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Parabolic approximation is effectively used to analyze the nonlinear acoustic field gen-
erated by a directive sound source in layered media. Quasi-linear approach and linear
boundary condition are applied to obtain the fundamental and second harmonic waves
transmitting through a plane interface that separates two media. The interface is placed
in nearfield for the harmonic. The spectral contents of sound pressure are measured and
compared with the theoretical prediction. Both the results are in good agreement for
propagation curves and beam patterns. Transmission loss by insertion of a thick layer
across an acoustic beam is also investigated. It is shown that unlike the fundamental
wave loss the harmonic loss varies with source-layer distance. All experiments are con-

ducted in water, methanol and castor oil.

PACS number: 43.25.Cb, 43, 25.Jh

1. INTRODUCTION

Finite amplitude acoustic wave causes a nonlinear
distortion with propagation. This means that many
harmonics are progressively generated even if initial
wave is purely monochromatic. If the wave travelling
in a homogeneous medium reaches an interface
where the properties of the medium changes abruptly,
various frequency components generated before
incidence on the interface might be in part reflected
and transmitted.

Previously Wingham et al. studied the penetration
of a water-sediment interface by a parametric differ-
ence frequency beam?’ and Kamakura et al. investi-
gated the transmission of parametrically generated
audio sound through a sheet of absorptive material
in air.® 1In their theories, the transmitted primary
and harmonic waves are so much attenuated that
new generation of difference frequency wave after
transmission is neglected; the parametric array is

assumed to be completely truncated at the interface.
Rigorously speaking, such assumption does not hold
in reality. Particularly, if there should be the inter-
face in nonlinear interaction region or nearfield for
secondary wave, the parametric sound generated
after transmission might somewhat contribute array
formation.

The present paper reports on the transmission of
ultrasonic pulse of finite amplitude radiated by a
directive sound source through an interface separat-
ing two media. The media consist in some liquids
and the interface is placed near the source or in the
nearfield. In such system, we can not neglect the
harmonic generated after the transmission. Since
nonlinear boundary conditions negligibly contribute
waveform distortion outside a thin boundary layer,
linearized boundary conditions can be reasonably
applied to derive both the fundamental and second
harmonic components.”> The harmonic generated
before incidence on the interface travels through the

89

NI | -El ectronic Library Service



The Acoustical Society of Japan

fluid linearly summing up the newly generated com-
ponent. We use parabolic approximation for the
field analysis because boundary conditions on the
source and on the interface are easily imposed.

Theoretical prediction is extensively compared with
experiments conducted in water/methanol and water/
castor oil systems. The nearfield transmission theory
presented here provides numerical results of sound
pressure on axis as well as off axis. The problem on
transmission loss of finite amplitude sound through
a thick layer submerged in water are also considered.
Fluid in the layer is methanol or castor oil. Even if
the source-layer distance varies, fundamental wave
loss is invariant as linear theory predicts. However,
the harmonic loss is dependent on the distance. This
salient feature is theoretically and experimentally
verified.

2. TRANSMISSION THROUGH
AN INTERFACE

2.1 Theory

Consider nonlinear acoustic field generated by a
circular piston source in a fluid medium. When the
source radius a is much larger than wavelength; ka>>
1, where k=w/c,, w is angular frequency and ¢, is
the sound speed at small amplitude, the parabolic
approximation is used as a convenient tool for near-
field analysis. Let p, and p, be sound pressures at the
fundamental and second harmonic frequencies,
respectively. Introducing field quantity ¢;, i=1, 2,

defined by
qr, z)=pir, z) expljikz+a,z] (1)

the following parabolic equations for g; yield*
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where o, and «, are the linear sound absorption
coefficients of the fundamental and second harmonic
waves, p, is the static density of fluid, r is the radial
coordinate and z the axial one. It has been assumed
that the field is axisymmetric and quasi-linear ap-
proach is applicable to the analysis of nonlinear
propagation of finite amplitude acoustic waves. The
assumption has also made of the negligible smallness
of sound absorption over the wavelength. The solu-
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tions of Egs. (2) and (3) which satisfy the radiation
condition in the z direction are given using Hankel
transform several times®
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where F=r+r—2rr, cos @, J, is the Bessel func-
tion of order zero. Equations (4) and (5) are suitable
for arbitrary sound pressure distribution at the source
although multiple integral implementation must be
done.

Utilization of parabolic approximation above can
be easily extended to the field analysis in layered
media. Figure 1 shows the geometry of model to be
discussed here. We assume that each medium in
region (I) and (II) has a homogeneous property and
an interface between them is plane to the z axis.
According to the empirical results that nonlinear
boundary conditions negligibly contribute distortion
outside a thin boundary layer, imposition of linearized
boundary conditions is safely justified.®> Let T; and
T, be linearly obtained transmission coefficients for
the fundamental and second harmonic sound pres-
sures, respectively. If multiple wave reflections be-
tween the source and the interface do not occur and
the transmission coefficients are not dependent on

EO 2 z

Transducer

k-~ 23—

Region 1 Region 11

Fig. 1 Geometry of theoretical model.
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radial coordinate, wherein the latter assumption
holds under the paraxial approximation, then the
expression for transmitted fundamental component is
pi=q, exp[—(k+a)l—(k'+a,/Wz—1)]
ri4s? :|
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where the prime identifies the variables in region (II),
1 is the distance of the interface from the source and
zy=z+K'[k— 1)L
Next turn to the derivation of second harmonic

field in region (II). Since the interface is placed in
nonlinear interaction region and wave distortions do
not hypothetically occur at the interface, it would be
appropriate that the field consists of two wave com-
ponents; one is the harmonic which has already
generated in region (I) and linearly travels through
region (II), and the other the newly generated har-
monic in region (II). This implies that parametric
array produced in each region is additionally con-
nected at the interface and a virtual array is formed.
Both the harmonics, p., and p., we denote, are sum-
med up to determine the total harmonic field. By
the similar method as the derivation of p,, p, is de-
scribed in the following forms
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Increasing the distance / under the condition that the
observation point is fixed far from the source, g
becomes small compared with g,. Consequently,
P dominates the harmonic field. When two media
are the same, z:=z and T,=T,=1, so Egs. (6) and
(7) obviously reduce to Egs. (4) and (5), respectively.

2.2 Experiments and Discussion

Experiments were carried out in accordance with
a block diagram as shown in Fig. 2. The transmitting
transducer, whose active radius is 9.5 mm and
resonance frequency is 2.4 MHz, radiates tone-burst
ultrasounds of finite amplitude with about 6 us
duration. To pick up distorted waves accurately, a
wide-band small hydrophone, whose frequency range
is available from 2 to 10 MHz, was used. The spec-
tral contents of received signals were obtained by
digital Fourier transform. For the sake of precise
positioning of the hydrophone, pulse-motors were
employed for the movements in r and z directions.

Figures 3 and 4 show the measured and calculated
sound pressures of the fundamental and second
harmonic components in water alone. Figure 3 gives
on-axis SPL at the range from 3 to 20 cm. In order
to obtain numerical results, the sound pressure
distribution at the source is required. To this end,
we measured sound pressure quite near the source
and substituted the measured values for the source

PULSE
| GENERATOR
|OSCILLATOR l [
|| PRE-
AMPLIFIER
e —— [
HYDROPHONE -
STORAGE-
. REGION I1 SCOPE
AMPLIFIER == LATEX
REGION T RUBBER FILmM[ 6P-1B
PERSONAL
COMPUTER
TRANSDUCER
Fig. 2 Block diagram of the experiment.
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function of Egs. (4) and (5). The uniform phase on
the source is accounted for. As can be seen in the
figure, calculated curves are in good agreement with
measured data at the range z>a(ka)'/?~4.3 cm,
where the parabolic approximation is valid. The
second harmonic presents a dip in amplitude at 9.5

240
ﬁ: \ fundamental
e 220+
®
2 i second harmonic
—
_, 200}
oo
(%]
180 1 !

[ 1
5 10 15 20
Propagation distance [ cm]
Fig. 3 Fundamental and second harmonic

sound pressure levels on the axis of circular
piston source in water. Frequency=2.4

MHz, ka=95.5, ,=0.0015 neper/cm,
03=0.0058 neper/cm. ®: experiment,
: theory.
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Fig. 4 Fundamental and second harmonic sound pressure beam patterns.

——: theory.
beam pattern.
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cm, that distance is equal to about 0.21 times the
Rayleigh length of the fundamental ka?*/2=~45 cm.
The absolute maximum of the pressure seems to be
out of range we measured. According to the theoreti-
cal prediction, the maximum amplitude is attained at
around 25 cm, so our measurement is apparently
restricted to nonlinear interaction region or nearfield
for the harmonic wave.

The beam patterns at 9, 20 cm are presented in
Fig. 4. All pressures are normalized to the funda-
mental on-axis value. The figure (a) shows com-
plexity of nearfield of the harmonic; pressure on the
axis is not necessarily maximum. For comparison,
in the figure (b) farfield asymptotic beam pattern
(square of the fundamental beam pattern) is also
given with a broken line. . As can be seen, two theoret-
ical curves almost coincide each other near the axis.

Next, experimental data of finite amplitude sound
propagating in two fluid media are presented along
with calculated results in Figs. 5~7. We chose
two typical layer systems; water/methanol and water/
castor oil. For the former system, not only acoustic
impedances but also nonlinearity parameters are
apparently different for both liquids, whereas for the
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(@) z=9 cm, (b) z=20cm. Broken line denotes a farfield asymptotic
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Table 1 Physical parameters of water,
methanol and castor oil.
Liquid
Parameter
Water Methanol Castor oil
p 3.48 5.81 5.6
po [kg/m®] 998.2 791.3 957.6
Co [m/s] 1,483 1,121 1,489
PoCo [ X105 kg/m?s]  1.48 0.887 1.426

latter system two the impedances are nearly equal.
Table 1 represents physical parameters of water,
methanol and castor 0il.5>® In contrast with water
and methanol, absorption coefficient of castor oil is
large and is severely dependent on temperature.
Therefore every measurement we estimated it by
means of the most fitted curve to the linear propaga-
tion data in castor oil only. Measurements of spec-
tral contents in layered system were excuted by the
following procedure. First we measured sound pres-
sures in glass tube of size 8.5 cm in inner diameter
and 30 cm in length, filled with water. Thus measured
data are circles fully drawn with black in the figures.
Next another smaller tube terminated by a latex
rubber film at one end to avoid the mixing of liquids
was filled with methanol or castor oil, and was
inserted into the larger tube (See Fig. 2). Under
otherwise unchanged conditions we went on with
measurement of sound pressure in region (II). These
data are triangles or squares fully drawn with black.
In preliminary experiment for water/water system the
field disturbance caused by the separating film was
ignored.

Figure 5 shows the experimental and calculated
results in water/methanol system. The interface
existed at 12.2cm from the source, where the
amplitude of ultrasound is still large enough to
generate harmonic distortion. As soon as the primary
or fundamental frequency wave passes through the
interface, its amplitude reduces by 2.5dB in ac-
cordance with impedance mismatch. The harmonic,
however, increases during propagation in comparison
with the pressure in water alone. This is due to the
fact that the nonlinearity parameter and wavenumber
in methanol, whose values quantitatively relate to
harmonic generation, are larger than those in water.
Except that measured pressures of the harmonic
near the interface are larger than calculated values

220
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SPL [ dBre 1uPa ]

180

second harmonic

Region 11

[ 1 1 1 1
10 15 20

Propagation distance [ cm]

Fig. 5 Fundamental and second harmonic

-20

sound pressure levels on the axis in water/ -
methanol system. An interface is placed
at 12.2cm.  a,"=0.0055 neper/cm, op'=
0.022 neper/cm. @, A: experiment,
theory.
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Fig. 6 Fundamental and second harmonic

sound pressure beam patterns at 18 cm
in water/methanol system. An interface
is placed at 12.2cm. @: experiment, —:
theory.
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Fig. 7 Fundamental and second harmonic
sound pressure levels on the axis in water/
castor oil system. An interface is placed at
12 cmor 15 cm. a,’=0.26 neper/cm, o’ =
0.81 neper/cm. @,A,M: experiment,
theory.

by 2~3 dB, agreement between theory and experi-
ment is almost good. Beam patterns at 18 cm from
the source are given in Fig. 6. On-axis SPL of the
fundamental at that range was around 214 dB re 1
pPa. Calculated beam patterns corresponding to the
present theory well fit the measured data. In com-
parison with the results in water alone in Fig. 4,
remarkable difference does not appeared.

Sound pressures were measured in water/castor oil
as well and are shown in Fig. 7. Data for each range
at 12 cm and 15 cm are plotted in the same figure.
Compared with water and methanol, sounds attenu-
ate rapidly in castor oil, so the harmonic wave which
is continuously transmitted into region (IT) does not
so much grow up as the case of methanol. However,
when the interface approach the source the harmonic
intends its amplitude to increase with propagation.
This is clearly illustrated in the data for the interface
placed at 12 cm.

3. TRANSMISSION THROUGH
A THICK LAYER

Imagine that there is multi-layer system between
two semi-infinite media and a plane pulse is normally
incident on the layers. According to linear theory,
total transmission loss is related to sound absorption
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in each layer and impedance mismatch between
layers if exists. This implies that the position (includ-
ing the width for absorption-free media) for each
layer has no effect on the field of transmitted sound.
However, as can be estimated by the results of previ-
ous chapter, harmonics of finite amplitude sound are
generally increased with propagation, so the field
is strongly dependent on the layer configuration.

To make clear that point, we consider a simple
problem on the transmission of finite amplitude sound
beam through a plane layer of finite thickness. It
is assumed that the acoustic axis is normal to the
layer face and the layer is filled with some fluid
different from surrounding water. The theory ap-
propriate for the present problem can be developed
by means of parabolic approximation and the authors
have already reported the exact equations for the
fundamental and second harmonic waves passing

10
fundamental [2.4MHz]

second
harmonic [4.8MHz]

| S S SS—— |
0 5 10 15

Source-layer distance [ cm]

(a)

30

fundamental [4.8MHz]
e A —— A — —— A

second harmonic
[4.8MHz]

fundamental [2.4MHz]
-—* ®

20

TL[dB]

&

] 1 1
0 5 10 15
Source-1ayer distance [ cm]

(b)

Fig. 8 Transmission losses of fundamental
and second harmonic waves. SPLs of the
fundamental and second harmonic are
228 dB and 219 dB, respectively. @,A:
experiment, ——, - - - -: theory. (a) water/
methanol/water, (b) water/castor oil/
water.
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g g
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(a) (b)
Fig. 9 Total —3 dB beamwidths of fundamental and second harmonic waves. @,A: experi-
ment, —, - - - -: theory. (a) water/methanol/water, (b) water/castor oil/water.

through the layer. The expressions are rather
involved and the reader is referred to the work of
Shida et al. for a full description.”™

Experimental procedure and conditions are similar
to those in Chap. 2 except for using of two rubber
films for the separation of liquids. The layer of 2.5
cm in length is filled with methanol or castor oil.
Physical parameters of two liquids have been listed
in Table 1 and were used for theoretical calculation.
Hydrophone was fixed at 18 cm from the source and
the distance between the source and front face of the
layer was varied at the range from 2 cm to 13 cm.
In the absence of the layer, the fundamental and
harmonic pressures were 228 dB and 219 dB, respec-
tively. Figure 8 shows the range dependence of
transmission loss. For comparison, the loss of using
a 4.8 MHz piston source of 6 mm in radius is mea-
sured and given in the figures. The frequency is the
same as the second harmonic of a 2.4 MHz sound
and both the beam patterns are nearly identical.
Broken lines are the calculated results for the 6 mm-
radius source. As one might see, for fundamental
waves of frequency at 2.4 MHz and 4.8 MHz, the
transmission loss does not depend on the source-
layer distance. The harmonic loss, however, varies
with the distance. As the distance is increased, the
loss decreases for methanol. The more the layer is
apart from the source, the smaller the loss becomes.
Whereas, the loss increases for castor oil. Thus differ-
ent feature of the range-dependence is ascribed to
sound absorptions in the layer. For lossy medium
like castor oil, the harmonics generated before inci-
dence on the layer and in the layer are much attenu-
ated. Consequently, the harmonic generated after
transmission, which reduces its amplitude with the

increase of the source-layer distance, results in sub-
stantial effect on total transmission loss. In case of
small absorption medium such as methanol, to the
contrary, the loss is mainly determined by the har-
monic component generated before incidence on the
layer. It should be noted that within the ranges of
our experiment transmission loss for the harmonic in
water/castor oil system is less than that for the same
frequency wave linearly radiated.

Total —3 dB beamwidths for the fundamental and
second harmonic waves are shown in Fig. 9. A
noticeable absence in the beam pattern of the second
harmonic component is the Westervelt directivity
function in parametric array. Even if the array is
truncated at any length, the beamwidth hardly
changes. This is because that source dimension is
much larger than the wavelength the beam pattern
is strongly dependent on broad-side array rather than
end-fire array of virtual harmonic sources. The
reasonable results are appeared in Fig. 9 for both the
measured and calculated beamwidths. For methanol,
measured data is somewhat large in compared with
the calculated values. The reason for the discrepancy
is not determined. However, the non-flatness of the
film makes probably an effect on the field.

4. CONCLUSIONS

The transmission of finite amplitude acoustic wave
by a directive sound source in layered media has been
investigated. The present theory developed is based
on the parabolic approximation which has been
used as a convenient tool for field analysis. Expres-
sions for the fundamental and second harmonic
waves transmitting through an interface or a thick
layer are somewhat involved, they have well predicted
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sound pressures on axis as well as off axis at any
region where parabolic approximation is valid.

For harmonic wave, truncation of parametric
array at some length or virtual connection with some
array does not influence on the beam pattern. How-
ever, the magnitude of the harmonic is strongly de-
pendent on the array formation and array structure.
Phase variation of spectral components, which has
not been referred in this paper, is the subject of fur-
ther investigation.
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