川堤防は延長が非常に長いことから,河川堤防基 礎地盤の浸透安全性評価において,十分な地質調査を 行うためには多大な費用と時間を要する.

一方,平野における河川は,浸食や堆積を繰り返し ながら平野の地質を形成する.特にその堆積物の表面 の形状は地形として認識されることから,堆積地形と 表層地質は一定の関係があるものと考えられる.

地形調査は非常に安価かつ面的な情報が得られる ため、地形から表層地質が推定できれば地質調査の効 率化、高精度化に貢献できる.

そこで本論では、平野の河川周辺における地形と表 層地質との対応関係について、天竜川下流域を例に分 析を行い、地形から表層地質を推定する場合の推定精 度やその適用深度に関する考察を行う.

2. 作業方法

調査地域は天竜川下流域(0k~30.5k)の,山地・扇 状地・氾濫平野・海岸平野を流下する区間である.

地形分類図の作成に当たっては,昭和 21-23 年に撮 影された米軍撮影の空中写真(縮尺約 1/4 万)を基本 とし,昭和 37-42 年に撮影された国土地理院撮影の空 中写真(縮尺約 1/1 万および 1/2 万)を併用した.ま た,明治 23 年から平成までの6時期に刊行された地形 図(縮尺 1/5 万および 1/2.5 万)の地形図を参照した.

地形分類図は Arc GIS (ESRI 社製) で取り扱い可能 な形式で電子化し,国土交通省浜松河川国道事務所提 供のボーリングデータの位置(XML 形式)を地形分類 図上に表示させた.図-1に作業例を示す.そしてそれ ぞれのボーリング地点の地形種を把握し,柱状図を地 ○品川俊介, 佐々木靖人, 日外勝仁(土木研究所) Shunsuke Shinagawa, Yasuhito Sasaki, Katsuhito Agui

形種別に整理した.そして地形種別・深度別の土質の 出現割合を調査した.

深度別の土質の抽出方法は次のように行った.

- 1)「地理院地図」(国土地理院ホームページ)により, ボーリング位置近傍の自然地盤高を把握した.本作 業では航空レーザー測量結果に基づく 5m DEM の 成果(標高表示の最小単位 0.1m)を用いた.
- 2)地形と表層地質との対応関係を検討するためには、 各ボーリングについて自然地盤の上面,すなわち過 去の地表面の位置を決定する必要がある.柱状図で は盛土等を区別して記載されていることが多いが、 柱状図で示される自然地盤の上面は必ずしも周辺 地盤高と一致しない.そこで本検討では、ボーリン グ柱状図より、周辺地盤高とほぼ一致する標高を地 表と定めた.具体的には、柱状図における盛土下面 の標高が周辺地盤高に近い(おおむね±50cm以内) の場合は盛土下面標高を地表とした.上記以外の場 合、柱状図に記載されている層境界が周辺地盤高に 近い場合には層境界を地表とし、層境界が周辺地盤 高に存在しない場合は周辺地盤高を地表とした.
- 3)地表および深度1mから1mおきに5mまでの,計 6深度について,柱状図より土質を読み取った.土 質区分は礫・砂礫,砂、シルト,粘土・有機質土, 岩盤の、5つのいずれかにまとめた.なお表土について,土質区分が注記に書かれているものはその土 質区分に分類し,記載がないものは集計から除外した.また,周辺地盤高との関係で盛土部分を地表と 判定したものについては,盛土の土質区分によった. また分析には,収集したボーリング資料172本(表

図-1 作業例

台地·

日主

-1)のうち、台地・丘陵地・山地および現況河川敷で 掘削されたものを除く 120 本を用いた.

表-1 分析に用いたボーリングの地形種別集計

			数量(本)
地形種区分	右岸	左岸	合計
丘陵地・山地	3	0	3
Ł 微高地	4	13	17

自然堤防	9	12	21
氾濫原	24	25	49
旧河道(古地図なし)	18	4	22
旧河道(古地図あり)	2	9	11
現況河川敷	-	-	49
수 計	60	63	179

3. 地形種と表層地質との関係

天竜川下流部の地形は、その特徴から次の4つの区 間に分けることができる.

- 1)峡谷部 (25~30.5km 付近): 地形は山地が主体で, わずかに台地(段丘)や氾濫原が分布する.
- 2) 扇状地部(14~25km 付近): 微地形は, 旧河道お よび中州性微高地が主体をなす.
- 3) 蛇行河川部 (3~14km 付近): 微地形は, 旧河道, 氾濫原および自然堤防が主体をなす.
- 4) 河口部(河口~3km 付近):海の影響を受けた地 形が見られる区間である.微地形は蛇行河川部と同 様のものに加え、砂丘、堤間低地が認められる.

以下に,自然堤防および氾濫原における深度別の土 質出現割合の分析結果を例示する.

3.1 自然堤防

自然堤防は, 蛇行河川が洪水時に溢水する際, 河川 近傍に土砂を堆積させてできる地形と考えられており, 河口より 14km 付近までの区間に分布する.

地形種別・深度別の土質出現割合を表-2に示す.本 地形区分は表層より 2m まで砂の割合が 2/3 以上であ り,地形と地質との対応関係が明瞭である.

3m 以深では様々な土質が現れることから、本地域に おける自然堤防は表層より深さ 2m 程度までについて, 砂で構成されていると見なしてよいと考えられる.

子細に見ると、河川(旧河道を含む)より離れるほ ど,表層の砂層の厚さが減じている様子が認められた. またボーリングの記事を読むと、同じ砂層でも上流ほ ど若干粗粒になっている傾向が認められた.

表-2 深度別土質出現割合(自然堤防)

A = 1
合計
100
100
100
100
100
100

太字は出現割合が67%以上のものを示す。

3.2 氾濫原

氾濫原は、平野の一般面(その他の区分に該当しな い部分)として区分した. 天竜川下流部では河口~ 14km までの蛇行河川部から河口部にかけて、および

23kmより上流に分布し、その間の扇状地部には分布 しない. 下流側と上流側では堆積物が異なるため, 2 つの区間に分けて土質出現割合を集計した(表-3,4).

下流側では表層から1mまで砂,シルトが主体で,そ れより下位では礫・砂礫が多い.この礫・砂礫はその 粒度から,本地形種と関係がない本川河道の堆積物で あると考えられる.

上流側で氾濫原と区分された場所は, 下流側のそれ とはかなり異なり,幅の狭い谷中に分布する.ここで は表層より 2-3m まで、礫・砂礫および砂が半々程度 の割合で見られ、その下位では礫の割合が増加する.

なお左岸 25km 付近では多数のボーリングが実施さ れているが, ここでは河川から遠ざかる山際部分で砂 の割合が増加している.

表-3 深度別土質出現割合(氾濫原:0-14km区間)

_微地形種:氾濫原(0-14km区間)(31本)						割	合(%)
深度 土質	3分 礫・砂	?礫	砂	シルト	粘土	岩盤	合計
表層		17	47	37	0	0	100
1m		17	50	33	0	0	100
2m		47	33	20	0	0	100
3m		55	23	19	3	0	100
4m		50	30	13	7	0	100
5m		50	33	7	10	0	100

太字は出現割合が67%以上のものを示す。

表-4 深度別土質出現割合(氾濫原:23km-30.5km 区間)

微地形種:氾濫原(23km-30.5km区間)(18本)						割	<u> 合(%)</u>
深度		礫·砂礫	砂	シルト	粘土	岩盤	合計
	表層	50	44	6	0	0	100
	1m	56	39	6	0	0	100
	2m	56	39	6	0	0	100
	3m	61	33	6	0	0	100
	4m	78	17	6	0	0	100
	5m	89	11	0	0	0	100
太字は出現割合が67%以上のものを示す。							

3.3 各地形種と表層地質との関係のまとめ

天竜川下流域において 3.1, 3.2 のような分析を各 地形種について行った結果を表-5にまとめた.

地形と表層地質との関係を深度方向の情報も含め て詳細に検討したところ,河川の区間毎,地形種毎に かなり明瞭な関係が見いだされた.また、地形と土質 区分が対応する深さが地形種毎に異なることが明らか になった. そのほか,同一地形種であっても河川(現 況河道または旧河道)からの距離に応じて対応する深 さが変化することや、上流ほど粗粒化することから、 地質の推定においては河川との位置関係にも配慮する 必要があることがわかった.

表−5 天竜川下流域における地形と表層地質との対応

地形種区分	推定土質	適用深度	<参考>推定される 土質の出現確率
中州性微高地	·砂礫	表層~5m以上	表層~1m:71~76% 2m~5m:94~100%
自然堤防	砂	表層~2m	75~82%
氾濫原(0~14km)	砂またはシルト	表層~1m	砂:47~50% シルト:33~37%
氾濫原(23~30.5km)	礫・砂礫または砂	表層~2m	礫·砂礫:50~56% 砂:39~44%
旧河道(古地図なし) (0~14km)	砂またはシルト	表層~1m	砂:58~60% シルト:30~33%
旧河道(古地図なし) (14~25km)	礫·砂礫	表層~5m以上	表層~2m:80~90% 3m~5m:100%
旧河道(古地図あり)	·砂礫	表層~5m以上	表層~1m:56~73% 2m~5m:82~100%