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A whole view on the harmonic generation in organ pipes is presented. It consists of
elementary processes: (a) excitory source spectrum generation by the jet, (b) filtration
by the inharmonic normal modes of the passive system, and (c) radiation from the pipe
ends. Lateral jet velocity distribution is responsible for the source spectrum. Filtra-
tion and radiation emphasize the resultant source spectrum. Harmonic generation
mechanism is classified into the unsaturated and saturated regimes, and formulated on
the basis of current- and pressure-drive models. Theoretical consideration deduced:
(1) Contribution of the pressure-drive to the harmonic generation is not significant.
(2) Harmonic structure and its development in the unsaturated regime are defined by
the matrix of the jet offset and the vector of the jet deflection amplitude. (3) A decisive
factor determining the harmonic structure in the fully saturated regime is the time

interval ratio of the jet switching action.

PACS number: 43. 75. Np

1. INTRODUCTION

Musical amusement becomes rich by virtue of
the great variety of tone colour. Physical mechanism
forming the harmonic structure, which arises a
sensation of tone colour, is one of most interesting
subjects in musical acoustics. The purpose of this
paper is to gain a brief picture of this mechanism
which is common to air-jet instruments such as
organ flue pipe, recorder, flute, and Japanese
shakuhachi. Fundamental aspects involved in it will
be illustrated on the basis of our knowledge of the
sounding mechanism in organ pipes.

Interaction between the air jet issued from the
flue and the air column confined in the pipe sustains
sound excitation. The viewpoints of “feedback
principle” in the current-drive model*™® and
“negative resistance” in the pressure-drive model®
have been successfully applied to the precise descrip-
tion of the interaction phenomenon in the linear
operation. The air jet travels across the open mouth
of the pipe and then impinges on the edge. Acoustic
“disturbance at the mouth deflects the jet alternately

inside and outside the pipe across the edge. The jet
flow is thus modulated and enters the pipe to drive
one of its resonance modes. The resulting resonance
in turn reacts upon the jet.

Generally speaking, sounding mechanism should
involve harmonic generation mechanism intrinsical-
ly. But theoretical consideration on the sounding
mechanism has been restricted almost within the
frequency domain (e.g., determination of sounding
frequency, and phase relationship between oscilla-
tions of the jet and the column) except a few
works.”®> The sounding mechanism needs further
developing to understand many problems in the
amplitude domain (e.g., formation of harmonic
structure, response of attack transient, and calcula-
tion of radiated sound power from the information
on the jet and pipe).

Harmonic generation in organ pipes is principally
attributed to the jet-side rather than the pipe-side.
Air column in the pipe is generally regarded as a
linear system, and its resonance characteristics
function as a kind of filter because normal mode
frequencies of column resonance do not coincide
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with the harmonics of sounding frequency. On the
other hand, the jet behaves like a nonlinear system®
and must be a source of harmonics.

However, the deflecting oscillation of the jet over
the mouth is assumed to be almost linear. Good
agreement on the wafted shape of the jet is obtained
between the theories!*®> in which only fundamental
component with sounding frequency is considered
and the experiments®*’ which show the snapshots
of the wafted jet in real situation. According to the
theory,?’ the oscillatory displacement of the wafted
jet is inversely proportional to the square of sound-
ing frequency. The waft of the jet due to harmonic
components may thus be strongly weakened. More-
over, according to the theory on the jet instability,”
the condition which assures an oscillatory jet flow
with growing amplitude becomes much severer for
harmonic components. From these reasons we do
not lose the adequacy of treatment even when
harmonic components of the jet oscillation are
neglected. We must therefore consider that the
harmonic generation does not originate in the
nonlinearity of jet oscillation but in other aspects of
the jet.

By the way, an experimental work® investigated

the relationship between the harmonic level and the
offset of the jet center plane relative to the edge.
From its result we can state that the cause of harmon-
ic generation is the deflecting action of the offset jet
across the edge. Moreover, it is well known that
organ builders adjust the ‘‘voicing” by properly
changing the jet offset from their own experiences.?’
From such a point of view, Fletcher and Douglas'®
mathematically formulated the harmonic generation
by the above action. Independently of them, the
present author!?’ also proposed a similar formula-
tion with different mathematical expression.

In this paper, the previous formulation'*> on the
source spectrum originated in the deflecting action
of the jet is further developed. Our treatment
involves the current- and pressure-drive models.
‘Sounding regime is classified into the unsaturated
and saturated regimes. Moreover, the filtering
function of air column resonance and  radiation
characteristic of open ends, which transform the
source spectrum, are included. In order to under-
stand the filtered and radiated spectrums, an ideal
model of uniform tube is adopted.

Our simplified theory along the above general
approach will bring the overall view of harmonic
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generation in organ pipes, although its experimental
confirmation is postponed in the future. Real
situation of harmonic generation will be inferred
from the actualization and complication of the above
elementary processes: source spectrum generation,
filtration, and radiation.

2. SOURCE SPECTRUM OF THE JET

2.1 Source Spectrum Due to the Current-Drive

Traveling across the open mouth, the jet flow
gradually slows down and laterally spreads out
because of mixing between the jet and the surround-
ing still air. In the previous paper, the authors
included the slowdown of the jet in the theory,
while excluded the lateral spread intentionally.
Such a simplified model was most effective to
describe the phase relation between the oscillations
of air jet and air column, and to construct a funda-
mental theory on the organ pipe sounding mecha-
nism.

Starting-point of this paper is then the established
steady state oscillation of the spread jet across the
edge (Fig. 1). The offset of the symmetry plane of
the jet relative to the edge is expressed as yo. Asym-
metrical jet-edge configuration due to this offset is
general in real organ pipes. _

At the edge, we suppose the following lateral
velocity distribution of the jet:

Up)=Ug(ylo)y=U.g(m), n=ylo. (1)
The distribution g(7) is assumed to be symmetrical

for the simplicity. The quantity o is a constant for
normalization, which means a quantity like the

Fig. 1 Asymmetrical jet-edge configuration
with the offset yo.
The jet has lateral velocity distribution
U.g(y/o) at the edge (located at x=d,
y=7y), and swings up and down across it
with the alternating displacement £.(¢).
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standard deviation of distribution and indicates
the effective thickness of the jet. The value U, is
the velocity at the jet center plane (y=0). The
origin of our coordinate is set at the center of the
flue slit from which the jet emerges. The position of
the edge is then given by x=d and y=y,. The value
d is called the lip cut-up or slit-to-edge distance,
and y, the offset of the jet.

Because the jet swings up and down across the
edge with the alternating displacement £.(¢), we can
define the driving current Q. to the pipe as the
following acoustic volume flow:

Qe(t)=(bUe)S el

Yo
0

ng—7e(t)

=(baUe>So “endn, (2)
where b is the jet width, 5, the normalized jet
oscillation £.(¢)/o, and 7, the normalized offset
yo/o. Note that the positive direction of &£.(¢) is
drawn from the inside to the outside of the pipe,
and that a half of total flow is neglected since it has
no acoustical importance.

The jet oscillation itself may hardly contains
harmonic components as mentioned in Introduction.
It is thus safe to consider that the jet oscillation
£.(2) at the edge takes the linear form:

(1)=&, cos (.t +6) (3)
with the amplitude £., the sounding frequency

w,/2m, and the initial phase 8. Taking a normalized
expression, we get

7e(t) =1%o cos (W, +0) . (4)

If the jet driving current Q.(¢) given by Egs. (2)

and (4) shows a periodic oscillation, we may expand
it in Fourier series:

0.()=(bcU.) i dncosln(@,t+8)],  (5)

Qen=(bGUe)qﬂ . ( 6 )

Absolute amplitude of Q,, (for n=1, 2, 3, ---)
defines the level of source spectrum due to the
current-drive, and absolute value of ¢, the relative
level of that. Note that ¢, in Eq. (5) can take the
negative value. The unusual expression of Eq. (5)
with such an additional condition is adopted for the
algebraic advantage [cf. Eq. (33) in Sec. 5].
Performance of the integral in Eq. (2) depends
upon the functional form of distribution g(7).
Since our purpose is the understanding of funda-

<

1

n=y/o

Fig. 2 Approximate distributions of the
jet velocity.
—, exp(—7%%/2); —--, sech’();
—e—, 1—(|7|/¥2m).

and

mental aspects in the harmonic generation, physical
rigidity on the form of g(7) is not necessary, then
we may favorably adopt any rational form (cf.
Fig. 2) to make the integral calculation easy. Fully
developed jet flow has the Gaussian distribution,
which is adopted to perform the integral in this
paper. Laminar jet usually has the form sech?(y),
which has the algebraic advantage because the
integral of sech? is tanh.!® Triangular form gives
a relatively close approximation to the above two.!?
In real organ pipes, the jet probably behaves like
a turbulent flow because of its high speed and the
“nicking” on the languid. While such a turbulent
flow does not have the above profiles exactly, they
give sufficient approximations to serve our purpose.

2.2 Source Spectrum Due to the Pressure-Drive

Another type of source spectrum is derived from
the pressure-drive model® of sounding mechanism,
although the former one due to the current-drive
model is dominant in most cases.!>?> Conservation
of momentum flow flux on the deflecting jet deduces
the sound pressure p.(f) which drives the pipe:

Pe(t)=pUe2[_bge(t)/Sp] ’ (7)
where p is the air density and S, the cross sectional
area of the pipe.

Taking the jet velocity profile g(%) into con-
sideration, we can obtain the generalized expression

7, e(t)
()= (b01S)(PU.F) S Le@)Pdy.  (8)

Fourier series expansion of Eq. (8) gives the level .of
source spectrum |p.,| (for n=1, 2, 3, ---) due to the
pressure-drive:

19

NI | -El ectronic Library Service



The Acoustical Society of Japan

PAO=GoIS)(PUL) Spucosint+8)], (9)

Pen=(b0[Sp)(pU")Pn . (10)

In the latter section, we illustrate numerical example
of both source spectrums Q., and P, (or 4, and p,)
by adopting the Gaussian profile for the jet velocity
distribution.

3. FILTERED SPECTRUM

Acoustic excitory sources Q. and p, produce the
acoustic flow Q, into the pipe. Using source spec-
trams Q., and p., given by Egs. (6) and (10) respec-
tively, we obtain the spectrum Qm of this pipe flow
as follows?:%; .

(Oo)=(Op)i+ Gy » (11
(Qp‘n)l=[zm1l/(zp’n+zmn)] Qen ’ (12)
OConu=[1/(Zpn+ Z )l Pon » (13)

where Z,, is the value of the acoustic impedance of
the pipe with both open end corrections evaluated
at the nth harmonic, and Z,, that of both the mouth
and the jet wafting over the mouth evaluated at the
nth harmonic; i.e., Zp=Z(nw,) and Z,= Zn(no,).
In this sense, we call Z,, and Z,,, the nth Fourier
_components of acoustic impedances Z, and Z,
respectively. Although acoustic impedanc’é of the
jet plays an essential role in the sounding mecha-
nism,?”> we here neglect it for the simplicity because
its magnitude is relatively smaller than that of
mouth impedance in most conditions. Moreover,
note that minor spectrum due to quadratic terms? %
of jet deflection £, is excluded from Eq. (11).
Fourier components of pipe and mouth im-
pedances are respectively expressed as®

Zp=(pc|SHHn+ jtan(k»L)]/[1+ jHntan(kxL)],
(14)
Z a2 j(pelSp)kadl) 5)

where kn=nki=n(w,/c) and Hn=tanh(k»L/20x).
The quantities L and A4/ are effective lengths of pipe
and mouth respectively, whose frequency dependence

is neglected. The quantity k» is the nth harmonic .

wave number, ¢ the sound velocity in the pipe, and
Ox the Q-value of Nth normal mode resonance of
the pipe. Discriminate the subscript N from n.
The subscript n indicates a harmonic series or
Fourier component, while the N a normal mode
series.

Using Egs. (6), (10), (14), and (15), we rewrite
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Egs. (12) and (13) respectively:

(Cp)i =6 U)dnll(jw,Alfc)nY 4] , (16)

(Op)u=[(boU) pxll(Usfc) Y 4], (17
where

Y 2 =[1/(Zyn+ Zua)l(pC/Sy) - (18)

The function ¥, corresponds to the total admittance
1/(Z,,+ Z»,) normalized by the characteristic acous-
tic impedance pc/S, of the pipe. Note that (Qp.):
is proportional to nYs, while (Gp)u to only Ya.
From Egs. (16) and (17) we know that the ratio
1(Qo)1/(Opr)u| may be given by nw,AlU, because
d» and p, have almost the same order of magnitude
as illustrated in latter section. The current-drive is
therefore predominant for both high sounding
frequencies and higher order of harmonics, while
the pressure-drive becomes predominant for high
jet velocities or high blowing pressures. '
Figure 3 shows an example of the magnitude of
normalized total admittance by using the continuous
variable k(=w/c) instead of the discrete one kx(=
nw,/c) in Egs. (14) and (15). Following numerical
values have been assumed to draw Fig. 3: sounding
frequency f,=w,/2m=200Hz, pipe diameter D=
3 cm, and effective mouth length A/=L/20. The

A
15
10§
Al
/
0 4 27 3n 47 57
kL

Fig. 3 Magnitude of normalized total ad-
mittance | Y| of the pipe-mouth system.
A harmonic series (n=1, 2, ---) departs
from a normal mode series (N=1, 2, --+)
given by admittance peaks. Numerical
data: sounding frequency f, =200 Hz, pipe
diameter D=3 cm, and ratio of effective
mouth length to effective pipe length 4//L
=1/20. '
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Q-value of each mode resonance is calculated from
Egs. (19) and (20) shown below. The discordancy
between a harmonic series and a normal mode series
is clearly illustrated in Fig. 3 where the sounding
frequency or the first harmonic (n=1) is assumed
to coincide with the fundamental resonance fre-
quency or the first normal mode frequency (N=1)
which is given by kL=0.9537. The harmonic series
therefore consists of kL=0.9537, 1.9067, 2.859,
3.812m, 4.765m, ---, while the normal mode series
consists of kL=0.953m, 1.9087, 2.8667, 3.830m,
4.799m, --- as the numerical calculation on the peaks
of | Y| shows.

For the above calculation we have employed the
following relation on the Q-value: :

On=[at/(~/Nf, D)+ B(Nf2DO)] ™, (19)

where « and £ are numerical coefficients. Equation
(19) shows the fact that the dissipation of acoustic
energy in a pipe is principally due to two causes, 415
The first is the so-called wall boundary effect which
brings viscous and thermal losses to the pipe wall,
and expressed as the first term in the right-hand side
of Eq. (19). The second is the sound radiation from
the mouth and open end, and expressed as the
second term in the right-hand side of Eq. (19).

Theoretical expressions of « and £ are of course
possible, while the experimental determination of
their values is more effective in most cases. Accord-
ing to Benade,'*> we have

a=14, B=3x10-*, (20)

if pipe diameter D is given in centimeters. Using
the assumed values D=3 and f,=200, we get Q=
29, Q:=39, Qs=45, Q.=48, and Qs;=50 from
Egs. (19) and (20). Wall losses are usually dominant,
but radiation losses become large as the sounding
frequency, mode number, and pipe diameter in-
crease respectively. The mode number at which
radiation losses surpass wall losses is given by

N=6x10%f,~5/*D—2 21

from Eqgs. (19) and (20). In the case of Fig. 3 this
N=10.

A normal mode series, which is defined by the
peaks of | Y|, shows the anharmonicity as illustrated
in Fig. 3. Such mode dependence of Q-value as
expressed by Eq. (19) causes this anharmonicity.
The degree of anharmonicity of Nth mode resonance
may increase with the increasing N. Therefore
higher harmonics tend to strongly depend on the

HARMONIC GENERATION MECHANISM IN ORGAN PIPES

Q-value of the corresponding normal mode. Mouth
length A4/ also affects the harmonic content. Large
Al may reduce higher harmonics by lowering the
sounding frequency.

Generally speaking, harmonic source spectrum
of the jet is more or less affected by the inharmonic
normal mode of the passive system which consists
of the pipe and mouth. Such an effect becomes
quite uneven when the system undergoes any geo-
metrical modification e.g., partly widening and
narrowing of the pipe.'®> We may thus consider
that the individual normal mode operates as a kind
of filter. Then we will define the spectrum of pipe
flow Qp,, given by Eq. (11) as the filtered spectrum.
And the filtration is characterized by the normalized
total admittance Y.

4. RADIATED SOUND SPECTRUM

Sound radiation takes place at the mouth and
pipe-end openings. Acoustic flow through the
mouth opening is given by —Qpn when Qpn gives
the acoustic flow into the pipe.!> Acoustic flow
through the end opening is approximately given
by —0,. and @,, for odd and even modes respec-
tively. That is, odd harmonics radiate in phase from
above two openings, while even harmonics out of
phase.

In the free field, sound radiation from organ pipes
is thus regarded as that from two point sources
insofar as the opening is relatively small compared
to the wavelength (cf. Fig. 4). Therefore we receive
the following sound pressure at point (r, 0):

pulr, 0) = jlp(nw)/4m](— Q)

e‘—jkan e—jknTM
. ( + ) ’ (22)
reg ry
Qpn(n 1,3,) (r )
+0 p"(n =2,4,-)
pipe
end T
mout h
Qpn
Fig. 4 Sound radiation from an organ flue
pipe.
Pipe end and mouth approximately
operate as a monopole respectively.
21
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where the plus sign is used for odd harmonics and
the minus sign for even harmonics. In the far field
(r>» L), Eq. (22) is rewritten as

palr, 0)=jlp(nw,)[4m)(—20;.)
e—Tent

cos
. { ; sin[(knL/Z) ?OS 0]} P

(23)

where the cos is used for odd harmonics and the
Jjsin for even harmonics.
Let us define the level of radiated sound spectrum

cos [(kxL/2) cos 6] I =1 in

ing r=1and | .
| Ben| by setting r=1 an sin

Eq. (23):

| Bea| =[p(nw,)/471120,] - (24)
This equation tells us that the filtered spectrum O,
suffers an emphasis of higher harmonics, propor-
tional to n, through the radiation.
We can write down the radiated sound spectrum
as follows by using Egs. (11), (16), and (17):

,p‘rn=(ﬁrn)l + (ﬁrn)ll s (25)
(Bern=[(boU)dnlljufAljcnY all(pfn],  (26)
(Bedu=[boU)pall(U./) Y ull(pfe)n] 27

where (p..): and (B..)n are the radiated sound spec-
trums due to the current- and pressure-drives
respectively. Note that the former has a phase
advance of /2 relative to the latter if the 4, and p,
(for n=1,2, 3, ---) have the same sign each other.
This is attributed to the phase difference between
the maximums of acoustic current and pressure in
a pipe. According to Egs. (26) and (27), an excitory

nzlYnl

100t

S0

L ]
sn

[—)

kL

Fig. 5 Emphasis curve n2|Yy| of radiated
sound spectrum due to the current-drive.
Numerical data are the same as in Fig. 3.
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source spectrum Q,, (or 4,) suffers an emphasis of
higher harmonics which is proportional to #*Y,,
while another one p., (or p,) suffers an weaker em-
phasis proportional to nY,. Using the same param-
eter values as in Fig. 3, we draw the curve of em-
phasis n?|Y,| in Fig. 5.

Summing up, above Egs. (26) and (27) formulate
the elementary processes in the harmonic genera-
tion: excitory source spectrum generation by the
jet, filtration by the normal modes of the passive
pipe-mouth system, and radiation from the open-
ends.

5. UNSATURATED REGIME

Harmonic generation in organ flue pipes essen-
tially depends on the alternating deflection of the
jet. Even if the amplitude of this deflection con-
tinues to grow, the saturation of the jet flow into
the pipe necessarily occurs. When the jet is deflected
in a sinusoidal way with a small amplitude, the jet
flow does not yet saturate. As the amplitude be-
comes large, the jet begins to blow completely out-
side or inside the pipe, and the saturation comes
about. First we treat the deflecting jet with such an

-amplitude that does not bring the saturation in this

section, and second the completely switching jet
with a sufficiently large amplitude to saturate the jet
flow in the next section.

5.1 Calculation of Jet Source Spectrum
Taylor expansion around null deflection (7,=0)

- rather than Fourier series expansion may be more

effective method to calculate integrals (2) and (8):

0.=6oU) || "snan

+ é[gm-v(no)/n!][m(r)]"}, 28)
o

2e=0015)pUD || "earan

+ %[gz"”‘“(ﬂo)/n!][ne(t)j”} . @)

where
e P =[d"g(Po—1)/ "y 0
=(—1)"[d”g(77)/d77"]7;=n0 ’ (30)

P =(— DGOy ey GD

Above equations tells us that the higher derivatives
of the velocity distribution function evaluated at
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the edge position (77=17,) yield the source spectrum g Cn/2] [ o /2 (—1) ()" (o) 1] '
of the jet. m=0 Ln=0 r=0 (n+1)27+"(n—2r)'r!
As a simple example we take the following Gauss-

ian distribution of the jet velocity (cf. Fig. 2): X n41Cm(cos[(n+1—2m)(w4t +3)]+A)} » (33)

— M2 o

stN=exp(=7°[2). O p=wots)eu [T extro)
From Egs. (30) and (31) we get [ e (_l)r(ﬂo)n—zr(ﬁe')nﬂ
7o
DR e e L=o =0 (12" (n—2r)!r! ]

(n) — p—70%/2 N R
&= S o

/2] (—1)2n-7p)

2,(n) — —ng2 —
gH =€ 2=

X n41Cm(cos [(n+1—2m) (w ¢ +8)]+A)} , (349
(no)n——zr, )

where 4 equals to 1/2 if n equals odd number or 0
where [7/2] expresses the maximum integer not if n equals even number, and the erf is the error

exceeding n/2. Then Eqs. (28) and (29) give each function defined by erf (z)= Szexp(—x“’/Z)dx.
source spectrum for the current- and pressure- . 0

drives respectively: Comparing Egs. (33) and (34) with Egs. (5) and
(9) respectively, we get the explicit expression for
the relative levels 4, and p, (n=1, 2, 3, ---) of jet
source spectrums. It may be effective to arrange
these results in the following matrix form:

Qo=(b0U.) {erf(m)

él/'?]el [ 1 A2 Ais Ay oo / 1 \

42/';792 1 Ass Ass . PYRTD .;]ez

N Ai2f3 Aisf2 3Auf5 -+ - |] Bt

44/7‘584 =(770)eveng(770) A22/4 2A28/5 A24/2 cee .oe 7’796 R (35)
gs/he° A[10 AyfS

\ I \ e AT

[ D1/He* | [ 1 B Bis  Bi -\[ 1\

Da/%e* 1 B, Bgs B2y Te?

Ds[9s° ‘ Bi2/3  Bis/2 3Buf5 Het

Dulfe* | =(10)even& (1) | Bozf/4 2B:s/5 Baf2 %5 |, (36)
sl B13/10 B14/5

\ i \ e R A

where (7%0)even €quals 7o if the harmonic order » is _
an even number or equals 1 if # is an odd number. 5.2 Effects of Jet Offset and Deflection Amplitude
Matrix elements Ai2=(90>—1)/8, Ais=(10*— 67¢* Figure 6 shows the jet source spectrum 4, (for
+3)/192, Au=(ne*—1590*+459,2—15)/9216, A:x n=1,2,3, and 4) of Eq. (35) as a function of the
="~ 3)/48, A2=(70*—107:*+15)/1536, A= offset .. The amplitude of the jet deflection 4, as
(Me®—2170*+ 105702 —105)/92160;  Bia=(7,>—2)/8, a parameter takes values 0.5, 1.0, and 1.5 re-
Bis=(n¢*— 12770+ 12)/192, B1s=(7:*—3070*+1807.> spectively [from Fig. 6 it seems that Taylor expan-
—120)/9216,  Be2=(7:*—6)/48, Bas=(7:"—207,* sion of Eq. (35) converges even at #,=1.5]. Odd
+60)/1536, and Bai=(70°—4270*+4207,2—840)/ harmonics 4, and 4. are both symmetrical about
92160. . the axis of ordinates and have opposite signs each
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other at small offsets (|770]<1). On the other hand,
even harmonics ¢, and ¢, are both symmetrical
about the origin and have opposite signs each other
in a relatively wide range of the offset (|| <1.7).
All harmonic components except fundamental one
have their own zeroes. These characteristics are
attributed to the nature of matrix A:; (7, j=1,2, 3,
---) which is a function of 7, only. Calculation on
D, of Eq. (36) shows the similar result.

Following relations are approximately derived
from Egs. (6), (10), (35), and (36): :

Qen >> Qe(n+l)a Qe(m'—l) e (ée)zn’—l’ Qe(zn') oc yo(ée)m’a
ﬁen >> p‘e(n+1)’ ﬁe(zm—l) OC (58)211’-1’ pa(m’)oc J’o(ée)gn'
(I’l=1, 23 33 s n,=1’ 25 33 '“)‘

Above relations on jet source spectrum components
are held quite good for very small amplitudes of
jet deflection g.. ‘
But rigorously, Egs. (35) and (36) show that the
magnitudes of ¢, and p, increase with more than
nth power of the normalized jet deflection #,. This
is caused by the vector (1, %2, %of, %% -+-) in the
right-hand side of Egs. (35) and (36) respectively.

Hence, the amplitude of each spectrum component

grows rapidly with the increasing jet deflection

amplitude. This suggests an important role of the
above vector in the harmonic development.

Interrelation between harmonics can be clearly
understood from Figs. 7(a) and (b) where source
spectrum levels |4,| and |p,] (for n=1~5; #,=1.0)
are drawn respectively:

1) Odd and even harmonics respectively have
their own maximums at almost same offset
values.

2) Numbers of maximums and minimums (or nulls)
increase with the ascending harmonic order.

3) Maximums of odd harmonics lie near minimums
of even harmonics.

4) Conversely, minimums of odd harmonics lie
near maximums of even harmonics.

5) Especially, zero offset gives no even harmonics
but gives the highest level of each odd harmonic.

6) Intervals between neighbouring maximums (or
minimums) are narrower in |4,| than in | 5,|.

The structure of matrices shown in Egs. (35) and

Fig. 6 Jet source spectrum ¢» as a function (36) brings above characteristics in the harmonic
of normalized jet offset 70 (current-drive).

-0.03-

Parameter is the normalized jet deflection structur.e. .

amplitude 4,. (2) Fundamental, (b) 2nd Matrix structure reveals that odd harmonics have
harmonic, (¢) 3rd harmonic, and (d) 4th their own origins (i.e., A1z, A1, Aus, -+5 Biz, Bs, Bus,
harmonic. ---) which are different from those of even harmonics
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Fig. 7 Jet source spectrum level as a function of the normalized jet offset (unsaturated

regime).

(a) Current-drive, (b) pressure-drive. The normalized jet deflection amplitude is assumed
to be 1.0. The Roman numerals represent the harmonics (I, fundamental; II, 2nd har-

monic, etc.).

(i.e., Azz, A23, A24, ey Bzz, st, Bz;,‘“). This theoreti-
cal result gives physical foundation which permits
musical consideration of harmonic structure by
separating it into odd and even ones.®> Organ flue
pipes will be endowed with particular tone colour
according to a definite value of jet offset, since
matrix elements depend only on the offset. We can
thus recognize the musical importance of the offset
adjustment, which principally controls the ‘voic-
ing” of organ pipes.

5.3 Radiated Spectrum

After the filtration by the normal mode resonance
in the pipe, jet source spectrums are radiated from
the mouth and open end. According to Eqgs. (26)
and (27), we can illustrate the radiated spectrum
levels [(P:n):] and |(P:n)u| respectively. In Figs.
8 (a) and (b), we plot logarithmic levels 20 log |(f..):]
and 20 log |(P.,)ul relative to 1 uPa. The value of
“dB re 0.0002 dyn/cm?*” is given by subtracting
26 from the value of “dB re 1 uPa.”

Geometrical and acoustical parameter values for
drawing Fig. 8 are taken from an experimental
model CP-I of the organ pipe in the previous paper,*’
and listed in Table 1. We have supposed that the

Table 1 Parameter values to calculate the
radiated spectrum (unsaturated regime).

Normalized jet deflection o 1.0
Effective jet thickness o 0.6cm
Jet width b 1.5cm
Jet velocity U, 2.5m/s
Air density P 1.2 kg/m?
Sound velocity c 340 m/s
Effective pipe length L 64 cm
Effective mouth length yalj 4 cm
Pipe diameter D 3cm
First normal mode kiL 094927
Sounding frequency A 250 Hz

01=32, Q2:=41, Q3=45, Q:s=47, Q=46

value of effective jet thickness o at the edge becomes

three times the initial thickness at the flue slit.

QOn~-values are calculated from Egs. (19) and (20).

Figure 8 tells us the followings:

1) Spectrum level of the radiated sound due to
the current-drive is higher than that due to the
pressure-drive by more than 30 dB.

2) Emphasis in level of second and third har-
monics is outstanding in the current-drive [cf.
Figs. 7 (a) and 8 (a)].
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(a) : (b)

Fig. 8 Radiated sound spectrum level as a function of the normalized jet offset (unsaturated
regime).
(a) Current-drive, (b) pressure-drive. The Roman numerals represent the harmonics.

3) Such an emphasis is not outstanding in the
pressure-drive [cf. Figs. 7 (b) and 8 (b)]. 6. SATURATED REGIME
4) Current- and pressure-drives have different 61 The Jet
offset values at which minimum levels of each 1t may be considered that the jet flow into the
harmonic occur. ~ pipe continues to increase as far as jet oscillation
5) Deep troughs in harmonic generation due to amplitude grows and jet velocity increases. However,
the current-drive are therefore somewhat com- this jet driving flow will saturate at given amplitude
pensated by the harmonic generation due to and velocity. Saturation of jet driving flow then
the pressure-drive. : causes saturation of acoustic output, that is, the
maximum level of radiated sound.
Jet oscillation amplitude is usually much larger

Qmax_ I — — than the jet offset at the saturated state. The jet
Pmax thus spends a period of its oscillation almost com-
, pletely outside and inside the pipe. A time crossing
o —t the edge can be ignored. Such a completely switch-
ing action of the jet is shown in Fig. 9. The jet
~ alternately flows into and out of the pipe during
_?m“_ - : time intervals 7'y and T’; respectively. From Eq. (2)
" Pmax I, maximum driving flow Q... may be approximated
Fig. 9 Completely switching jet. by
During time interval T within an oscilla- ]
-tion period, the jet flows into the pipe Ounex (b0 Ue)go gimdy . 37
and produces maximum driving flow Q...
and pressure pn.:. On the other hand, If we suppose Gaussian distribution of Eq. (32),
he jet flows out of the pipe durin
iemajlmng time interval 7 arI:dp producei , Ounax=/T[2 (b0U) - (38)
—Qmax and — Pras. Similarly, from Eq. (8) we get the following maximum

26

NI | -El ectronic Library Service



The Acoustical Society of Japan

S. YOSHIKAWA: HARMONIC GENERATION MECHANISM IN ORGAN PIPES

driving pressure p..., at the same time:
B G015 )0UD) | i

=(~/m[2)(bo [S)PU.*) .

By the way, a jet is produced by receiving momen-
tum from an external source and then being ejected
from an orifice or slit. Resultant jet spreads out
into the surrounding fluid as it goes downstream.
During this spreading process the jet exerts no force
on any external fluid, and vice versa. Total momen-
tum flux of the jet is thus conserved at any down-
stream position x. This must be the case whether
the jet is laminar or turbulent.

Since our jet is two-dimensional, we consider the
momentum flux M per unit width. Then,

(39)

U*(x, y)dy=const.

L=}

(40)

M(x) =pS
From Egs. (1) and (40) we get the following relation
between the momentum fluxs at the flue slit and at
the edge:

pUﬁh:pUezo‘S g¥(pdy ,

(-]

therefore we can express the effective jet thickness
o at the edge as

cr=h(Uo/Ue)'“’[S

oo

-1
eoan| @D
where U, and /4 are jet velocity and jet thickness at
the flue respectively. Gaussian jet distribution
gives

—0Q

o=h//TNUo/Us)?. (42)
From Egs. (38) and (42) we can rewrite Q... as
Orax=[/2 (Uo/UII(1/2)bhU ] (43)

This equation tells us that jet driving flow Ormax
into the pipe equals «/2 (Uo/U,) times half an
initial flow (1/2)bhU, at the flue if the Gaussian
velocity distribution is assumed. And we know
maximum driving flow increases in proportion to
the square of initial jet velocity U,. Since factor
&2 (UoJU,) is greater than 1, Eq. (43) indicates
that the amount of jet flow increases as the jet
travels downstream. The jet draws ambient fluid into
itself from the sides. This is generally known as
entrainment effect.

On the other hand, the jet driving pressure is
reduced by the ratio of cross sectional areas:

Prax=(bh[S)(1/2)pU "] (44)

20 log|p oy / P maxl

0 2 .4 .6
e=T,/T;
Fig. 10 Jet source spectrum level as a func-

tion of time interval ratio ¢ of jet switch-
ing action (saturated regime).

The Roman numerals
harmonics.

represent the

where Egs. (39) and (42) are employed. This equa-
tion is just conservation law of total jet momentum
flux.

6.2 Calculation of Jet Source Spectrum

Time intervals 7 and T of jet switching action
may be determined by the flow resistances which
the jets into and out of the pipe suffer respective-
ly.11"  Although the effect of offset becomes
weak in the saturated regime, it can not be ignored at
all if the offset is relatively large. In our calculation
we set T1=¢€T: for the simplicity. The value of
interval ratio € may be smaller than 1 generally,
because the resistance to the flow into the pipe
may be considerably greater than that to the flow
into the free space. Fourier series expansion of the
function shown in Fig. 9 gives the following source
spectrums Q., and p., respectively:

Qon=(4/nm) Qs sin[nmr(e/(1 +€))], (45)
Den="_4/nT) Prmex sin[nm(e/(1 +€))] . (46)

In Fig. 10 we draw the relative source spectrum
levels Of |Qon/Omaxl and | Pen/Pmazl, Which have the
same functional form, as functions of interval ratio
e. Instead of jet offset in the unsaturated regime,
time interval ratio of jet switching action becomes
a decisive factor determining organ pipe harmonic
structure in the saturated regime.
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20 log|(p,, Yl
(dB re 1uPa)

120

(b)

Fig. 11 Radiated sound spectrum level as a function of the jet switching time interval ratio

(saturated regime). -

(a) Current-drive, (b) pressure-drive. The Roman numerals represent the harm'onics.‘

6.3 Radiated Spectrum
Jet source spectrums of Egs. (45) and (46) are
transformed into the following radiated spectrums
according to Egs. (12), (13), and (24):
Be=(Qe) i Quf, Al Y. (pf In],

(Ben)u=(DBe)l(So/pA) Y. 1[(pf )] .

47
4%

We plot their logarithmic levels (relative to 1 uPa)

in Fig. 11 as functions of switching interval ratio e.

Jet velocity measurement on model CP-I gave

Uo=21 m/s and U,=6 m/s near the saturated re-

gime.? Other parameter values to draw Fig. 11 are

the same as in Table 1. Note that jet offset and jet

deflection amplitude are not essential (and thus

ignored) in the saturated regime as a limiting state.
Figure 11 tells us the followings:

1) Spectrum level of the radiated sound due to
the current-drive is higher than that due to the
pressure-drive by more than 25 dB [cf. Figs.
11 (a) and (b)].

2) Development of higher harmonics is fully at-
tained in the saturated regime of current-drive
[cf. Figs. 8 (a) and 11 (a)}.

3) Such development is not full in the pressure-
drive. '

4) A few values of ¢, which are the same in the
current-- and pressure-drives, bring null level

28

of higher harmonics.

The value of € may be principally determined by -
the pipe geometry and secondarily by the geometries
of the flue slit and mouth. Flow resistance into the
pipe depends on the ratio of pipe length to pipe
cross section.!®!” Wider pipes with a given length
will give larger interval ratios. Therefore from Fig.
11 we may state the followings:

5) Extremely wide pipe (e~1) radiates only odd
harmonics.

6) Relatively wide pipe (€=~0.8) radiates low levels
of even harmonics. Levels from the first to the
fifth harmonic are in order 136, 128, 135, 130,
and 126 dB re 1 yuPa..

7) Considerably narrow pipe (€=~0.2) radiates
high levels of higher harmonics. Levels from the
first to the fifth are in order 131, 137, 137, 133,
and 124 dB. '

Limiting tone colour peculiar to a given organ
pipe in the fully saturated regime is principally
attributed to its pipe geometry which determines
the jet switching interval ratio, pipe resonance or
filtration characteristics, and radiation charac-
teristics.

7. CONCLUSION
A general approach to the total picture of the
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harmonic generation mechanism in organ pipes
has been developed. The mechanism consists of
three elementary processes: source spectrum genera-
tion by the jet, filtration by the normal mode reso-
nance of the mouth-pipe system, and radiation from
the openings of the mouth and pipe end. In the
consideration of harmonic generation, our theoreti-
cal treatment contains the excitation mechanisms due
to the current- and pressure-drives, and classifies
them into the unsaturated and saturated regimes.

In the unsaturated regime, the desicive causes
originating the source spectrum are the asym-
metrical jet-edge configuration and lateral jet veloc-
ity distribution. The asymmetry is represented as
the offset of the jet center plane relative to the edge.
Contribution of the pressure-drive to the harmonic
generation is insignificant in most cases. The essen-
tial features of the harmonic structure and its
development are clearly formulated in the matrix
form.

In the fully saturated regime, the decisive factor
determining the harmonic structure is the ratio of
time intervals in which the jet deflects completely
inside and completely outside the pipe. The jet
offset and velocity distribution now become almost
unessential. The effective thickness of the switching
jet which governs the harmonic level is deduced
from the conservation law on the total momentum
flux of the jet. Because the interval ratio depends
on the geometries of the pipe, mouth, and flue
slit, they participate in producing a limiting tone
colour peculiar to an organ pipe itself.

Our theory makes possible to predict the harmon-
ic structure and sound level of the radiated tone.
Moreover, it may present the acoustical foundation
for the voicing adjustment and the construction of
various organ pipe ranks. Although this paper is
restricted to a theoretical study, fundamental aspects
revealed in it will be followed by the experimental
study.
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