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Uhiversity,

In 1860, H. v. Helmholtz  concluded,  by observing  the movement  of  each  particular point
of  a bowed  strjng  with  his vibration  microscope,  that the sharp  bend of  the bowed  string

travels along  upper  and  lower parabolic  arcs.  Since then, his conclusion  has been ac-

cepted  and  little attention  has been paid  to the shape  of  the envelope  of  the bowed
string. The  experimental  work  of  M.  Kondo  et al., which  focused on  this subject,

stimulated  the present work.  This  work  re-examines  the general solution  of  the wave

equation  by giving some  initial conditions  and  then, in addition  to the normal  Helmhottz
solution,  obtaining  two  new  solutions,  whose  shapes  are  of  an  elliptic arc  and  of  ari

hyp ¢ rbolic  arc, respectively,  These three solutions,  parabolic, elliptic, and  hyperbolic
coincide  with  each  other  when  specific  parameter  approaches  infinity. Two  experimental

results
 
found

 
in

 
the

 
literature

 
seem

 
to

 
represent

 Fn elliptic
 
solution.

PACS  number:  43. 40. Cw,  43. 75. De

           1. INTRODUCTION

  What  actually  happens when  a  string  is bowed?
In 1860, Hermann  von  Helmholtz  gave clear  answer

to the question, observing  
"Lissajous

 figure" through
his new  apparatus  which  is called  

"vibration
 micro-

scope."  We  summarize  his conclusion  as follows.')

(1) The  string have  a  sharp  bend, and  the string  itself

is stretched  in two  lines at  any  instant. (2) The  bend
moves  backward and  forward along  two  parabolic
arcs  as  shown  in Fig. 1. (3) The  horizontal velocity

of  the  bend  is constant.  This cenclusion  may  be
regarded  as  a  good  first approximation  even  teday.

Later we  call this type  of  waye  
"Helmholtz

 motion."

M.  Kondo  who  has been studying  the  envelope  of

bowed  strings experimentally,  once  asked  me  saying

"Is
 there  any  possibility to  get other  shapes  of  enve-

lope than parapolic arc  by solving  the difTerential
equation  rnathematically?"  This paper answers  the

question, if not  fully but partly, the  author  hopes.

        2. BASICEQUATIONAND
          HIELrmOLTZ  MOTION

  Suppose the oscillation  of  a  bowed  string is the

same  state  as  free oscillation,  keeping balance of

energy  between bowing force and  dissipation in
steady  state.  The  equation  qf motion  is written  as

                 e2y ,OV

                                        (2.1)                     =e

                        Ox2                 Ot2

where  y  is displacement of  a  string,  t is time, x  is

distance from left end,  and  c is propagation  velocity

of  transversal  wave.  (c=V77p, T  is the  tension  and

p is linear density.)

  The  general solution  of  Eq. (2.1), which  is called

D'Alembert's  solution,  is shown  as Eq. (2.2),
             1

     Y(x,t)=-2-{ye(x+et)+yo(x-ct)}

               1

             +i{P3(x+ct)-K(x-ct)}  (2.2)

where  yo(x) is initial displacement and  %(x) is the
definite integral of  initial velocity  vo(x).
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l

       parabolic envelepe

  

  
         parabotic  envetope

Fig.1 "Helmholtz
 motion"  of  a bowed

  string. The string  is stretched  in the two

  lines, and  the bend travels along  upper  and

  lower parabolic arcs.  The  scale  ofy  axis  is

  twenty  times as  large as that ofx  axis,  be-

  cause  the ampiituqe  of  the string  is very
  small.

            K(x)=-}Slv,(g)dg (2.3)

In the Eq. (2.2), the  function with  respect  to  x+ct

represents  left progressive waye  and  the  function
with  respect  to x-et  represents  right  progressive
wave.

  It is C. V. Raman  who  fbund  that  the  fo11owing

the  initial conditions  as the first type will make  the

solution  exactly  the same  shape  as that  of  Helmholtz

Motion.2)

            {            yoix) =  e
                                      (2.4)
            Vo(X)=Vma-(lmXll)

where  l is the length of  a string (OSxSD. vm.. is a

constant,  and  denotes the  maximum  velocity.

  Assume  that  the string  is fixed at  both ends,  the

boundary conditions  are

             y(O, t)=y(l,  t) ==O  (2.5)
Setting (2.5) and  yo(x) =  O to Eq. (2.2), we  have

            {             Vi(ct)= Vh(-ct)
                                      (2.6)
             Pl(t+ct)=:K(t-et)

Equation (2.6) means  the reflection  of  wave  on'the

both ends.

  The  substituting  the velocity  condition  vo(x),  which

has the linear relation  with  x, into Eq. (2.3), we  get

           vs(.)=(.Zl/I.Eea!)(1-./21). (2.7)

  After we  examine  PZ(x) within  the first half period
of  vibration  (OgtSUe), PG(x) during the next  half

period is easily  calculated  by using  the relation
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Vma]cVo(x}vCx,t)

ox=ct l-vmax

V6(x+of) T6(z) 16tx-ct)

(a)

x=ct

of(x)

czp)l

(b)2t

    
OyKx,?)=ct

 y,cx,t) 
i
 (C)

Mg.  2 Shapes of  the functions vo(xi,  v(x,  t),

  Vh(x), y(x, t) and  e'(x).  (a) initial velocity
 vo(x)  and  velocity  v(x,  t). (b) Pib(x), Z)(x+
 ct)  and  Vb(x-ct).  (c) displacement y(x. t)
 and  enyelope  eP(x).

Eq. (2.6). The  enve!ope  ofy(x,  t) is determined by the

condition  that P3(x-ct)  is minimum.  The  minimiz-

ing condition  is x==ct.  So assigning  Eq. (2.2) to

x=ct  and  yo(x) ==  O, we  have envelope  function

                   1
              e(x)  

==

 
-i-

 Pas(2x) (2.8)

The  substitution  of  2x for x  in Eq. (2.7) yields'

          ep(x)=(V:a")(1--Xl-)x  (2.9)

where  superscript  p means  
"parapolic."

 This func-
tion  represents  parabolic curve.  Thus  the shape  of  an

enyelope  is determined when  we  adopt  the  Raman's
initial conditions.

  Substituting x+  ct and  x-ct  for x  in Eq. (2.7), and

putting them  into Eq. (2.2) with  Eq. (2.6), we  have
the displacement y(x, t) as  follows.

  Iyr(.,t)=(Vm.ax-)(1--Sft-)x, 
(OKxgct)(2.lo)

  lys(x,t)=(Vmcax)(i l)ct, (etgxsi)

  Figure 2 shows  the  shapes  of  the  functions va(x),
v(x, t), K(x), e(x)  and  y(x, t). It will help to under-
stand  the  mutual  relations  between  them.

  We  may  have a  question what  sort  of  curve  is

possible  fbr enyelope  curve  if vo(x)  deviate from
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Raman's  condition.  In the  next  section, we  will try
to see  how  the shape  changes  as  the initial condition

changes.

          3. ENVELOPECURVE

          AND  CONIC  SECTION

  When  

'we
 cut off  a  cone  by a plane with  an  angle  to

the  cone  axis,  the cutting  edge  has a  smooth  curve.

The  curve  is called  
"conic

 section,"  and  it is well

known  that the  conic  section  describes an  arbitrary

quadratic function. Let ct be the angle  between the
cutting  plane and  the cone  bottom  plane (which is
perpendicular to the  cone  axis).  The  characteristics

of  the function are  determined by the angle.  When  a

cutting  plane is parallel to the surface  line of  the cone

(a=a"), the conic  section  becomes parabola. It

becomes ellipse  when  ct <  ct', and  it becomes hyper-
bola when  oc>ct'. Figure 3 shows  relation  between

a  cutting  angle  ct and  a  quadratic curve.

  Now,  the author  re-examined  the general  solution

of  the wave  equation.  As  a  result, the envelope  curve

of  a string  is projected one  to the plane  which  is

parallel to  cone  axis.  And  it is necessary  to introduce

a  geometric parameter  r (r>ry2) to  describe new

solutions.  The  ratio  of  t to r indicates  a  deviation

from  the ideal parabolic envelope.

  Let e'(x)  be a  parabolic envelope,  and  ee(x)  be an
elliptic one  and  also  eh(x)  be a  hyperbolic one.  The
envelope  function ee(x) is written  as Eq. (3.1), and

also  the envelope  functien e"(x)  is written  as  Eq. (3.4),
where  superscript  e means  

"elliptic"
 and  superscript

h rneans  
"hyperbolic."

    ee(x)

where

where

=(  
Vmcnr)

 
2fe

 (v,2-(ij2-.)2-de)

     de

(X-x:)2
       +
 (ae)2

xg=t/2

( V-,ax

==Vr'-l2f4

  (ee(x)-eg)2
(be)z=1

           2Vmax
ae==r,  be==               rde,
            cl

            2Vmai
    ' oj=-  cl 

(de)2.

)2fn(dre- ,2+(l/2-x)2)

(3.1)

(3.2)

(3.3)

2eP

     /
side  view

  

teFig.3

 Envelope curyes

  Quadratic curves  are

  angles.

    en(x)

where

(x-xk)idn..,Vra+l214   (di(x)-eit)2

where

(dl)2 (bh)2=-1

(3.4)

=c"m.s=);

-- '

  : 't

×
  front vlew

and  conic  sections.

classified  by cutting

(3.5)

(3.6)

                    h-  2Wmar
           an==r,  b                           rdit ,
                    

-
 cl

                    h  2Vmai
                            (dh)2.           xe=ll2,  eo=
                         el

      u(x),..(Vmc'i)  
?:Ih

 [±(x--S-)+dlt] (3.7)

Transposing  the de term  to left hand side  in Eq. (3.1)
and  rewriting'Eq.  (3.1), we  have  Eq.(3.3) which

represents  the standard  form of  an  ellipse.  And  also

rewriting  Eq. (3.4), we  have Eq. (3.6) which  repre-

sents  the  standard  fbrm  of  a hyperbola. Equation

(3.7) represents  two  asymptotic  Iines of  Eq.(3.6).

Three envelope  curves,  the  asymptotic  lines of  Eq.

(3.6) and  the  location  of  the center  of  Eq. (3.3) are

shown  in Fig. 4 to help understanding  the geometric
relations.

  Let's consider  the highest point of  an  envelope

curve.  An  envelope  curve  has the  maximum  at  the

point x=  ij2. e%e.,  e'.ar and  ek..  denote the maxima
of  enve!ope  are  given by Eq.(3.8), Eq. (3.9) and

Eq. (3.10) respectively.

        e%..=  ee(-S-)  =  (LYLM,'ai-) S' ,III2'i- (3･8)

        eK..==eP(-S)=(V:'X)f  (3.g)

        ekar=  e(-SL) ==(VM.Ei  )'i!' 
,+dbd,

 (3･10)

     t

                                       2es
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Fig.4 Geometric relation  ameng  three

  envelope  curves,  It is shown  the asymptot-
  ic lines of  a  hyperbola and  the oenter  of  an

  ellipse, in addition  to throe envelope  curves.

               ek..Seg..gek..  (3･11)
If r>ry2  then  del(r+de)-1/2  and  dnl(r+ dh).112, so
we  have  the  relation  (3.11). Three curves  are  indis-

tinguishable  from each  other  when  r>  ij2 or  2r/l-oo .

  The  gradient of  a  tangential line at left end  (x=O)
is calculated  from the  first derivative of  e(x).  Calcu-
lating in three  cases,  the  results  are  written  as  Eq.

(3.12). The  gradients are  equal  to each  other.  Simi-

larly the gradients at  right  end  (x==l) in three cases

are  written  as  Eq. (3.13).

  
r[X-;

 
x=e==

 [l:iP 
m=o=

 IIII 
x.o=(V{lai)

 (3.i2)

   
dettxe

 
x.ideduP

 
x.t={l:l

 
x..t=-(-vnciar)

 (3.13)

  The  angles  between  three  cutting  planes and  the

bottom  plane of  the cone  in Fig. 3 are  calculated  as

follows.

      cte= :arctan  ( V:sx  Vi -  ( i )2)
      ecP=arctan(ltL"cL"i.)

      ah  ==  arctan  ( V:a-  Virm+ne'(
Ttllltl;)-i)

              cte<ocP<ctza

It is obvious  that we  get the relation

(3.14)

(3.15)

(3.16)

(3.17)

(3.17).
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4. SHAPE  OF  STRING  AND  APEX  ANGLE

  When  the envelope  function e(x)  is given, we  can

obtain  the initial velocity  vo(x) for the  new  types by

solving  Eq. (2.8) and  Eq. (2.3). The  initial velocity

functions for the new  types are  ¢ alculated'as  fo11ows.

                      de

       Vg(X)=Vmax  ,2--u:-.)2/4(1-x/l)  (4.1)

                     dh

       
V(}(X) 

=

 VmarL',2  +'(im xs2-/a 
(1 
-xll)

 (4･2)

These functions Eq. (2.4), Eq. (4.l) and  Eq. (4.2) are

shown  in Fig. 5. A!so  yi(x, t) and  y2(x, t) are  calcu-

lated as  fo11ows.

  Itbeeause

y:(x) =  ( v:as  ) 2i{e {vr2ff u-x-ct)2/4-

               -Vr2-(l+x-ct)'14},

                     (Osxsct)
                                    (4.3)
y;(.) ..  ( V:ax  ) 2Il {vrs- (l-x='ct)2-14-
                -  r'-(t-x+ct)'14},

                     (ctSxSl)

y?(.) ..  ( V:"x  ) 2IIza {.,ir'+(l+x-ciiza74"

               -Vr2+(t-x-ct)2/4},

                     (osxgct)
                                    (4.4)

y}(.) ..,  ( ":at  ) Zffh,{vr2+u-x+ct)27'4-
               

-
 r2+(l-x-ct)'/4},

                     (etsgxKl)
is diMcult to see  without  magnifying  of  y axis,

   the amplitude  of  a  string is very  small.  If

Vma]e

Fig. 5 Shapes  of  initial velo6ity  voCx)

  that  of  velocity  v(x,  Uc) in three cases.

"t

-tlmaxand
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=

Fig. 6 Shapes of  string  at t==ij4c and  t=

  5U4c in three cases.  The  string  curves

  inward  on  upper  and  lower side  in the

  case  of  an  elliptic enyelope,  and  curves

  outward  on  upper  and  lower side  in

  the case  of  a  hyperbolic envelope.

=l

A8atevsopridixasAdi

t36135134133i32131130129ZZBt27126

 o.o o,1 o.3 o.4 o,s o.6 e.s e.g

                    sp

 Fig. 7 Changes  ofapex  angle  with  x.  In  this

   case,  the amplitude  of  the string  is magni-

   fied (c/v...) times.

1,O

we  magnify  y axis  (clv...) times, then  the rmaximum

of  the envelope  in a  parabolic case  is ny4. For exam-

ple, when  t= 320  mm  and  ek..  =4  mm,  the magnify-
ing power(clv.,.) is twenty, which  is calculated  from

Eq. (3.9). With the magnifying  ofy  axis,  the  envelope

curves  and  the  shapes  of  a  string  (at t=ij4c  and  at

t=5U4c)  are shown  in Fig. 6. The  geometric param-
eter  r is selected  2r!l= V7  in this case.

  Now,  we  discuss the angle  between yi(x, t) and

y2(x, t). The angle,  which  is called  apex  angle,  is

defined by Eq. (4.5). The apex  angles  in three  cases

are  written  as  Eq. (4.6), Eq. (4.7) and  Eq. (4.8).

e--n-[arctan(

     +arctan(-

eP=7-  [arctan ( (
      +arctan((

ee=n-Iarctan[(

+U
de

OYiOx

  Oy,

  Ox

Vmal

 cVmE-

 c

v:et)[

x-ct)

  x-cc)l

)(1-
)(L lt
12

 1

(l=2ct)'14 2

   
v:ax

 ) I'ii
 de･  1

(

-f7tJ))

))l

r!-

-E7t-)]]

(4.5)

(4.6)

en=rr-[arctan[(

+
dh

v:sx)

 [rl-
(-12--E7t-) l ]

'

+arctan [(

+arctan[(

Vr2+(l-2ct)2f4

        
v:Ex)IEI'

      dn 1

Vr2+(l-2ct)2f4(iClt ) l ] ) (4.8)
Figure 7  shows  the changes  of  three  apex  angles  with

x  magnifying  y axis  as  same  as  Fig. 6. As  a  result,

apex  angles  are  not  constant,  smaller  at  the center

than  at  both ends  in all cases.

     5. THEORE[[ICALWAVEFORM
      AND  OBSERVED  WAVE  FORM

  The  displaoement wave  form along  time  axis  is

calculated  from  y(x,  t). We  select  the  point x=ij4.

Figure 8 shows  the  displacement wave  forms in three
cases  within  one  period. That is ideal saw  tooth  wave

yh(t,t)

    YP(i7t)

        yeG,t)

         t=lfc t=211c

Vr2-(t-2ct)'14(2Ci')l]l 
(4.7)

t=o

Fig.8 Displacementwave.formswithinone
  period  at x==U4.

2E5
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in the case  ef  a  parabolic envelope.  Within the first
halfperiod, the curve  of  displacement in the case  of

an  elliptic enyelope  have positive curva,ture  (, or  the

center  of  curvature  is loeated above  the curve).

That  in the  case  of  a  hyperbolic envelope'have

negative  curvature  (, or  the center  of  curvature  is

located  below  fhe curve).  ･

 ,The  velocity  function v(x,  t) is calculated  as  the

first partia! derivative of  y(x, t) with  respect  .to t.

Vi(X, t)

V2(X, t)=

OYiat
 

'

by2

(ogxsct)

ot,
 (ctsxsl)

(5.1)

The  substitution  of  Eq. (2.10) into Eq. (5.1) yields
Eq. (5.2). And  also  the substitution  of  Eq. (4.3) into

Eq. (5.1) yields Eq. (5.3). Equation (5.4) is obtained
by using  Eq. (4.4) as  same  as  Eq. (5.3).

vr(x,
        x
t) =-Vrnax7

 ,

vS(x, t)=v...(

v:(x,  t)

   x1--

   t

-  v.a-  -' S-
 2 l (.v'

(osxsct)

), (etSxSl)

+(1-x-ct)
i2L'(l=k'ic-i)b/4'
 -(l+x-et)l･

(5.2)

       Vmas  de
v:(x,t)=

 2 7[-/r

Vr2-(t+x-ct)214
     (ogxsct)

   +(l-x-ct)
2='<i:Ll'X'='c'i)214'

+(l-x+ct)

Vi2:[L(tL:['k'; 

'bi)2]4'

     (ctSxSl)l･

(5.3)

vif(x, t) =VrnaxdhII-(l+x-ct)

2 Vr2+(l+'i":-]'c7)'2'14'
   -(l-x-et)

ve(x, t)

Vr'+rc(Ml-x-Me7ii:')li'
     (OKxKct)

-  VmEI  ¢
/l

 S-2
 IW+(l-x+ct)

l･
(5.4)

r2+(l-x+et)214

 
-(l-x-ct)

The  velocity  wave

(5.3) and  (5.4) as

VrS+(l-x-ct)'14
     (ctKxgl)

formsshown

}'
are  calculated  from  (5.2),
in Fig.9. That  is ideal
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.n(i,t)

ve(i,t)vP(i,t)

yp{S,t)ve(S,t)

.n(i,t)

=o t=211

Fig.9 Velocity wave  forms within  one

 period at x==  U4.

a

b

-1A

c

1Bmmm-2-1A
at

c

t

12xmm

B

bt

t

   a:  observed  point; x  ==  4.0 cm  on  G
     bow;  z  -- 3.3cm,+m)  34.2cmlsee

     obseirved  point; x  =  10.0  cm  on  G   b:

     bew;z=  3.3cmi+m,  34.2cmfsec

Fig. 10  Observed displacement waye  forms

 by A. Kuni  and  M. Kondo.S) The  form  in

 each  case  curves  slightly  like an  eJliptic

 enyelope  as  shown  in Fig. 8.

rectangular  wave  in the  case  of  the  parabelic enve-

lope. The  shape  of  an  elliptic  case  is like a  concave

lens, curves  inward  on  upper  and  lower  side.  And
the shape  of  a  hyperbolic case  is like a  convex  lens,

curves  outward  on  upper  and  lower side.

  For  comparison  between  theoretical  waye  form

and  observed  wave  fbrm, the author  reviewed  much

literature. As  a  result,  two  examples  corresponding

to elliptic  case  are  fbund as  shown  in Fig. 10S) and

in Fig. 11,`' but no  example  is found corresponding
to a  hyperbolic case  until now.

            6. CONCLUSION

  The  wave  equation  of  a  string  have  three  solutions,

whose  envelopes  are  of  an  elliptic  arc,  of  a  parabolic
arc and  of  a hyperbolic arc. These three solutions  are

NII-Electronic  
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            -V;,i.10dM,MdT,",,,TePro'en?tOdOugfiEpt

     
---i-----litlotclo;-ttt---------ti-t--i

     Athese

     B

     A2.
 Phese

 Phase
 fine:e

            '

 Graphiques  de  la yitesse  de  vibration,  obtenue

 i ll2, pendant  1'6tat transitoire,  puis  station-

 naire  (phase finale), avec  duex  m6thodes:  A)

 61eetrornagnetigue; B)  electrostatique, qui  met-

 tent  en  6yidence  une  forme  dionde  sensiblement

 la mame.  Hurnidite  =  65%,  V  =  120nmls,
 P  -- 200  g.

  Fig. 11  Observed velocity  wave  forms by
    B. BIadier.`) The  form  in each  case  is con-

    caye  like an  elliptic envelope  as  shown  in
    Fig. 9.

indistinguishable from  each  other  when  a  specfic

parameter  approaches  infinity. Two  experimental

results  found in the  literature seem  to represent  an

elliptic  solution.
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