P30 可視・近赤外分光による岩石コアの測定と強度特性との対比

(2)流紋岩質凝灰岩

Visible and near-infrared spectroscopy of rock cores and their strength properties (2) Rhyolitic tuff ○磯野陽子,木村隆行(エイト日本技術開発),中嶋 悟(大阪大学)

Isono Youco, Kimura Takayuki, Nakashima Satoru

1. はじめに

分光法は、物質が反射あるいは吸収する光(電磁波) のスペクトルを測定し、物質の組成や物理状態を推測 する方法で、医療・食品・化学物質など様々な分野・ 物質を対象に利用されている.鉱物学・地球科学の分 野でも、赤外・ラマン・X線分光法による岩石・土壌 の測定は、古くから行われている.近年の技術発展に 伴い、これらの分光器は小型化・軽量化が進み、野外 での迅速分析法としての新たな適用が期待される.

筆者らはこれらの分光法のうち,可視および近赤外 領域の光を用いる分光測色法と,近赤外分光法の土木 材料への適用検討を進めている.両分光法とも,非破 壊・その場分析が可能であることが最大の利点である.

昨年までに花崗岩類の力学特性把握に,近赤外分光 が有効である可能性を示した(磯野ほか(2014)¹⁾).今 回は,花崗岩類より細粒な凝灰岩類について近赤外分 光測定を行い,岩石の強度特性との相関を検討したの で,報告する.

2. 測定試料

道路設計のために実施されたボーリングコアより, 流紋岩質凝灰岩(白亜紀)9 供試体について, 岩石 物性試験を実施し, (表-1) その供試体を用いた。

供試体No	圧縮強度 (MN/m ²)	P波速度 (km/s)	S波速度 (km/s)	含水比 (%)
No.1	186.1	5.91	3.29	0.465
No.2	108.4	4.65	2.36	0.450
No.3	25.6	4.32	2.25	0.720
No.4	124.8	5.90	3.06	0.422
No.5	156.6	5.39	3.14	0.456
No.6	148.1	5.16	2.81	0.478
No.7	152.3	5.25	2.85	0.268
No.8	4.4	4.21	2.32	0.483
No.9	220.2	5.80	3.21	0.250

-1	岩石物性試	験結果

表

3. 近赤外分光測定方法

測定は、NIR256 (オーシャンオプティクス社製) で行った. 岩石試験後の供試体に直接プローブをあ て,反射スペクトルを取得する. 花崗岩類は鉱物粒 子が大きかったため、長石類に的を絞って測定した。 しかし今回は細粒な凝灰岩類であることから,無作 為に選んだ(ただし,脈等特異部は除く)5箇所の反 射スペクトルを測定した.試料の反射スペクトルは, アルミナ粉体での反射スペクトルに対する相対反射率 とし,これをクベルカ・ムンクの式で吸光度に変換し, 吸収スペクトルとする.各吸収帯に直線のベースライ ンを引き吸収帯の面積を求め,岩石物性値との相関を 検討した.

4. 測定結果と解析

圧縮強度の高い No.5 供試体と、強度の低い No.3 供 試体 5 箇所での近赤外スペクトルを図-1・2 に示す. 1100 nm 付近に Fe²⁺による幅広い吸収帯が見られる. 1450 nm (OH)付近と 1950 nm(H₂O)付近および、2100~ 2500nm 間に吸収帯 (2200nm・2250nm・2350nm)(鉱 物の水酸基(OH 基))が確認された.ただし、2250nm 付近の吸収帯は No.5 供試体では明瞭に確認されるが、 No.3 供試体では確認されなかった.今回の傾向として、 強度が低いと 2250nm 付近の吸収帯が見られなくなっ

た.それぞれの吸収帯の面積を計算し,岩石物性試験 結果との相関を検討した(図-3).

その結果,2250nm付近の吸収帯面積以外は,岩石強 度・超音波速度とおおよそ負の相関があり,吸収帯面 積が大きいほど,圧縮強度が小さく,P波・S波も遅い 結果が得られた.これらの相関関係は昨年までの報告

(花崗岩類の長石粒子における検討)と同様に、べき 乗則で近似された(図-3).今回2250nm付近吸収帯が、 強度の低い供試体で見られなくなる傾向があり、2100 -2500nm間の吸収帯は、試料によりその位置が変化し、 消失することもあることが判明した。今後、詳細な検 討が必要である.また今回、含水比と各吸収帯面積と の関連性も検討した.その結果、分子状水(H₂0)の吸収 帯面積(1950nm付近)と含水比は、良好な関係があり (図-4)、近赤外分光による含水比の予想は、有効であ ることが確認された.

5. まとめ

昨年までは、粒径の大きな花崗岩質岩石の風化変質 に伴う強度低下を、長石類の近赤外スペクトルから評 価し、0H基や吸着水・層間水が関与する吸収帯の面積 と岩石物性値との関係を調べた.その結果、長石類の0 H(1450nm)およびH₂0(1950nm)あるいは2250・2350nm付 近(X-0H)の吸収帯面積と岩石物性値に相関があり(図 -5), 近赤外分光による岩盤強度特性の推定の可能性が 示唆された.

今回は、細粒な凝灰岩で同様の検討を行った結果, 強度特性と1450nm・2350nm付近吸収帯面積が良好な負 のべき乗則で近似できた(図-3・図-5). その一方で, 花崗岩試料では負の相関があった2250nm付近吸収帯面 積は、吸収帯が確認できない試料があった.

細粒試料であったことから,1鉱物に的を絞らず鉱物 集合体へ近赤外分光を実施しており,測定方法が昨年 度までとやや異なる.また,今回は1450・2350nm付近 の吸収帯面積が強度特性との相関性が良く,昨年度ま での2箇所の花崗岩質試料とは異なっていた(古第三紀 花崗岩類は2250・2350nm付近吸収帯,領家花崗岩類は 1450・1950nm付近吸収帯と相関性が良かった).花崗岩 類試料と同様に,強度特性と吸収帯面積はべき乗則で 表されるが,そのべき指数はそれぞれの試料で大きく 異なる結果が得られた(図-5).それらの意味するとこ ろについてはさらなる検討が必要である.

参考文献

 1)磯野陽子・木村隆行・中嶋 悟(2014):近赤外 分光による花崗岩質岩石の水和度の評価と岩石強度の 相関,応用地質, Vol.55 No.2 pp86-92

図-5 両対数表示した強度と吸収帯面積の関係図