15. 四万十帯日向層群における透水性割れ目の性状と発達過程の検討

Characteristics and formation processes of water-conducting fractures in the Hyuga Group of the Shimanto Belt

○大野卓也(日本原子力研究開発機構),吉田英一(名古屋大学博物館) Takuya Ono, Hidekazu Yoshida

1. はじめに

固結した岩石には割れ目が存在する. その一部の割 れ目は,地下水の水みちとして機能し(透水性割れ目), 地下環境における物質移動の経路となる. そのため, 地層処分における岩盤の閉じ込め機能の評価には,透 水性割れ目の性状と発達過程についての理解が必要で ある.透水性割れ目に観点を置いた研究は主に花崗岩 類を対象として進められている. その結果, 地下水か ら割れ目内に析出した鉱物(割れ目充填鉱物)により 割れ目が目詰りを起こす現象(割れ目シーリング)や, 割れ目充填鉱物の産状・組成と地史の相関性などが明 らかにされつつある 1) 2)など.一方で,付加体堆積岩に おける割れ目研究事例は非常に少ない. 付加体堆積岩 は日本において最も典型的な岩種の一つであり、その 透水性割れ目に関する知見の整備は. 地層処分サイト の候補岩種の選択肢を拡充する意味合いで非常に有意 義であると考える.以上の背景のもと、本研究では九 州南部に分布する四万十帯日向層群で掘削されたボー リングコアを調査し、付加体堆積岩における透水性割 れ目の性状と発達過程について検討する機会を得た.

2. 地質概説および研究手法

調査したボーリングコアは、宮崎県北東部で掘削されたものである.掘削サイトには、四万十帯日向層群 北部コンプレックスが分布し、比較的変形の少ない整 然とした砂岩泥岩互層を示す³⁾.これらの起源は付加 体上に形成された前弧海盆あるいは深海テラス盆の堆 積物と考えられている⁴⁾.

本研究では計5本のボーリングコアを調査した.こ れらのボーリングコアの掘削地点は河川に対して直交 する約300mの同一直線上に並び、その最大掘削深度 は地表から140mである(図-1).深度約80m以浅 のボーリングコアは,地表水が割れ目に沿って流入し たことにより赤褐色化(酸化帯)しているが,それ以 深のコアは青灰色を呈し,地下環境本来の還元的環境 が保たれていることを示す(還元帯).

ボーリングコアの調査では、コアの状態(とくに酸 化帯の分布),割れ目の分布とその形態的特徴,割れ目 充填鉱物および割れ目周辺母岩中の変質鉱物の産状と 組成について記載を行った.このうち,充填鉱物や変 質鉱物の詳細な観察・分析には偏光顕微鏡,SEM,XRD, XRF,WDX を用いた.

図-1 ボーリングコア掘削地点と酸化帯および割れ目頻度分布

3. 結果および考察

ボーリングコア中の天然の割れ目は,充填鉱物で塞 がっている割れ目(シーリング割れ目)と,割れ目内 に空隙と自形の充填鉱物を有し,地下環境において主 要な水みちとして機能しうると考えられる割れ目(開 口割れ目)に二分される.地表付近に広がる酸化帯で は,このうち開口割れ目のみが分布し,地下深部の還 元帯ではシーリング割れ目が90%以上を占める(図-1).これらの酸化帯と還元帯での割れ目分布傾向の違 いは,地表からの酸性的な水が流入することによって シーリング割れ目を充填する炭酸塩鉱物が溶解し,開 口割れ目へと変化した結果であると解釈される.また, 開口割れ目の分布はボーリングコア掘削時のルジオン テストにより確認されている高透水性領域の分布と相 関的であり,開口割れ目の頻度分布が実際の透水性割 れ目の分布傾向の指標となりうることを示唆する.

割れ目充填鉱物および割れ目周辺母岩中の変質鉱 物について観察・分析した結果,時系列順に以下の4 つの鉱物形成ステージが識別された.

<u>ステージ1:</u> 結晶構造が明瞭でないシデライトとア ンケライトが割れ目を充填するステージ(図-2a).充 填される割れ目は局所的なメランジュ構造と調和的に 形成した泥層中の割れ目である.岩体が完全に固結す る前の段階で形成した割れ目に泥層空隙水中の物質が 供給されて形成したものと解釈できる.

<u>ステージ 2:</u> 地質構造を切るように発達した割れ目 を自形の石英およびアンケライトが充填するステージ (図-2b).割れ目周辺母岩では斜長石のイライト化が 確認できる.母岩斜長石のイライト化は割れ目を高温 流体が循環したことによる熱水変質であると考えられ ている⁵⁾.

<u>ステージ3:</u> 自形の方解石が割れ目を充填するステ ージ(図-2c).ステージ2の充填鉱物を覆うように析 出し,ほとんどの割れ目をシーリングする.方解石は 花崗岩体中でも広く確認される充填鉱物であり,天水 由来の地下水から析出するものと考えられている^の. <u>ステージ4:</u> 地表水流入により鉄水酸化物の析出と. 炭酸塩鉱物の溶解が生ずるステージ(図-2d).

以上の4つのステージに識別される鉱物組合せのう ち,最も高深度的(高温)な析出環境を示唆するもの はステージ2である.そのため,一連の鉱物形成ステ ージの変遷は,日向層群が付加・埋没(ステージ1) し,高深度に達した後に地表まで隆起(ステージ2,3, 4)する付加体堆積岩を特徴づける一連の地質発達史を 反映している可能性が高い.

4. まとめ

日向層群に形成した透水性割れ目の90%以上は岩体 が付加・埋没過程および隆起過程を経る間にシーリン グされ,その透水性を失う.その後,地表水が流入し,

図-2 割れ目充填鉱物の産状

割れ目を充填する炭酸塩鉱物と相互作用を起こすと, 割れ目は透水性を取り戻す.この相互作用のプロセス を理解し,酸化還元フロントの進行速度を見積もるこ とは,付加体堆積岩の閉じ込め機能の評価において重 要な要素の一つとなると考えられる.

文献

- Yoshida, H., Metcalfe, R., Ishibashi, M. and Minami, M. (2013) : Long-term stability of fracture systems and their behavior as flow paths in uplifting granitic rocks from the Japanese orogenic field, Geofluids, Vol.13, pp.45-55.
- 2) 石橋正祐紀・安藤友美・笹尾英嗣・湯口貴史・西本 昌司・吉田英一(2014):深部結晶質岩における割 れ目の形成・充填過程と透水性割れ目の地質学的特 徴-土岐花崗岩を例として-,応用地質, Vol..55, No.4, pp.156-165.
- 木村克己・巖谷敏光・三村弘二・佐藤喜男・佐藤岱 生・鈴木祐一朗・坂巻幸雄(1991): 尾鈴山地域 の地質一地域地質研究報告 5 万分の1 地質図 幅,地質調査所,137 p.
- 4) 日本の地質 9 九州地方編集委員会(1992):日本の 地質 9—九州地方,共立出版,388 p.
- Nishimoto, S. and Yoshida, H. (2010) : Hydrothermal alteration of deep fractured granite: Effect of dissolution and precipitation, Lithos, Vol.115, pp.153-162.
- 6) Iwatsuki, T., Satake, H., Metcalfe, R., Yoshida, H. and Hama, K. (2002) : Isotopic and morphological features of fracture calcite from granite rocks of the Tono area, Japan: a promising paleohydrogeological tool. Applied Geochemistry, Vol.17, pp.1241-1257.