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New solutions of the wave equation for a bowed string
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In 1860, H. v. Helmholtz concluded, by observing the movement of each particular point
of a bowed string with his vibration microscope, that the sharp bend of the bowed string
travels along upper and lower parabolic arcs. Since then, his conclusion has been ac-
cepted and little attention has been paid to the shape of the envelope of the bowed
string. The experimental work of M. Kondo er al.,, which focused on this subject,
stimulated the present work. This work re-examines the general solution of the wave
equation by giving some initial conditions and then, in addition to the normal Helmholtz
solution, obtaining two new solutions, whose shapes are of an elliptic arc and of an
hyperbolic arc, respectively. These three solutions, parabolic, elliptic, and hyperbolic
coincide with each other when specific parameter approaches infinity. Two experimental
results found in the literature seem to represent an elliptic solution.

PACS number: 43. 40. Cw, 43. 75. De

1. INTRODUCTION

What actually happens when a string is bowed?
In 1860, Hermann von Helmholtz gave clear answer
to the question, observing “Lissajous figure”’ through
his new apparatus which is called ‘“‘vibration micro-
scope.” We summarize his conclusion as follows.?
(1) The string have a sharp bend, and the string itself
is stretched in two lines at any instant. (2) The bend
moves backward and forward along two parabolic
arcs as shown in Fig. 1. (3) The horizontal velocity
of the bend is constant.
regarded as a good first approximation even today.
Later we call this type of wave “Helmholtz motion.”
M. Kondo who has been studying the envelope of
bowed strings experimentally, once asked me saying
“Is there any possibility to get other shapes of enve-
lope than parapolic arc by solving the differential
equation mathematically?”” This paper answers the
question, if not fully but partly, the author hopes.

This conclusion may be

2. BASIC EQUATION AND
HELMHOLTZ MOTION

Suppose the oscillation of a bowed string is the
same state as free oscillation, keeping balance of
energy between bowing force and dissipation in
steady state. The equation of motion is written as

Oy _ .0

ar ¢ ox

2.1)

where y is displacement of a string, ¢ is time, x is
distance from left end, and c is propagation velocity
of transversal wave. (c=+/ T/—ﬁ, T is the tension and
p is linear density.)

The general solution of Eq. (2.1), which is called
D’Alembert’s solution, is shown as Eq. (2.2),

1
yx, ) =—A{ysx+et) + ylx—ct)}
1
-l-.?{Vo(x+ct)—Vo(x—ct)} (2.2)
where y,(x) is initial displacement and Vy(x) is the

definite integral of initial velocity v,(x).
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Fig. 1 “Helmholtz motion” of a bowed
string. The string is stretched in the two
lines, and the bend travels along upper and
lower parabolic arcs. The scale of y axis is
twenty times as large as that of x axis, be-
cause the amplitude of the string is very
small.

V=g | O @3

In the Eq. (2.2), the function with respect to x4+ ct
represents left progressive wave and the function
with respect to x—ct represents right progressive
wave. '

It is C. V. Raman who found that the following
the initial conditions as the first type will make the
solution exactly the same shape as that of Helmholtz
motion.?

Yo(x)=0
, ‘ 2.4
Vo(X) =VUmax(1 —x/1)
where [ is the length of a string (0<x</). Unax iS a

constant, and denotes the maximum velocity.
Assume that the string is fixed at both ends, the
boundary conditions are

0, 1)=y(, 1)=0 (2.5)
Setting (2.5) and y,(x)=0 to Eq. (2.2), we have
Vi(et)=V(—ct)
‘ (2.6)
Vil +ct)=Vy(l —ct)

Equation (2.6) means the reflection of wave on the
both ends.
The substituting the velocity condition v,(x), which

has the linear relation with x, into Eq. (2.3), we get
V(x)= (3“-;2) (—x/2D)x @.7)

After we examine V,(x) within the first half period
of vibration (0<r<!/e), Vy(x) during the next half
period is easily calculated by using the relation
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Fig. 2 Shapes of the functions v(x), v(x, t),
Vo(x), ¥(x, t) and e?(x). (a) initial velocity
v4(x) and velocity v(x, 1). (b) Vi(x), Vo(x+
ct) and Vy(x—ct). (c) displacement y(x, 7)
and envelope e?(x).

Eq. (2.6). The envelope of y(x, ) is determined by the
condition that Vy(x—ct) is minimum. The minimiz-
ing condition is x=ct. So assigning Eq. (2.2) to
x=ct and y,(x)=0, we have envelope function

o) =2 Vi(22) 2.8)

The substitution of 2x for x in Eq. (2.7) yields

()13

where superscript p means ‘“‘parapotic.” This func-
tion represents parabolic curve. Thus the shape of an
envelope is determined when we adopt the Raman’s
initial conditions.

Substituting x+ ¢f and x— ¢t for x in Eq. (2.7), and
putting them into Eq. (2.2) with Eq. (2.6), we have
the displacement y(x, ¢) as follows.

J yix, t)= < v,,:x ) (1 —-cTt>x , (0<x<er)

29

(2.10)

l yix, t)= < v“:x > (1 —%)ct , (et<x<l)

Figure 2 shows the shapes of the functions ,(x),
v(x, 1), Vi(x), e(x) and y(x, ¢). It will help to under-
stand the mutual relations between them.

We may have a question what sort of curve is
possible for envelope curve if v,(x) deviate from
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Raman’s condition. In the next section, we will try
to see how the shape changes as the initial condition
changes.

3. ENVELOPE CURVE
AND CONIC SECTION

When we cut off a cone by a plane with an angle to
the cone axis, the cutting edge has a smooth curve.
The curve is called “conic section,” and it is well
known that the conic section describes an arbitrary
quadratic function. Let & be the angle between the
cutting plane and the cone bottom plane (which is
perpendicular to the cone axis). The characteristics
of the function are determined by the angle. When a
cutting plane is parallel to the surface line of the cone
(a=0a?), the conic section becomes parabola. It
becomes ellipse when a < «?, and it becomes hyper-
bola when o > «?. Figure 3 shows relation between
a cutting angle oo and a quadratic curve.

Now, the author re-examined the general solution
of the wave equation. As a result, the envelope curve
of a string is projected one to the plane which is
parallel to cone axis. And it is necessary to introduce
a geometric parameter r (r>1/2) to describe new
solutions. The ratio of / to r indicates a deviation
from the ideal parabolic envelope.

Let e?(x) be a parabolic envelope, and e°(x) be an
elliptic one and also e"(x) be a hyperbolic one. The
envelope function e°(x) is written as Eq. (3.1), and
also the envelope function e"(x) is written as Eq. (3.4),
where superscript e means “‘elliptic’” and superscript
h means ‘“hyperbolic.”

front view

P
2eP

Fig. 3 Envelope curves and conic sections.
Quadratic curves are classified by cutting
angles.

max 2de YA T Y
eﬂ(x)=<»”~5~) L Py —d) G.)
where
d=/r"—T4 (3.2)
(x—x5 | (ef(x)—ef)’
@ ey @3
where
a=r, b= 2vm"rd°,
cl
2 max
x=12, e;=——”d-(de)’.
h
()= ( nes ) Y N G U= YT
where
d" =/ T4 (3.5)
(x—x5)*  (M(x)—ep)®
— =—1 3.6
@y © ©-9
where
at=r, b= 2‘U""’xrd",
cl
2 max
xt=12, eﬁ:z;—l(d”)z.

h

u(x):( v,,:x ) 2‘;’ {:I: (x——é—) +d"} 3.7
Transposing the d°¢ term to left hand side in Eq. (3.1)
and rewriting "Eq. (3.1), we have Eq. (3.3) which
represents the standard form of an ellipse. And also
rewriting Eq. (3.4), we have Eq. (3.6) which repre-
sents the standard form of a hyperbola. Equation
(3.7) represents two asymptotic lines of Egq. (3.6).
Three envelope curves, the asymptotic lines of Eq.
(3.6) and the location of the center of Eq. (3.3) are
shown in Fig. 4 to help understanding the geometric
relations.

Let’s consider the highest point of an envelope
curve. An envelope curve has the maximum at the
point x=1/2. €.z, €5z and ek,, denote the maxima
of envelope are given by Eq. (3.8), Eq.(3.9) and
Eq. (3.10) respectively.

e oI\ _[Vmx\1 d°

e"“‘“e<2‘>_< ¢ >2’ r+d° G-8)
/ Vmex \ /

eﬁ;ax—-e”<7>—< c >Z (3.9)
) Umax \ I d®

- i i

em—e"(2> ( - )2 pT (3.10)
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Fig. 4 Geometric relation among three
envelope curves. It is shown the asymptot-
ic lines of a hyperbola and the center of an
ellipse, in addition to three envelope curves.

€nax < Chax < Ehax 3.11)

If r>>1/2 then d°/(r+ d®)—1/2 and d"/(r + d*)—1/2, so
we have the relation (3.11). Three curves are indis-
tinguishable from each other when r» /2 or 2r/l—co,

The gradient of a tangential line at left end (x=0)
is calculated from the first derivative of e(x). Calcu-
lating in three cases, the results are written as Eq.
(3.12). The gradients are equal to each other. Simi-
larly the gradients at right end (x=/) in three cases
are written as Eq. (3.13).

dee de? deh VUmax

dx |z=0 dx |z=0 dx x=o_< c ) 3.12)
de® de? de* Umax

dx |s=1 dx |z=1 dx z:l__< c > (3.13)

The angles between three cutting planes and the
bottom plane of the cone in Fig. 3 are calculated as

follows. ‘
e . vmax l 2
o --arctan< - \/1 <2r> ) (3.14)
aP=arctan <—v?~"—) (3.15)
o vmax L 2->
o —-arctan( p «/H—(Zr) (3.16)
e <Lar<at 3.17)

It is obvious that we get the relation (3.17).
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4. SHAPE OF STRING AND APEX ANGLE

When the envelope function e(x) is given, we can
obtain the initial velocity v,(x) for the new types by
solving Eq. (2.8) and Eq. (2.3). The initial velocity
functions for the new types are calculated as follows.

€ — de —
Uo(x)—vmaerZ_(l_x)2/4 (1 ] X/l) (4'1)
¢ a—xi) @42

' —
vO(x)_vaXJr2+(l_x)2/4 \
These functions Eq. (2.4), Eq. (4.1) and Eq. (4.2) are
shown in Fig. 5. Also y,(x, ¢) and y.(x, t) are calcu-
lated as follows.

)= ( Do )—2—‘;1{Jr2—(1—x—ct)2/4

c.
—r*—({+x—ct)’/4},
0O<Lx<Ler)

4.3)

= (222 ) 2 == =crTa
—PP—(—x+ct)’/4},

(ct<x<l)
Y= ( Tass ) 2‘1" (SPF A=A
— P +(I—x—ct)y[4},
0<x<Let)
(4.4)

max 2dh
y';(x)=< o ) VU5 F e
—r*+({—x—ct)|4},
(et <£x<ZD)
It is difficult to see without magnifying of y axis,
because the ampljtude of a string is very small. If

Vmax
o oMz)
vy ()
v5(x)
=0 =l
vH(z,l/c)
) vP(w,l/c) .
v¥(x,l/c)
~VUmax

Fig. 5 Shapes of initial velocity v,(x) and
that of velocity v(x, //c) in three cases.
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Fig. 6 Shapes of string at t=I/4c and =
5l/4c in three cases. The string curves
inward on upper and lower side in the
case of an elliptic envelope, and curves
outward on upper and lower side in
the case of a hyperbolic envelope.

we magnify y axis (¢/Umsx) times, then the maximum
of the envelope in a parabolic case is //4. For exam-
ple, when /=320 mm and e?,,=4 mm, the magnify-
ing power (c/vm.x) is twenty, which is calculated from
Eq. (3.9). With the magnifying of y axis, the envelope
curves and the shapes of a string (at r=1//4c and at
t=>5l/4c) are shown in Fig. 6. The geometric param-
eter r is selected 2r/I=+/2 in this case.

Now, we discuss the angle between y,(x, ¢) and
yi(x, t). The angle, which is calied apex angle, is
defined by Eq. (4.5). The apex angles in three cases
are written as Eq. (4.6), Eq. (4.7) and Eq. (4.8).

x=ct>

O=m— {arctan ( o,
ox

-+arctan ( — an:: z=ct> } “4.5)
Or=m— {arctan(( v,,:x ) (1 ——7—))
+arctan< < v“&“ > <—c-;-> > } (4.6)

O°=m— {arctan[( v,,:x ) {%
+ gz T 1)}
+arctan [( v”;" ) {—;—

~ ez e

136 ;
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Fig. 7 Changes of apex angle with x. In this
case, the amplitude of the string is magni-
fied (c/vyas) times.

O =m— [arctan [< vm,> {-1~
c 2
P ——1
SrPH(A=2ct)/4\2 1
Umex | { 1
+arctan[< c >{2
dar 1 ¢t
EVER (= (‘z‘“T)H} “.8)
Figure 7 shows the changes of three apex angles with
x magnifying y axis as same as Fig. 6. As a result,

apex angles are not constant, smaller at the center
than at both ends in all cases.

5. THEORETICAL WAVE FORM
AND OBSERVED WAVE FORM

The displacement wave form along time axis is
calculated from y(x, ). We select the point x=1//4.
Figure 8 shows the displacement wave forms in three
cases within one period. That is ideal saw tooth wave

yh(%’t)

.yp(%’t)

'Ue(%at)
t=l/c

t=2l/c

Fig. 8 Displacement wave forms within one
period at x=1[/4.
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in the case of a parabolic envelope. Within the first
half period, the curve of displacement in the case of
an elliptic envelope have positive curvature (, or the
center of curvature is located above the curve).
That in the case of a hyperbolic envelope have
negative curvature (, or the center of curvature is
located below the curve).

The velocity function v(x, ¢) is calculated as the
first partial derivative of y(x, #) with respect to .

W o<x<en

Ul(X, t)= at ’

(5.1)
9y

ETRL (cr<x<))

0y(x, t)=
The substitution of Eq. (2.10) into Eq. (5.1) yields
Eq. (5.2). And also the substitution of Eq. (4.3) into
Eq. (5.1) yields Eq. (5.3). Equation (5.4) is obtained
by using Eq. (4.4) as same as Eq. (5.3).

VUx, £)= —vmu% , (0<x<ct)
3.2

'U%’(x, t)=vmax<l'—%') > (Ct ngl)

+({—x—ct)
L/ r*—(—x—ct)j4
—(l+x—ct)
Jrz:(1+“5a;‘cz‘)'f/4"} ’
0O<x<Lcr)
+({—x—ct)
Sri—(—x—ct)j4
+({—x+ct)
= :354}1&?)2/4“} ’
(ct<xLD)

Umax d°
2 1

vi(x, t)=

(5.3)

Umax d° {

—(+x—ct)
P+ x—ct)4
—({—x—ct)
“¢r2+(1—x—ct)2/4} ’
0<x<Let)

Vmax A" +({—x—+ct)
2 T{Jr”+(l~x+ct)2/4
—(—x—ct) \
_«/r2+(1-—x~—ct)2/4} ’
(et <x<l)

h
s, =g 5

2 I

5.9

vi(x, 1) =

The velocity wave forms are calculated from (5.2),
(5.3) and (5.4) as shown in Fig. 9. That is ideal
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Fig. 9 Velocity wave forms within one
period at x=1//4.

2.'z:mm
’
b N\ b

a: observed point; 2 = 4.0cm on G
bow; z = 3.3cm,+ ¢, 34.2cm/sec

b: observed point; 2 = 10.0cm on G
bow; z = 3.3cm, 4, 34.2cm/sec

Fig. 10 Observed displacement wave forms
by A. Kuni and M. Kondo.®> The form in
each case curves slightly like an elliptic
envelope as shown in Fig. 8.

rectangular wave in the case of the parabolic enve-
lope. The shape of an elliptic case is like a concave
lens, curves inward on upper and lower side. And
the shape of a hyperbolic case is like a convex lens,
curves outward on upper and lower side.

For comparison between theoretical wave form
and observed wave form, the author reviewed much
literature. As a result, two examples corresponding
to elliptic case are found as shown in Fig. 10> and
in Fig. 11,% but no example is found corresponding
to a hyperbolic case until now.

6. CONCLUSION

The wave equation of a string have three solutions,
whose envelopes are of an elliptic arc, of a parabolic
arc and of a hyperbolic arc. These three solutions are
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V=120mm/s P=200g

~4—— Sens du déroulement du film
Q|ll.."'ulllllllllll"l.ll"..'

1/1000s

A
1. Phase
B

ii

2.F 1358

Phase
finale

B8

Graphiques de la vitesse de vibration, obtenue
a 1/2, pendant P’état transitoire, puis station-
naire (phase finale), avec duex méthodes: A)
électromagnétique; B) électrostatique, qui met-
tent en évidence une forme d’onde sensiblement
la méme. Humidité = 65%, V = 120mm/s,
P =200g.

Fig. 11 Observed velocity wave forms by
B. Bladier.¥ The form in each case is con-

cave like an elliptic envelope as shown in
Fig. 9.

indistinguishable from each other when a specific
parameter approaches infinity. Two experimental
results found in the literature seem to represent an
elliptic solution.
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