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A method for selective detection of the second harmonic component generated at the
focal region in a focused sound field due to the local nonlinear properties of medium is
discussed. The phase shift of sound waves passing through the focus offers the principle
of the present method. Assuming a source with a Gaussian profile excitation to avoid
the edge diffraction, the effect of an inserted sample with a nonlinearity parameter differ-
ent from that of surrounding liquid (water) is theoretically analyzed. The experiment
employing a sample of benzyl alcohol shows the validity of the theory. The quadrature
component of the second harmonic which differs in phase by 77/2 radians from that of
non-diffraction case corresponds well to the second harmonic generation at the focus,
i.e. the nonlinear property of the sample within the focal region.

PACS number: 43. 25. Cb, 43. 25. Jh, 43. 35. Sx

LIST OF SYMBOLS

ponent of the second harmonic

r: radial coordinate
a: source radius R: function associated with r dependence of
A: constant associated with Gaussian dis- fundamental amplitude
tribution s: Hankel transform variable
B/A: parameter of nonlinearity t: time variable
co: sound speed uo: amplitude of the source velocity at r=0
D: focal length u(r): amplitude of the source velocity
Ei(-): exponential integral x,y:. variables of integration
ji o oA/—1 z: axial coordinate
Jo(+): Bessel function of order 0 zy,: axial coordinate of the center of sample
k: fundamental wavenumber Azyze:  focal region length
L: thickness of inserted sample f: parameter of nonlinearity
P: power of second harmonic sound fL: parameter of nonlinearity of inserted sam-
g:: fundamental velocity potential parameter ple :
qw: amplitude of ¢, 0: phase parameter (=0.—26,)
gz: second harmonic velocity potential pa- 6: phase parameter of the pressure averaged
rameter on surface
gz0: amplitude of ¢ 0:: phase of q:
Q., O.: values associated with quadrature com- 0.: phase of g
ponent of the second harmonic §:  integral variable
Q., Q.: values associated with inphase com- . 3.14159 ..
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ambient density

shock parameter

total velocity potential
fundamental velocity potential
second harmonic velocity potential
fundamental angular frequency

1. INTRODUCTION

It is well known that an intense sound produces
higher harmonics with propagation caused by non-
linear distortion. Since the largest part of the dis-
tortion is due to an elastic nonlinearity of medium
where pressure is not in linear proportion to density,
a parameter of nonlinearity B/A denoting this char-
acteristic is widely used for characterizing materials
and substances. Another parameter of nonlinearity
f (=1+ BJ2A4) describing the dependence of local
sound speed on particle velocity is treated here.

The thermodynamic method and finite-amplitude
method are most commonly used to measure the
parameter of nonlinearity of medium.!>?> Recently,
some new methods to visualize the inhomogeneity of
the nonlinear properties in biological tissues, utilizing
the principle that a weak probe wave suffers a phase
modulation due to the nonlinear interaction with an
overlapping pumping wave of high intensity, was
proposed and developed.®®

A spherical focusing source is generally used to
increase the resolution in applications such as ultra-
sonic diagnosis and acoustic microscopy. In this
focusing field, high frequency and strong focusing
effect accelerate the nonlinear distortion of sound.”
It has already been suggested that one can record the
nonlinear properties of an object immersed in the
focal region by detecting a second harmonic com-
ponent in acoustic microscopes.®> However a sub-
sequent article gave the concluding remarks that the
nonlinear characteristic of thin samples could be
hardly detected through the second harmonic signal,
because the greatest part of the second harmonic
observed in a microscope was assumed to be gen-
erated outside the sample.® Fairly complicated micro-
scopes were then proposed, and developed to en-
hance the nonlinear distortion due to the sample!® ¥ ;
however it seems that little progress have been made
so far.

On the second harmonic component nonlinearly
generated at a focused sound field in homogeneous
media, Lucas and Muir!»!® offered an analytical
model taking diffraction effects into account, and the

e ¥¥eax
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present authors ef al.'¥ and Humphrey ez al.'® showed
a good agreement between the theory and experi-
ment. Through the comparison of theory and ex-
periment, the present authors et al. proved that the
second harmonic observed in the post focal region
was generated almost at the focal region. They also
suggested that the second harmonic sounds generated
at the pre and post focal regions suffered destructive
interference (or cancellation) in the post focal region
because of 7 radian phase shift when passing through
the focus. This makes the second harmonic sound
generatéd at the focal region be dominant at the post
focal region. An increased resolution of the acoustic
microscope working at very high intensity level,
which may be explained by the aforementioned can-
cellation, has already been reported.!® These phe-
nomena appear to differ from the concluding remarks
of Ref. 9). Therefore the possibility of detecting the
nonlinear characteristic of an inserted sample within
a conventional acoustic microscope needs to be
examined again.

The present paper presents a theoretical prediction
of the behavior of the second harmonic component
generated at focusing fields with a sample inserted
within the focal region. Validity of the theory is
experimentally demonstrated by detecting the com-
ponent due to the nonlinearity of the inserted sample
within a focal region.

2. THEORETICAL PREDICTION

2.1 Behavior of Focusing Field

The sound field formed by a uniformly excited
spherically concave focusing source is rather com-
plicated on the symmetrical axis due to the source
edge diffraction. On the other hand, the sound
amplitude distribution is rather simplified except in
the vicinity of the axis, as is the distribution of a
phase parameter.!*> In order to examine typical
fields peculiar to spherically focusing sounds, the
source amplitude is assumed to have a Gaussian
distribution without an edge of source, where an
edge diffraction effect may not occur to complicate
the on-axis field. We suppose a focusing source with
the focal length D located in cylindrical coordinates
as illustrated in Fig. 1. A sinusoidal sound wave
with the angular frequency « and the wavenumber &
is radiated in water. The velocity potential of a
fundamental component

$(r, D=a(r, 2) exp{j(kz—w1)}

is given by solving a following equation.

(1)
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Fig. 1 Geometry and notation.

1 0/ 0q\ K Oq . 0q
TW(’ or >+ G tHk5, =0 (2)
A boundary condition implying a Gaussian envelope
excitation can be replaced by the condition approxi-
mated on the plane z=0 as follows:

0 0= e (a+i55 ), @)

where A corresponds the inverse of variance of the
Gaussian distribution, and u, is the source velocity
at r=0. This approximation is valid, provided the
restriction 1< k/s/AL16m(DA/ A)® is satisfied. Ap-
plying a Hankel transform

q(s, )= S:oql(r, z)Jo(sr)rdr (4)

to both sides of Eq. (2), the equation reduces to

d q1 dql

i Tk =0 (5)

where Jo(-) is the zero order Bessel function. The
solution of this equation is

a\(s, 2)=q.(s, 0) exp{j [~V K*—5* —klz} . (6)

A Fresnel approximation valid at fairly low con-
cavity, e.g. Da/a=3, simplifies the solution to be

a6 =060 =15 ). (D)

Here g.(s,0) is the Hankel transform of Eq. (3), that
s

~ U
ql(s, 0):71% S

_5261+

oo

exp {— (A —}—j%) rz} Jo(sr)rdr . (8)

0

The use of integral formula'”

oo , ° _ 1 b2
So xexp(—ax)Jo(bx)dx_Eexp<— i )

Re a>0)

and the inverse Hankel transform

(9)

q:(r, 2)= Sw (s, 2)Jo(rs)sds (10)
0

leads the solution of the fundamental component as

0

Uy

)
12k<A—I-J 2D >

a(r, 2)=

s2

. exp{_m}

. exp< J E) Jo(rs)sds . (11)

Using the integral formula again, one obtains the
expression

=4 €xp(j0,)

. Uy, R kr2 jk
=0k P [’ 2 (” oGz ) }
where ¢(z)=2A4—jk(1/z— 1/D).

The velocity potential of a nonlinearly generated
second harmonic component

Pulr, 2)=qu(r, z) exp{j2(kz—wt)} (13)
can be given by the perturbation solution of Light-
hill’s equation. The Lighthill equation

1 9 0gs g, . 00 . BK 2
r Or <r or >+ 0z* +4jk oz 7 G 4
has been linearlized by substituting the above solution
g1 into the inhomogeneous term. Here ¢, is the sound

speed, and S is the parameter of nonlinearity of
water. The boundary condition

g:(r, 0)=0 (15)
is imposed on Eq. (14). Employing the Hankel trans-
form, the Fresnel approximation and the integral
formula similarly as in obtaining ¢g:, one finally

derives the solution of a second harmonic component
as follows:

(12)

(14)

G:=qx exp (jO,)

. ﬂk2uoz . kr 2
~Aegz)z P [’ z ( g(z)z )}S g(z )z’
. pKul kr? < Jk ):I
= exp 1+———

4co<2A +j%)g(z)z [ z 02z

T |e@z ], . _1<2A< ke >
[logl—k l—l—](tan P 1+4A2D2 z

- rem ()]

(16)
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The total velocity potential ¢ neglecting all har-
monics higher than the second is supposed to be a
sum of the velocity potentials of the fundamental
component and second harmonic component, that is

P=¢+ &,
=QJ0[eXp{j (kz—wt + 01)}
+(Q.+7Qs) exp{j2(kz—wt +0,)}] an
where Q.= (gz0/q10) cos &, Q.= (g20/q10) sin &, and 0=
0:—20,. A waveform of this sound then obviously
depends on the phase parameter 0 as well as on the
value of Q'2o/q1o.

The parameters of the source in water employed
for a standard model are f=2.0 MHz, D=85 mm
and A=1,250 m—2. The numerical computation re-
sults of g0, 01, g20 and 0 along the symmetrical axis
(r=0) using Eqgs. (12) and (16) are shown in Figs. 2
and 3. Both quantities g:0 and gso attain maximum
values at z=D showing that the radiated sound
focuses in the focal point. The phase 0: rapidly
varies within the range D— Az1;6/2<z< D+ Az1/¢/2,
and finally the fundamental component advances by
m radians in phase. Here 4z, a distance between
two axial points of 1/e amplitude, is taken to repre-
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Fig. 2 Amplitude and phase anomaly of
fundamental component on the axis.

S
a I
D
E @
.| -
o 0~
= w
=< {ol
a =
N =
3 2
= 1]
€ %6 08  do .z aa e @
= AXIAL DISTANCE, z-m x

Fig. 3 Amplitude of second harmonic
component and phase parameter on the.
axis.
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sent the focal region length measured on the z axis.
In the case of a Gaussian source, this is given by a
relation

104D?
Azype= s

and accordingly Azi.=11 mm in the present stan-
dard model. Since the second harmonic component
generated in the pre-focal region also undergoes 7
radian phase shift, this component is opposite in
phase to that newly generated in the post focal
region. After the propagation to some range in the
post focal region, the second harmonic component
generated in the pre-focal region is expected to disap-
pear because of destructive interference. In particu-
lar here, the value of @ must be 77/2 radians to yield
that Q.=0, and a surviving second harmonic compo-
nent generated in the region outside the pre and post
focal regions, namely in the focal region, is expected
to be detected.

Figure 4 shows the power of the second harmonic
sound transmitting through a plane perpendicular to
the z axis to be

18)

4mpws?
Co

P(:)= S:rlqzlzdr, (19)

which can be evaluated in terms of g: in Eq. (16),
where p is the ambient density. The power which
attains a maximum on the focal plane becomes small
in the post focal region due to the destructive inter-
ference. Since the component whose phase parame-
ter @ is /2 is not cancelled, the power of this compo-
nent survives even at z=2D. v
One can see that the dependence of the quantity
q10 on the radial distance r is expressed by the func-
tion exp[— A(kr/z|g(2)|)*] (=R) from Eq. (12), while

xlp

1 (1 1 t (] 1 ] ] 3 1 3 2 )
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AXIAL DISTANCE, z-m

o 02

Fig. 4 Total power of second harmonic
component passing through the plane
perpendicular to the axis.
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NORMALIZED VALUE

AXIAL DISTANCE, z-m
Fig. 5 The ratio gz0/q10 and its quadrature

component Q; (=gz/qiesinf)) and in-

phase component Q. (=gz0/g10 cos 0) along
the axis.

gs=0 is proportional to R?* as expected in Eq. (16).
Then the quantity gz0/q10 depends on R*)/R=R. In
addition, the phase parameter 6,—26, is indepen-
dent of the r as seen from the same equations. Ac-
cordingly, an off-axis behavior of the values Q, and
Q. can be easily predicted if those axial values are
known. The computed axial values of gz0/g10, Qs and
Q. are shown in Fig. 5. In the pre-focal region, Q.=
g20/q10. However in the post focal region, the Q.
decreases and Q, increases alternatively by a reason
mentioned above. The sound pressure with large
Q. has the symmetry of the positive and negative
portions of its waveform. A sawtooth wave, for
example, should have large Q.. On the other hand,
the sound wave with large Q, shows an asymmetrical
form where crests are narrower than troughs. Such

a waveform cannot be observed in non-diffracted
sounds.

2.2 Influence of Inserted Sample

Let us suppose a condition where an infinitely
broad sample is immersed into the focusing field
normal to the acoustic axis. Here we assume that
linear acoustic properties (ambient density and sound
speed) are common to both the sample and surround-
ing water. Thus the second harmonic field is influ-
enced by the sample. The fundamental component
g1 however remains unchanged as Eq. (12) shows.
The changed value of ¢: can be easily obtained intro-
ducing new conditions for ¢. continuous at two
sample-water boundaries.

For the case where a sample with thickness of L=
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Fig. 6 The values of Q; and Q. along the

axis with a sample of 20 mm thickness.
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Fig. 7 The values of Q. and Q. along the
axis with a sample with £,=1.5 £.

20 mm is inserted within the range D— L/2<z< D+
L/2 of the focal region, the axial values of Q. and Q.
for various nonlinearity parameters of the sample
f. are shown in Fig. 6. While Q, increases in pro-
portion to f., the Q., which vanishes at z=2D,
slightly changes according to the change of f#.. The
axial values of Q, and Q. for various thickness L of
the inserted sample with f.=1.5 # are also shown
in Fig. 7. Replacing the water with a sample within
the range of 209 of the focal region length 4z
with its center at the focal plane, the Q. increases
more than 109 at z=2D. When the sample is as
thick as the focal region, the value of Q, tends to
saturate.
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3. EXPERIMENT

3.1 Experimental Arrangement

The block diagram of the experimental system is
shown in Fig. 8. The arrangement is almost same as
that in Ref. 14) excepting the sample and receiver.
A cw pulse sound at 2.0 MHz emitted from a circular
disk transducer with a radius of 40 mm was focused
in degassed fresh water by a concave acoustic lens
whose radius and focal length are 40 mm and 170
mm, respectively. The lens was fabricated from a
high-density polyethylene slab, which has an absorp-
tion coefficient as high as 1.0 dB/mm at 2 MHz.
Therefore the transmitted sound amplitude decreases
as r increases on the lens, and the focusing effect is
degraded. The source distribution was approximated
by a Gaussian distribution for 4=720 m~2. In this
case the focal region thickness Az, is 40 mm.

Two kinds of receivers were employed in the ex-
periment. One of them is a circular high-polymer
piezofilm (Kynar piezofilm, product of Pennwalt
corporation, USA) with thickness of 52 um and
radius of 13 mm, which has a square active element
of 1 mm? area at the center. The receiving sensitivity
is —127.4+1.5dB re 1 V/Pa in the range 1 MHz to
5 MHz. Another one is a spherical receiver of a 28
pm high-polymer piezofilm attached to an acryl slab
with a concave curvature radius of 170 mm. By a
use of this receiver centered perpendicularly on the
acoustic axis at z=2D =340 mm as illustrated in Fig.
8, one can observe the sound in the manner similar
to transmission type acoustical microscopes. A

PULSED
OSCILLATOR

|

POWER
AMPLIFIER

MATCHING
CIRCUIT

| _osciLLoscoPE |

WATER TANK

FOCUSING " BENZYL

SOURCE ALCOHOL HYDROPHONE
Fig. 8 Block diagram of experimental
system.
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sensitivity was not calibrated for the latter receiver.
Since this receiver is made of same piezofilm (Kynar
piezofilm), a similar flat response as that of the for-
mer receiver can be expected.

Benzyl alcohol contained in the cavity, which has
a window of rubber film as thin as 20 ym on each
side, was employed for an inserting sample. The
focusing beam propagates through the alcohol be-
tween two windows. At 20°C, the density, the sound
speed and the nonlinearity parameter are 1,000 kg/
m?, 1,480 m/s and 3.5 in water, and 1,050 kg/m?,
1,540 m/s and 6.1 in benzyl alcohol, respectively.!®
Therefore the assumption that only the parameter
of nonlinearity of sample differs from the surround-
ing medium (water) is almost satisfied. Since the
specific acoustic impedance of the rubber is close to
that of water, the rubber film does not disturb the
sound field. The sample thickness L is 30 mm, which
is set by the dimension of the cavity.

The fundamental and second harmonic pressure at
the focal point were 239.6 dB re 1 yPa and 227.5
dB re 1 uPa, respectively. Accordingly the ratio of
the second harmonic amplitude to the fundamental
amplitude is 0.25. This ratio corresponds to a shock
parameter o of 0.53 for the non-diffraction case and
satisfies the quasilinear restriction (o < 1) to moderate
amplitudes.

The wave profile of the received sound was ob-
served on an oscilloscope and was simultaneously
photographed. The waveform was quantized at 16
intervals over one period, and a Fourier transform
was executed for a series of these data to obtain the
amplitude ratio of the two harmonics and the phase
parameter.

3.2 Experiment and Discussion .

Since an experimental source radius is finite, the
actual values of Q, and Q. may change rapidly with
the position due to an edge diffraction. The funda-
mental component of this case can be given by Eq.
(2) of Ref. 14),

1 Ckrt\ (@ kr
= B eXP(J 27 > So u(x)J°<7x)

kXX /101
- expiJ > 7D xdx .

Modifying Eq. (7) of Ref. 14) one can obtain the
second harmonic component observed at the back
of the inserted sample (z>z, + L/2, where z is the
axial distance of the center of sample) as follows.

(20)
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k* kN[ (* (@ kr
= 4ﬂ ex D(J 4 >S S S u(x)u(y)fo(—«/F>
TCZ z £=0 Jx=0 Jy=0 z
k(x*+ ") 1 . ,
[exp{ > >~ D exp(—jG)E(—JjG)
k(x N/ 1 kF 1
—(G=1)exn [ EEE (L L) (L exot— sGy B0
yi) z 4 \z z
k(P 2 1 1 kF 1
+(Le- Jexp {222 <* o) )| exe(—iGIE(—1G) | syapaxat, @)
ﬁ? Z 4 z Zy
where
F=x'+3y*—2xycos§, |50
21=ZL'—'L/2 N -
22=ZL+L/2 N
G=k(x*+ y*+2xycos £)/4z,
G,=k(xX*+ y’+2xycos §)/4z, , § -
g |
and ©
S -~
G,=k(x*+ y*+2xy cos §)/4z, . 5 ]
< -
Here a is the source radius, u(r) is the source velocity § ° g
amplitude at the radial distance r, and Ei(-) is the = ;5_
exponential integral. Thus the values of Q, and Q. W
at any point beyond the sample can be obtained %
o L 1 1 -T o

for the experimental source with the distribution 0 ol .02 .03 .04
u(r)=uo exp (—720r%) (r<a) and u=0 (r>a).

Table 1 compares the theoretical and experimental
values of Q. and Q. at the point z=270 mm and r=
1.5 mm when a benzyl alcohol sample with L=30
mm was put in three positions, z;, = 120 mm, 170 mm
and 220 mm. They are normalized so that the theo-
retical and experimental values of Q, without sample

RADIAL DISTANCE , r — m

Fig. 9 Computed value of gz0/q10 and & on
sphere S; —— no sample, ------ sample
with f#./f=1.5 and L=30 mm.

are unity. The experimental shows a tendency similar
to the theoretical. Putting alcohol sample within the
focal region increases the experimental value Q. by
44 9;; but with the sample placed at z;, =120 mm or
220 mm the magnitude of Q. almost remains con-
stant at the value measured in the case without any
sample.

Table 1 Comparison of theoretical and
experimental values of Q. and Q. for
different sample positions.

Calculated Measured
zy, (mm)
Os Q. Qs Q.
120 1.05 —0.10 1.05 —-0.10
170 1.58 0.19 1.44 0.12
220 0.95 0.19 1.04 0.28

When we suppose the situation is similar to trans-
mission type microscopes, the detected sound pres-
sure may become one averaged over the spherical
receiver located at z=2D—r?%/2D. Two examples of
the distributions of the amplitude ratio g:¢/qi0 and
the phase parameter 6 on the sphere S (z=2D—r?/
2D) are shown in Fig. 9. The solid curves show the
values for the case without inserted sample, and the
dot curves show the values for the case with a sample
inserted at the center of the focus, i.e. zL,=D=170
mm. The nonlinearity parameter and thickness of
the sample are 1.5 f and 30 mm, respectively. A
sample with high nonlinearity makes the magnitude
of the second harmonic component larger every-
where on the sphere. The value of @ is not much
affected by the nonlinearity of samples.

Then the average values of Q, and Q. on the sphere
S of the receiver can be also theoretically derived as

173
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| pas|
Q.= g¢lds sin 6
and (22)
| Jpas)
Q.= S¢lds cosd,

where 0= / S bdS—2/ S ¢:dS. Here S -dS denotes

the area integral on the sphere. The values of Q,
and Q, affected by the sample inserted at the range
z,=D=170mm were numerically computed for the
present experimental arrangement. Figure 10 shows
Q. and Q. versus Sy, of the samples with L =30 mm
and 60 mm. Figure 11 shows Q, and O, versus L
of the sample with #,=1.5 #. It is obvious that the
magnitude of O, grows with pu and L, which reflects
an intense virtual source of second harmonic sound
in the focal region.

The distorted wave was observed by the spherical
receiver when the sample of benzyl alcohol was in-
serted at each one of the three positions. Table 2
compares the values of Q, and Q. obtained through
experiment with the respective values computed for
p./f=1.74. These values are similarly normalized
so that both the experimental and theoretical values
of O, without sample are unity as in Table 1. The
experimental values show same tendency as the
theoretical values. While Q. increases without regard
to the position of sample, O, changes only under the
condition where the alcohol sample is placed in the
focus. Therefore the Q, is considered to be available
for detecting the second harmonic component in-
duced by the inserted sample.

If the experimental source is uniformly excited,
i.e. u(r)=uo, the thickness of the focal region reduces
approximately to 709, then the parameter of non-
linearity of thinner samples is presumably detected
using Q.. A source with larger aperture angle to
make a higher focusing gain and shorter focal region
length would facilitate the application to thinner
samples.

Reference 9) neglected the second harmonic sound
generation in the pre-focal region and the important
role played by the phase of the second harmonic
sound. The present paper differs in that they have
been taken into consideration.
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Q ~——L=60mm
Qs 30
5
2, 1.5
s
a
N K]
4
<C
=
g —
go.5 Qc __L-comm
[N -8
L 1 ) , ,

1.0 i.2 1.4 1.6 1.8 2.0
BL/B

Fig. 10 Dependence of O, and Q. on S,
of a sample with thickness of 30 mm or

60 mm.
1.5 3s
w
3 1.0
g
i BL/B =15
-1
<
2oL
()
= —
Qc
o 1 ! 1 1 1 3
0 10 20 30 40 50 60
L —mm

Fig. 11 Dependence of Q. and Q. on L of
a sample with £, /f=1.5.

Table 2 Comparison of theoretical and ex-
perimental values of Q, and Q, for different
sample positions.

Calculated Measured
z;, (mm) - - - -
QS QC QS Qc

120 1.05 0.00 1.01 0.18

170 1.53 0.28 1.42 0.33

220 1.00 0.30 0.96 0.56

4. CONCLUSION

The present paper discussed the possibility of selec-
tive detection of the second harmonic component
generated at the focal region to estimate the non-
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linear property of the sample. The behavior of the
second harmonic was theoretically predicted assum-
ing a spherical focusing source whose excitation
amplitude has a Gaussian distribution to avoid edge
diffractions. A sample was assumed to have a pa-
rameter of nonlinearity different from that of the
surrounding liquid (water). The influence of this
sample on the second harmonic component, in par-
ticular the second harmonic detected by a spherical
receiver arranged as in transmission type acoustical
microscope, was examined theoretically and experi-
mentally.

The result shows that the quadrature component
which lags by 7/2 radians compared to the second
harmonic sound of non-diffraction case corresponds
well to the component generated by the sample.
On the other hand the inphase component is not
much influenced by the sample. In the present com-
putation for the case of a Gaussian source, if a sam-
ple with the parameter of nonlinearity 509, higher
than that of water occupies 209 of the focal region
length in thickness, the relative magnitude of the
quadrature component Q, increases by 10 %/ or more.
Accordingly it is possible to detect the nonlinear
property of the inserted sample by the use of Q..

Because relatively low frequency is employed, an
absorption in water and benzyl alcohol sample is
neglected here. The absorption coefficient is usually
proportional to the frequency squared. If the source
dimension becomes small in inverse proportion to a
frequency, the effect of the absorption increases in
proportion to the frequency. Therefore the absorp-
tion is not negligible at high frequencies. An un-
realistic condition that the density and sound speed
are common to both a sample and water is assumed in
the present paper for simplicity. The sound absorp-
tion and the differences in density and sound speed
would affect the intensity of the virtual source espe-
cially in the focal region and the destructive interfer-
ence of the second harmonic in the post focal region.
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