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In this paper, the complexity  of  wave  motions  has been formulated in order  to more

detailedly than  previously consider  the  complexities  of  reverberant  sound  fields, and  the

differenoe of  oomp]exity  between two  separate  points has been deseribed in an  attempt

to find a  measure  of  diffiJseness in these fields. The  reverberant  fields are  assumed  to be
sound  fields where  random  plane wayes  propagate two-  or  three-dimensionally. Entropy
H  (=h2-hD and  energy-entropy  product  K  are  used  to define the complexity  of  wave

motions,  where  hi, h2 are  entropies  by  sound  pressures pi, p2, respectively.  Then  H  is

compared  with  the cross-correlation coefiicient  R  calculated  from same  sound  pressures.
Furthermore, K  is obtained  by considering  energy  dissipation'with propagation, and  its

properties are  discussed as  well  as  those ef  HL The results  show  that the entropy  of

sinusoidal  wave  is in a  complementary  relationship  with  the eross-correlation  coeffi-

cient;  H=1-R,  and  that it may  be convenient  to measure  since  the cross-correlation

coefficient  is inseparable into two  entropies.  Either the  entropy  or  the energy-entropy

product is also  found to be required  at audio  frequencies as  a  measure  of  the complexity

of  wave  motiens  (Le. approximately  K==Aoa  Ao=const. for this case). Boeause  of  the

lack of  a  quantity  giving degrees of  directional distribution, our  introduoed  measure  is

as  yet insutlicient to aocurately  measure  the diffuseness of  sound  fields, but it may  be

fairly near  to the corrected measure.

PACSnumber:  43.45.Dn,  43.55Br

           1. INTRODUCTION

  Room  acoustic  criteria  for evaluating  various

properties of  sound  fields have  been investigated
and  rneasured  by many  researchers.i'?)  Although

many  arguments  have been made  fbr the diffUseness

of  sound  fields sinoe  Sabine8) and  Eyring,9) a  measure

fu11y formulating the  concept  of  diffVseness has not

been  found yet. Tbe  reason  for this is that  the  difrUse-

ness  of  sound  fields is stochastically  defined at  al1 posi-
tions in the fields. As  an  indirect method  evaluating

the diffuseness, reverberation  time is frequently mea-
sured  for multiple  points in a room.  There  may  be,
of  eourse,  a  measurable  relationship  between them.

However, since the theory of  reverberation  is basi-

cally founded  upon  the total acoustic  eriergy  in the
room,  it is generally diMcult to estimate  the diffuse-

ness  from  the reverberation  timos. In the  preceeding

paper,tO) the authors,  as  an  approach  to the concepts

of  reverberation  and  diffUseness, hqve introduced a

concept  similar  to entropy  and  have considered

macroscopic  complexities  of  a  reverberant  sound

field, from the  contribution  of  the  total energy  to the

vibrating  components  in the  field. The  complexity

at  every  point in a complicated  sound  field, there-

fore, should  be discussed by noting  the positional

dependence of  diffbseness. A  measure  expressing  the

diffuseness may  be required  to contain  information

on  density and  direction of  acoustic  energy  flow at  a

point. Presumably,  the concept  of  cross-correlation

is rather  closely associated  with  that of  diffuseness,

but as  the cross-correlation  coethcient  between two

measuring  points in the  field is a  relatiye quantity it
is not  the best criteria  for estimating  the diffuseness.
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  Hence  in the present paper, the cross-correlation

 coeMcients  in reverberant  fields are  deser,ibed first,

 and  entropy  and  energy-entropy  product concerning

 sound  pressure at a point are  defined so  as  to  con-

 sider  complexities  of  sound  fields from a  microscopic

 point of  view.  Then, the entropy  is theoretically
related  to the  cross-eorrelation  coeMcient,  and  supe-

riority  and  inferiority among  our  introduced mea-

 sures  and  cross-correlation  coeMcients  are  discussed
fbr reverberant  sound  fields. The  reverberant  fields

diffused two- and  three-dimensionally are,  here, as-
sumed  to  be composed  of  myriadly  random  plane
waves,  as  well  made.

        2. ENTROPYANDCROSS-

      CORRELATION  COEFFICIENT

  The  cross-correlation  coeMcient  R, for the sound
pressures  at two  separate  points in a  reverberant

sound  field, was  defined and  measured  by Cook
et al.ii) Their definition is as  follows:

      R  --  ,jfP,(tin,(t)di/

         I-;S:p,i(t)at.-,Sg.,2,,,.lii2, ,,,

where  pt(t), p2(t) are  sound  pressures at  time  t re-

spectiyely,  and  Tis  time of  observation.  After their

suggestion,  many  experiments  and  studiest2'i4)  have
been made  in the attempt  to clarify  the diffuseness of

sound  fields and  the propagation  direction of  sound

waves,  using  the  above  fbrmula. Assuming  that a

plane progressive wave  sinusoidally  varying  comes

from the direction 6, we  can  observe  the  sound  pres-
surespt,  p2 at  two  points Xl, M  which  r  is the distarice
between, as  shown  in Fig. 1. For  an  accuracy,  M
is designated as a  reference  point. The  signs  ± are

the  notations  for representing  the  traveling waves,

     P2=A2e ± j"t
 pT=Ale ±i("t"p)

Fig. 1 Geometry  of  plane progressive wave
 and  measuring  points.
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 and  correspond  to double signs  in the following
 equations.  First, we  start from the derivation of  a

 complex  cross-correlation  coeMcient  between  two

 points (distance r) for the plane progressive wave.

 In the case  o,f single,  harmonic motion,  Eq. (1) may
 be expanded  to

      R ==  
-;
 Sfpip,dt/

         I- ;S,T  lpi"12de･; !,T lp,12dtli'2, (2)

without  dividing jnto real  and  imaginary parts as
is usually  carried  out,  where  

*
 denotes a  complex

coniugate.  Above  equatien  is the result  of  direct
insertion of  two  complex  functions into Eq. (1).
However,  it can  be replaced  by complex  coherence

function'5) coh(w)  between Fourier transformspt(w),

P2(bl) OfPi,  P2;

          R=  coh  (to)

                  Si2(W)

            
==

 {Sl,(tu)Sh,(w)}i12 , (3)

where

              2T
   S,,(w)= lim                 p2"(w)pi(co): crOss-spectral
          T.+co  T
                            density function
                            OfPl,P2,

              2z
                 lpi(bl)12: autospectral  density   S,,(to) =  lim
          T-+.  T
                         function ofpt,

              2rr
                 lp2(bl)f2: autospectral  density   Sh,(bl)= lim
          T-+.  T
                         function ofp2.

This is the reason  that Eql (2), representing  the

degree of  coherence  between pi, p2, is a  cross-correla-

tion  coeMcient  at  a  single frequency. Now  the entro-

py  of  the sound  wave,  by referring  to the integral with
respect  to the time domain in Eq. (2), is written  in
the form :

       
h=-iig

 I;S; 
P

i.ii,.lii2

          
'ioge--f:':"":-=i

 c.P  >,/, 
t, (4)

                    1p12dii               i'ii }o
from the energy  contribution  of  the waveform  of

sound  pressure at time t to its total energy.  The
integration concerning  with  the logarithm in Eq. (4)
is defined as  the value  calculated  by  consistently  using
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only  the principal  yalue.  The  entropy  h is expected
to be one  of  the basic quantities describing a  property
at  every  point in a  sound  field. To  elucidate  the

property of  h dependent on  the distance between
two  points (such･as in the correlation  method),  we

take the difference of  entropies,

       
"=

 
rm'

 
;!g

 [. ,Si  :;],.I 
ii2

           
'iOge

 .;s,Tl:I,,itlri2dr

           
'ilf

 [i!:
P

i;

"

,[,.lit2

            
10ge

 [; s,T l;l l,dtl 
if2

 
di

 
(5)

Substitutingpi, p2 with  T[=2zltu into Eq. (5), we  ob-

tain entropy  Hi  for a  plane progressive wave  inci-
dent from a  single  direction :

 Hl = 
-
 ; j ,T {- blt sin wt  +(tot -g)  sin(tot 

-p)}dt

     ±
-
 ; !,' {- blt cos  wt  +(tot -p)  cos(wt  

-p)}di

                                      (6)

   =1-e'Jy,  (7)
where

  q== ± krcose:  phase difference betweenpi,p2,

            k: wave  number  of  plane wave.

The  fbrmula expressed  in Eq. (7) can  be regarded  as

the  (complex) difference entropy  of  the  plane wave

at  a  single  angular  frequency w.  It may  be usefu1  fbr

general signal  analysis,  since  g  represents  the phase
difference between two  sinusoidal  signals at the same

frequency not  only  in Fig. 1 but also  in arbitrary

signal  analysis  based on  sinusoidal  waves.  In ad-

dition, from  Eq. (2) or  Eq. (3), the  cross-correlation

coeficient  Ri for the plane progressive wave  is

               Ri=e'jp,  (8)
whose  real  part apparently  corresponds  to the cor-

relation  coeMcient  by Cook  et  al.'i) Consequently,
Hl  can  be written  using  Ri as

              H,=1-R,.  (9)
It is ofinterest,  that the imaginary part of  H'i is equal
to that of  Ri.

  Then, the entropy  th in two-dimensionally  diffused
sound  fields is, from Eq. (6),

   th=  i. Sl"(1 -e
± jke

 
eose)de=i-.Jh(kr)

 , ao)

due to superposition  of  random  plane waves  against

e-direction. JD(x) is the  zero-order  Bessel function

of  first kind. The  imaginary part of  th  is equal  to

zero  as  is that  of  R2 (==Jb(kr): cross-correlation  co-

efficient  in the sound  fields). Evidently the relation-

ship

              Hli=1-R,,  (11)

also holds.

  Similarly, the entropy  Hli in three-dimensionally
diffused sound  fields, averaging  Hl  with  all directions

(V, e), becomes

   th:= 4i. !,"!i=(i-e±jkeeese)sinedyfrde

           sin  kr
                ,

 (12)      =1-

            kr

in which  the  imaginary part vanishes.  Also the  im-
aginary  part of  Rs  (= sin kr/kr: cross-correlation  co-

eracient  in the sound  fields) is zero,  while  the rela-

tionship similar to Eq. (11) maintains.  These  entro-

pies Hle, th can  be obtained  from the  frequently
rneasured  correlation  cogMcient.

    3. ENERGY-ENTROPYPRODUCT

  On  the measure  which  expresses  complexity'  of

vibrations  quantitatively, the  authors  previously
stated  that  our  energy-entropy  product  is a  more

general measure  than  entropy.i6)  Here, we  fbrmulate
this concept  as  a  product  of  both  the total energy  of

a  waveform  of  sound  pressure  and  its entropy,  with-

in definite time. The  energy-entropy  product in this
case  is expected  to  be a  quantity adding  degrees of
energy  change  into the entropy,  near  

'the
 ceiling,  fioor,

wall  or  at  higher frequencies, and  so  on  ,... Thus  the

quantity in Fig. 1, multiplying  the energies  of  waye-

form by the entropies  determined from time records

of  two  sound  pressures, respectively,  is written  as

   
K---

 
;!:pl

 
iOge

 {- ,s,Tl;il,.li/2  
di

       
+
 
-i;

 i,Tpi" 
ioge

 {.} s,T i;i,dt} 
ii2

 
du

 
(i3)

               ISI
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Hence,  energy-entropy  product  Ki  fbr a  plane pro-

gressive wave  propagating in the  direction e, from
the above  an.d pt, p2, is

               Kl==A2-Aie±Jp. (14)
The  solution  of  sound  pressure for a  plane progres-
sive  wave  in ideal gas,M) including an  attenuation

term, ls

            p=Age-aMe'j(wt-kX). (15)
If point M  is selected  to be an  origin, setting  x==O,

so  that  At, A2 become

              A,==A,e-t,reose, (16)
                 A2=Ao,  (17)
respectively. The substitution  of  these equations  into
Eq. (14) yields a  more  concrete  Kl,

             Kl :A,(1-blcese),  (ls)
where

              z==  -ctr ±J'kr .

  Therefore, in sound  fields diffiised two-dimen-

sionally, energy-entrepy  product  Kh is obtained  from
Kt as

   Ki =  i. !ir A,a -  bl 
ces

 
e)do

 =A,{1  -4(z)},  (l g)

where  Ie(z) is the  zero-order  modified  Bessel function

of  first kind.

  Furthermore, energy-entropy  product Kh  in sound
fields diffused three-dimensionally, in the same  man-

ner  as Eq. (12), is given by

                JL Acoust. Sbc. .lpn. (E) 7, 3 (1986)

      Kli ==  4i. S,r !iXA,(i-bl 
eose)sin

 e dsthde

        =A,(i-  
SinzhZ).

 (2o)

The considerations  in 2.1 implies that  we  should

discuss only  the real  parts of  Kt, Kh, Kg as  well  as

those  of  the  entropies,  because their quantities are
experimentally  measurable.

       4. NUMERICA[LEXAMPLES
             AND  DISCUSSION

  Typical examples  obtained  as  a  function of  kr

have been plotted in Fig. 2 to demonstrate both the

properties  ef  the real  parts of  entropy  (strong lines)

and  the gross-correlation coeMcient  (weak Iines),
with  e==450 for Hi. Ifthe distance between observa-
tions  and/or  the  frequency of  composite  plane waves

increase, except  for III, Ri the entropies  approach  1,

and  the correlations  zero  while  alternately  increasing
and  decreasing around  the respective  limiting yalues.

The  correlation  coeMcient  and  the difference of  our

defined entropy  have  complementary  properties, as

is obvious  from their theoretical consideration.  The

use  of･entropy  has two  advantages. First, the cor-

relation  coeMcient  may  be  estimated  from  the  differ-

ence  of  entropy,  however,  the measured  correlation

coeMcients  may  not  be separated  into the twe  entrQ-

pies. This produces  the advantage  that for multiple

points only  the  entropy  at  each  point mtist  be mea-

Fig. 2

di$".Etimrd"tuptn5'sLHts8g'v"tsHo:8

2.0

z.o

o

-1-Do
 2.o  4.o  r t.o s.o-  10･O

                                              kt

Correlation coeMcient  and  entropy  in three kinds of  sound  fields (real parts).
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sured  rather  than  the  eorrelation  coeMcient  between
each  possible pair of  points. Second, the equipment
for measuring  the entropies  in a  reverberant  sound

field may  be simple*  since sound  pressures fbr two

points are not  required  to be measured  at  the same

time, as  in the measurement  of  the  correlation  co-

eMcient.  The  entropy'  is, therefore,  a  more  essential

quantity of  the  fields as  cornpared  to the cross-cor-

relation  coeMcient.

  In any  case  owing  to energy  dissipation with  prop-
agation,  it is evident  that the energy-entropy  prod-
ucts  Kh, Kli approach  1 at  smaller  kr thap the entro-

pies th, Hh. Moreover,  it is noted  that the imaginary

parts of  Kle, K3  are  not  equal  to zero,  although  those

of  th, Hs  are  zero.  The entropies,  normalized  by

their total energies  according  to the  energy-entropy

products, can  not  express  the amplitudes  and  reac-

tive gomponents due to a  propagation  loss. Aocord-

ingly, the energy-entropy  products  are  generally
found to have more  superior  characteristics  than  the

entropies.  At  audio  frequencies, since  the  attenua-

tion  of  the progressive wave  in such  sound  fields is

negligibly  small,  the relationship,  KL=  AoHA, proves
to be approximately  yalid  for each  subscript  (n=1,
2, 3). As  a  result,  we  only  need  either the entropy  or

the energy-entropy  product, as  a  measure  of  com-

plexity of  wave.motions  in this case. However,  the

energy-entropy  product introduced would  become

important at  higher frequen¢ ies (ultrasonic) and  for

sound  waves  of  finite amplitudes,  near  the central

region  of  the  room.

  Finally, if the sound  field has many  frequency com-

ponents by bandlimited neise  excitation,  H  is calcu-
lated by  integration of  Eq. (6) with  a) in the fre-

quency  band, and  K  rnay  be given as an  expansive

quantity based on  this entropy.

            5. CONCLUSION

  The  measures  ofcomplexity  of  wave  motions  have
been  proposed, they and  the  cross-correlation  co-

eMcients  have been  related  in reverberant  sound

fields. From  the  complementary  characteristics  of

both difference of  entropy  and  cross £ orrelation  co-

eMcient,  it is concluded  that  the  value  of  entropy

expresses  degrees of  incoherence in the sound  fields,
and  is convenient  for discussing the difuseness. The

i
 This equipment  could  be constru ¢ ted  from  a  cembina-

  tion of  a  differentiator circuit, a  clock  pulse generator,

  an  analog  multiplier,  and  an  integrator circuit,  ad-

 justed to each  frequency.

latter feature will  enable  us  to build the  measuring

apparatus  in handy  sound  level meter  utilizing  one

mierophone,  and  also  to measure  the cross-correla-

tion  coeMcient  by the level meter  simultaneously.

When  the  energy  of  a  waveform  is, however, extreme-
ly different between measuring  points, the energy-

entropy  product  should  be employed  instead of  the

entropy.  Thus,  the  entropy  and  energy-entropy

product are  not  mutual  quantities, but may  be nearly

equivalent  to kinds of  informations at  a  Point in a
sound  field. There is one  possibility for finding a

measure  of  diffuseness, that is, we  might  be able  to

include a  factor of  directional distributions into both
the entropy  and  energy-entropy  product.  Equation

(4) would  be needed  to be modified  to perfbrm  it.

  The entropy  fbrmulated in Eq. (6) will  be applica-

ble to signal  analysis  of  many  kinds, as  will  the

energy-entropy  product.
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