P11 空中電磁探査を活用した火山体調査事例

Case study of Volcano Survey using the Airborne Electromagnetic survey
○瀬戸秀治,高原晃宙,木下篤彦,清水孝一(国立研究開発法人土木研究所)
石塚忠範(国立研究開発法人土木研究所)現国土交通省近畿地方整備局六甲砂防事務所)
河戸克志,奥村 稔,影浦亮太(大日本コンサルタント株式会社)
Shuji Seto, Teruyoshi Takahara, Atuhiko KinoshitaTaro, Yoshikazu Shimizu,
Tadanori Ishiduka, Katsushi Kawato, Minoru Okumura, Ryouta Kageura

1. はじめに

火山では、直接的な火山活動以外にも豪雨等により 大規模な土砂災害が発生する場合がある¹⁾。そのため、 各火山において、崩壊するおそれのある斜面を把握し、 火山砂防計画に適切に反映することで、被害を軽減す ることが求められている。

火山体における崩壊危険斜面の調査技術としては、 空中電磁探査に関する研究事例がある^{2)~6)}。既往研究 事例では、崩壊するおそれのある大まかな範囲を抽出 しているが、斜面単位での抽出や崩壊深度の推定はな されていない。本報告では、既往研究事例を収集し、 地形・地質・水文・比抵抗構造特性から崩壊するおそ れのある斜面を抽出するとともに、崩壊深度を推定し て崩壊土砂量を試算した結果について述べる。

2. 空中電磁探査の概要と対象とする土砂移動現象

2.1 空中電磁探査の概要

空中電磁探査は、ヘリコプターに探査装置を搭載し て電磁誘導により地盤の比抵抗構造を非接触で取得す る調査方法であり、周波数領域空中電磁法と時間領域 空中電磁法の2つの探査手法がある。

周波数領域空中電磁法は、空中から 5~6 周波の周 波数で発信される1次磁場によって誘導される2次磁 場を空中で受信する探査手法であり、異なる周波数帯 を用いることにより、異なる深度の比抵抗情報を取得 できる。なお、5 周波は DIGHEM タイプ、6 周波は RESOLVE タイプと呼ばれており、探査可能深度は100 ~150m程度である。時間領域空中電磁法は、地盤の電 磁応答を時間の関数として測定を行う探査手法であり、 富士山と御嶽山において、地上ソース型時間領域空中 電磁探査法(GREATEM)が実施されている。この手 法では、地下 500~1000m 程度までの比抵抗構造を把 握することが可能である。図-1に研究対象火山と空中 電磁探査の実施状況を示す。

2.2 対象とする土砂移動現象

火山地域で発生する土砂移動現象については、流下 形態や規模等に着目した表-1のような分類がなされて いる¹⁾。本研究では、空中電磁探査の探査可能深度か ら、大規模〜中規模崩壊(A2、A3)と地すべり(B1、 B2)を対象土砂移動現象として以下の研究を進めた。

図-1 研究対象火山と空中電磁探査の実施状況

分類	発生 形態	細分	流下形態	<mark>規模</mark> (m ³)	発生場所	事例		
A I A II	崩壊	A1	巨大崩壊 ⇒岩屑なだれ	10°以上	山頂	眉山 (1792)		
		A2	大規模崩壊 ⇒岩屑なだれ	10 ⁶ ~10 ⁷	山体上部	御嶽山 (1984)		
		A3	中規模崩壊 ⇒土石流	10³~10⁵	崖錐斜面	妙高山 (1978)		
		A4	多発型表層崩壊 ⇒土石流	10°~10²	開析谷頭	阿蘇山 (2012)		
в	地 す	B1	巨大・大規模地すべり	10°以上	山腹斜面	八幡平		
	べり	B2	火山性地すべり	10°~10 ⁶	地すべり 地形	秋田焼山 (1997)		
そ の 他		С	落石・崩壊・トップル	10°~106	急崖 節理	層雲峡 (1987)		
		D	非崩壊起源土石流 (噴火後土石流)	10°~106	開析谷内	普賢岳 (1992)		

表-1 火山地域で発生する十砂移動現象¹⁾

崩壊するおそれのある斜面の抽出手法の検討 3.1 崩壊した斜面の特徴

対象とする土砂移動現象に関する過去の崩壊事例を 収集し、地形・地質・水文・比抵抗構造特性に着目し て、崩壊した斜面の特徴を①~③に類型化した。

①上位高比抵抗・下位低比抵抗型(キャップロック)

栗駒山における2008年のドゾウ沢⁷⁾での崩壊が典型 的な事例である。下位に変質した凝灰角礫岩層が低比 抵抗帯として分布し、上位には多亀裂性〜自破砕状の 安山岩溶岩が高比抵抗帯として分布しており、典型的 なキャップロック構造を呈している。また、変質した 凝灰角礫岩は難透水層となるため、溶岩との境界付近 から湧水が認められ、境界付近で崩壊が発生している。

②上位低比抵抗·下位高比抵抗型(急傾斜地)

磐梯山で 1888 年に発生した山体崩壊斜面の拡大崩 壊が典型的な事例である。崩壊面は急傾斜であり、変 質して粘土化した脆弱な地質が低比抵抗帯として露出 している。滑落崖の背後は湿地状となり、地下水は比 較的浅いことが推測される。

③上位中比抵抗・下位低比抵抗型(地すべり)

秋田焼山において 1997 年に発生した澄川地すべり ⁸⁾が典型的な事例である。地すべり地形が明瞭であり、 上位には移動土塊が中比抵抗帯として分布し、下位に は基盤岩中の地下水分布を反映した低比抵抗帯が分布 している。

図-2 崩壊するおそれのある斜面抽出事例

			崩	崩壊するおそれのある斜面			
	位置	分類	壊タイプ	長さ	幅	深さ	土砂量
御嶽山	伝上川 滑落崖	崩壊 (A2)	1	600m	500m	100m	3,000 万 m³
磐梯山	山体崩壊 滑落崖	崩壊 (A2)	2	300m	600m	80m	1,400 万 m³
北海道 駒ヶ岳	砂原岳	崩壊 (A3)	1	430m	400m	35m	790万 m³
浅間山	蛇堀川源頭 (牙山)	崩壊 (A3)	1	500m	300m	50m	750 万 m³
吾妻山	家形山北東 (福島県)	地すべり (B2)	3	450m	300m	30m	405 万 m³
吾妻山	家形山北 (山形県)	地すべり (B2)	3	600m	400m	40m	960 万 m³

表-2 崩壊するおそれのある斜面抽出結果一覧表

3.2 崩壊するおそれのある斜面の抽出

3.1 に示した特徴を有する斜面を各火山毎に抽出し、 崩壊範囲は主に地形・地質特性から、崩壊深度は比抵 抗構造特性(比抵抗変化の大きな場所)に着目して想 定した。比抵抗変化が大きいということは、地質境界 や地下水状況の変化を反映している。3.1 で示したよ うに、深度方向に比抵抗変化が大きい場所で崩壊や地 すべりが発生していることから、本研究においても比 抵抗変化が大きい深度に着目し、崩壊深度を想定した。 また、想定した範囲、深度から崩壊土砂量を試算した。 北海道駒ヶ岳での抽出事例を図-2 に、抽出結果一覧表 は表-2 に示す。本研究では、5 火山で 6 斜面の崩壊す るおそれのある斜面を抽出することができた。

4. おわりに

本研究では、既往崩壊事例から崩壊した斜面の特徴 を類型化し、崩壊するおそれのある斜面を抽出すると ともに空中電磁探査結果を活用して崩壊土砂量を試算 した。今後は、火山体における崩壊の特徴を網羅する ため、より多くの崩壊事例を収集して、崩壊した斜面 の特徴の類型化をさらに進めていく必要がある。また、 今回推定した崩壊深度が妥当かどうか検証するため、 ボーリング調査や地表踏査等により地質・岩盤状況を 把握し、比抵抗構造との関係を明らかにしていく必要 がある。

文献

1) 井口 隆 (2005):日本の第四紀火山における土砂災 害の実態と発生予測に関する研究、千葉大学学位論文 2) 大平知秀ら (2014):空中電磁法等を用いた吾妻山火 山山体構造に関する考察,平成 26 年度砂防学会研究発 表会概要集, p.A-64-A-65

3)千葉伸一ら(2014):富士山の防災対策を目的として 行った空中物理探査による不安定箇所抽出の考え方,

平成26年度砂防学会研究発表会概要集, p.A-218-A-219 4)坂井佑介ら(2014):空中物理探査等を用いた阿蘇中 岳周辺の火山体山体構造に関する考察, 平成26年度砂 防学会研究発表会概要集, p.A-220-A-221

5)小原昭彦ら(2014):空中電磁法を用いた岩手山の火山体構造に関する考察,平成26年度砂防学会研究発表 会概要集, p.A-222-A-223

6)下村慎一郎ら (2014):空中物理探査による大規模土 砂移動の予測一霧島火山体での適用事例一,平成 26 年度砂防学会研究発表会概要集, p.A-224-A-225

7)河戸克志ら(2011):2008年岩手・宮城内陸地震に よる深層崩壊発生斜面の三次元比抵抗パターン、平成 23年度砂防学会研究発表会概要集、pp.424-425.

8)小西尚俊ら(2002): 澄川地すべり空中電磁法調査結 果の検証、第41回日本地すべり学会研究発表会講演集、 pp.477-480.