J. Acoust. Soc. Jpn. (E) 12, 1 (1991)

Program for calculating loudness according to DIN 45631 (ISO 532B)

Eberhard Zwicker,*† Hugo Fastl,* Ulrich Widmann,* Kenji Kurakata,** Sonoko Kuwano*** and Seiichiro Namba***

*Institute of Electroacoustics, Technical University München, Arcistrasse 21, D-8000 München 2, F. R. Germany
**Faculty of Human Sciences, Osaka University,
Yamadaoka, Suita, 565 Japan
***College of General Education, Osaka University,
Machikaneyama, Toyonaka, 560 Japan

(Received 10 September 1990)

The method for calculating loudness level proposed by Zwicker is standardized in ISO 532B. This is a graphical procedure and it can be tedious to calculate loudness level by this procedure. Recently, DIN 45631 has been revised including a computer program for calculating loudness level in BASIC which runs on IBM-compatible PC's. Since the NEC PC-9801 series computers are popular in Japan, the program has been modified for the NEC PC-9801 series computers and is introduced in this paper.

Keywords: Loudness, Loudness level

PACS number: 43. 66. Cb

For the calculation of loudness, a graphical procedure has been proposed which was published in a German (DIN 45631)¹⁾ and in an International Standard (ISO 532B).2) In order to facilitate the sometimes tedious procedure significantly, and to increase its applicability, computer programs in FORTRAN⁸⁾ and in BASIC⁴⁾ were published. Recently, in a revision of DIN 45631, a computer program in BASIC has been included in the German standard which runs on IBM-compatible PC's. Since the software of the NEC PC-9801 series computers used in Japan shows slight modifications compared to that of the usual IBM standard, we were asked to publish a version of the loudness calculation program that runs on NEC PC-9801 series computers.

In the following, the listing of a program is printed that gives exactly the same values for loudness in sone and loudness level in phon as the program published in the German standard DIN 45631. Since this standard is largely identical to ISO 532B, values calculated by the program also are in line with this international standard.

By using the computer program described, loudness of stationary sounds can be calculated in excellent agreement with subjective evaluation. For sounds with strong temporal variations, however, special nonlinear temporal weightings have to be applied as described in Zwicker *et al.*⁵⁾ and Fastl.⁶⁾

The program described here has been successfully applied so far in Europe (see references in Fastl⁶), in the United States (e.g. Hellman and Zwicker⁷) as well as in Japan (e.g. Namba and Kuwano,⁸) Kuwano et al.^{9,10}, Suzuki et al.¹¹) and Tachibana et al.¹²). In all cases, a good correlation between subjective evaluation and physical evaluation by means of the computer program was found.

The listing of the program is the following.

[†] He passed away suddenly on 22nd November 1990. We highly esteem his great achievements and his passing has been hard to accept.

LIST OF THE PROGRAM

```
LOUDNESS CALCULATION ACCORDING TO DIN 45631 (ISO 532B)

TECHNICAL UNIVERSITY MUNICH
INSTITUTE OF ELECTROACOUSTICS

PROGRAMMING LANGUAGE: N88-BASIC(MS-DOS)

PROGRAMMING NOTE: THIS PROGRAM CALCULATES THE LOUDNESS
AND THE LOUDNESS LEVEL FROM THE 1/3
OCTAVE BAND LEVELS OF A SOUND
                                                                                                                                                                                                                                                                                                 1000
  1010
1020
1030
1040
1050
1060
1070
1080
1090
  1100
1110
1120
1130
1140
1150
1160
                                                                                                                                                                                                                                                                                                                     *----- TABLES -----
                                                                                                                                                                                                                                                                                                  2356 '
2360 '
2370 ' CENTER FREQUENCIES OF 1/3 OCT. BANDS (FR)
2380 '
2380 '
2380 DATA 25, 31.5,40 ,50 ,63 ,80 ,100,125 ,160,
2400 DATA 250, 315 ,400,500,630,800,1.0,1.25,1.6,
2410 DATA 2.5, 3.15,4 ,5 ,6.3,8 ,10 ,12.5
2420 '
2430 '
                                                                                                                                                                                                                                                                                                                  DATA 25, 31.5,40 ,50 ,63 ,80 ,100,125 ,160,200 DATA 250, 315 ,400,500,630,800,1.0,1.25,1.6,2 DATA 2.5, 3.15,4 ,5 ,6.3,8 ,10 ,12.5
   1180
1190
                                                                                                                                                                                                                                                                                                                    RANGES OF 1/3 OCT. BAND LEVELS FOR CORRECTION AT LOW FREQUENCIES ACCORDING TO EQUAL LOUDNESS CONTOURS (RAP)
                                                                                                                                                                                                                                                                                                2420 '
2430 '
2440 ' RANGES OF 1/3 OCT. BAND LEVELS FOR CORRECTION AT LOW FREQUENCIES
2450 ' ACCORDING TO EQUAL LOUDNESS CONTOURS (RAP)
2460 '
2470 DATA 45,55,65,71,80,90,100,120
2480 '
2490 '
2500 ' REDUCTION OF 1/3 OCT. BAND LEVELS AT LOW FREQUENCIES ACCORDING TO
2510 ' REDUCTION OF 1/3 OCT. BAND LEVELS AT LOW FREQUENCIES ACCORDING TO
2510 ' REDUCTION OF 1/3 OCT. BAND LEVELS AT LOW FREQUENCIES ACCORDING TO
2510 ' REDUCTION OF 1/3 OCT. BAND LEVELS AT LOW FREQUENCIES ACCORDING TO
2510 ' REDUCTION OF 1/3 OCT. BAND LEVELS AT LOW FREQUENCIES ACCORDING TO
2510 ' ATA -32,-24,-16,-10,-5,0, -7,-3,0, -2,0
2540 DATA -32,-22,-15,-10,-4,0, -7,-2,0, -2,0
2540 DATA -27,-19,-14,-9,-4,0, -6,-2,0, -2,0
2550 DATA -23,-16,-11,-7,-3,0, -4,-1,0,-1,0
2580 DATA -23,-16,-11,-7,-3,0, -4,-1,0,-1,0
2580 DATA -23,-16,-11,-7,-3,0, -4,-1,0,-1,0
2580 DATA -23,-16,-11,-7,-3,0, -4,-1,0,-1,0
2580 DATA -18,-12,-9,-6,-2,0,-3,-1,0,-1,0
2600 DATA -15,-10,-8,-4,-2,0,-3,-1,0,-1,0
2610 '
2620 '
2630 ' CRITICAL BAND LEVEL AT ABSOLUTE THRESHOLD WITHOUT TAKING INTO
2640 ' ACCOUNT THE TRANSMISSION CHARACTERISTICS OF THE EAR (LTQ)
2650 ' CRITICAL BAND LEVEL AT ABSOLUTE THRESHOLD WITHOUT TAKING INTO
2640 ' ACCOUNT THE TRANSMISSION CHARACTERISTICS OF THE EAR (LTQ)
2650 DATA 30,18,12,8,7,6,5,4
  1230
1240
1250
1260
1270
1280
   1330
1340
1350
1360
1370
1380
  1390
1400
1410
1420
1430
1440
1450
1460
                                                                                                                                                                                                                                                                                                2650 '
2660 DATA 30,18,12, 8, 7, 6, 5, 4
2670 DATA 3, 3, 3, 3, 3, 3, 3, 3
2680 DATA 3, 3, 3, 3, 3, 3, 3
2690 '
2710 ' CORRECTION OF LEVELS ACCORDING TO THE TRANSMISSION CHARACTERISTICS 2720 ' OF THE EAR (AO)
2730 ' THE T
   1480
  1490
1500
1510
1520
1530
1540
1550
1560
1570
                                                                                                                                                                                                                                                                                                 2760 DATA -1.5, 2.0, 0...
2770 '
2780 '
2790 ' LEVEL DIFFERENCE BETWEEN FREE AND DIFFUSE SOUND FIELDS (DDF)
2800 ' LEVEL DIFFERENCE BETWEEN FREE AND DIFFUSE SOUND FIELDS (DDF)
2810 DATA 0.0,0.0,0.5, 0.9, 1.2, 1.6, 2.3,2.8
2820 DATA 3.0,2.0,0.0,-1.4,-2.0,-1.9,-1.0,0.5
2830 DATA 3.0,4.0,4.3, 4.0
                                                                                                                                                                                                                                                                                                2830 DATA 3.0,4.0,4.3, 4.0
2840 '
2850 '
2850 '
2860 ' ADAPTATION OF 1/3 OCT. BAND LEVELS TO TI
2870 ' BAND LEVEL (DCB)
2880 DATA -.25,-0.6,-0.8,-0.8,-0.5,0.0,0.5,1.1
2900 DATA 1.5, 1.7, 1.8, 1.8, 1.7,1.6,1.4,1.2
2910 DATA 0.8, 0.5, 0.0,-0.5
                                                                                                                                                                                                                                                                                                                  ADAPTATION OF 1/3 OCT. BAND LEVELS TO THE CORRESPONDING CRITICAL BAND LEVEL (DCB)
   1660
1670
   1680
  1690
1700
1710
1720
1730
1740
                                                                                                                                                                                                                                                                                                                  .
UPPER LIMITS OF APPROXIMATED CRITICAL BANDS IN TERMS OF CRITICAL BAND RATE (ZUP)
                                                                                                                                                                                                                                                                                                 2970 DATA 0.9, 1.8, 2.8, 3.5, 4.4, 5.4, 6.6, 7.9 2980 DATA 9.2,10.6,12.3,13.8,15.2,16.7,18.1,19.3 2980 DATA 20.6,21.8,22.7,23.6,24.0 3000
                                                                                                                                                                                                                                                                                                                   RANGE OF SPECIFIC LOUDNESS FOR THE DETERMINATION OF THE STEEPNESS OF THE UPPER SLOPES IN THE SPECIFIC LOUDNESS - CRITICAL BAND RATE PATTERN (RNS)
                                                                                                                                                                                                                                                                                                  3030
                                                                                                                                                                                                                                                                                                 3030
3040
3050
3060
3070
3080
3090
3100
3110
                                                                                                                                                                                                                                                                                                                  . DATA 21.5,18.0,15.1,11.5, 9.0, 6.1, 4.4,3.1 DATA 2.13,1.36,0.82,0.42,0.30,0.22,0.15,0.10 DATA 0.035,0.0
                    PREFACE ----
* STEEPNESS OF THE UPPER SLOPES IN THE SPECIFIC LOUDNESS - CRITICAL BAND RATE PATTERN FOR THE RANGES RNS AS A FUNCTION OF THE NUMBER OF THE CRITICAL BAND (USL)
                                                                                                                                                                                                                                                                                              3110 'STEEPNESS OF THE UPPER SLOPES IN THE SPECIFIC LOUDS 3120 'BAND RATE PATTERN FOR THE RANGES RNS AS A FUNCTION 3130 'OF THE CRITICAL BAND (USL) '3150 DATA 13.00. 8.20. 8.30. 5.50. 5.50. 5.50. 5.50. 5.50. 3160 DATA 9.00. 7.50. 8.00. 5.10. 4.50. 4.50. 4.50. 4.50. 4.50. 3170 DATA 7.80. 8.70. 5.60. 4.90. 4.40. 3.90. 3.90. 3.90. 3180 DATA 6.20. 5.40. 4.60. 4.00. 3.50. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.20. 3.
2040 LOCATE 16, 12
2050 PRINT "well as the loudness level LN from the 1/3 octave"
  2060
 2070 LOCATE 16, 13
2080 PRINT "band levels of a sound."
                                                                                                                                                                                                                                                                                         LOCATE 16, 15 PRINT "The result is given numerically, as Loudness N" \,
                                                                                                                                                                                                                                                                                                                      ******************
                 LOCATE 16, 16
PRINT "in sone, as well as Loudness Level LN in phon."
                                                                                                                                                                                                                                                                                                                  '----- DIMENSION AND STORING OF VARIABLES -----
2150 'Cleb Locard 16, 18
2170 PRINT "Input each 1/3 oct, band level in dB"
2180 'Cleb 16, 18
2180 .
2190 LOCATE 16, 19
2200 PRINT "and push <RETURN> key to enter."
2210 '
 2220 LOCATE 16, 22: COLOR 6
```

E. ZWICKER et al.: PROGRAM FOR CALCULATING LOUDNESS

```
4740 '
4750 COLOR 4: LOCATE 13, 12
4760 PRINT "Input of new 1/3 oct. band levels (y) or end (n)? ";
4770 NES = INPUTS(1): COLOR 7
4780 'IF NES = "y" OP NES "
 3460 RESTORE 2390
3470 FOR I = 1 TO 28
3480 READ FR(I)
3490 NEXT I
3500 FOR I = 1 TO 8
3510 READ RAP(I)
3520 NEXT I
3530 FOR J = 1 TO 8
3540 FOR I = 1 TO 11
3550 READ DLL(I, J)
3560
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   4780 '.
4790 IF NES = "y" OR NES = "Y" THEN 3850
4800 IF NES = "n" OR NES = "N" THEN 4820 ELSE GOTO 4770
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            #810 . Then are "n" OR NES = "N" THEN 4810 . Then 4820 CLS 4830 . 4840 SCREEN 0: CONSOLE ..1.0 4850 LOCATE 37, 11: PRINT "End..." 4860 . LOCATE 0,0: END 4880 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 4890 . 489
                                                            READ DLL(I,
NEXT J
FOR I = 1 TO 20
READ LTQ(I)
NEXT I
FOR I = 1 TO 20
READ AO(I)
     3560
3570
3580
3590
3600
3610
3620
3630
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                READ AO(1)
NEXT I
FOR I = 1 TO 20
READ DDF(I)
     3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
                                           FOR I = 1 TO 20

READ DDF(I)

NEXT I

FOR I = 1 TO 20

READ DCB(I)

NEXT I

FOR I = 1 TO 21

READ ZUP(I)

NEXT I

FOR I = 1 TO 18

READ RNS(I)

FOR I = 1 TO 18

READ USL(I, J)

NEXT J

NEXT J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   5030 PRINT PUSH any key to
5040 '
5050 GOSUB 5370: GOSUB 7240
5060 ON ERROR GOTO 7110
5070 '
5080 CLS
5080 '
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            UND DIS ERROR GUID 7110
5070
5080 CLS
5090
5100 DT1S = MIDS(DATES, 4, 2)
5110 DT2S = LEFTS(DATES, 2)
5120 DT3S = RIGHTS(DATES, 2)
5130 DT3 = RIGHTS(DATES, 2)
5130 DT3 = RIGHTS(DATES, 2)
5140
5150 LPRINT
5150 LPRINT SPACES(10); "*** DIN - LOUDNESS CALCULATION ****
5170 LPRINT
5180 LPRINT SPACES(12);
5190 LPRINT "DATE:"; ""; DTS; ""; "TIME:"; ""; TIMES
5200 LPRINT "DATE:"; ""; DTS; ""; "TIME:"; ""; TIMES
5201 LPRINT "SPACES(17);
5230 IF N < = 16 THEN LPRINT USING "####.##"; N;
5240 IF N > 16 THEN LPRINT USING "####.#"; N;
5250 LPRINT "SONE G"; MS
5260 LPRINT "SONE G"; MS
5270 LPRINT "SONE G"; MS
5280 LPRINT "DATE: ", "EPRINT USING "###.#"; LN;
5280 LPRINT "DATE: ", "SONE G"; MS
5290 LPRINT "DATE: ", "SONE G"; MS
5300 "SONE G"; MS
                                             3840 '
3850 '----- INPUT OF 1/3 OCT. BAND LEVELS
3880 '---- INPUT OF 1/3 OCT. BAND LEVELS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 5500 FOR I = 1 TO 11
5520 J = 1
5530 IF LT(I) <= RAP(J) - DLL(I, J) THEN GOTO 5560
5540 J = J + 1
5550 IF J < 8 THEN GOTO 5530
5560 XP = LT(I) + DLL(I, J)
5570 TI(I) = 10 (.1 * XP)
5580 NEXT I
5590 '
           4230 '
4240 '--- SELECTION OF SOUND FIELD (FREE/DIFFUSE)
4250 '
         4250 '
4260 GOSUB 5370
4270 CLS
4280 COLOR 4: LOCATE 20, 11
4290 PRINT "Input of the type of sound field:"
4300 LOCATE 20, 13
4310 PRINT "free (F) or diffuse (D) sound field? "; : COLOR 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       5590 '
5600 '-- DETERMINATION OF LEVELS LCB(1), LCB(2) AND LCB(3) WITHIN THE 5620 ' FIRST THREE CRITICAL BANDS 5630 '
           4320 4330 MS = INPUTS(1)
     4330 MS = INPUTS(1)
4340 '
4350 IF MS = "F" OR MS = "f" THEN MS = "F": GOTO 4370
4360 IF MS = "D" OR MS = "d" THEN MS = "D" ELSE GOTO 4330
4370 '
4380 CLS
4400 COLOR 5: LOCATE 30, 12:
4410 PRINT "Now calculating..."
4420 COLOR 7: GOSUB 5510
4430 '
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       --- DELEMENTATION OF LEVELS LCB(1), LCB(2) AND LCB(3)
5620 ' FIRST THREE CRITICAL BANDS
5640 DEF FNGI (1) = 10 + LOG(GI(I)) / LOG(10)
5650 GI(1) = TI(1) + TI(2) + TI(3) + TI(4) + TI(5) + TI(6)
5660 GI(2) = TI(7) + TI(8) + TI(9)
5670 GI(3) = TI(10) + TI(11)
5680 TO TALL TO THE TOTAL TO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   5670 GI(3) = TI(10) + TI(11)
5680 FOR I = 1 TO 3
5690 FOR I = 1 TO 3
5700 IF GI(1) > 0 THEN LCB(I) = FNGI(I)
5710 NEXT I
5720 '
5730 '
5740 '--- CALCULATION OF MAIN LOUDNESS
5750 FOR I = 1 TO 20
5760 FOR I = 1 TO 20
5770 LE(1) = LT(I + 8)
5780 IF I <= 3 THEN LE(I) = LCB(I)
5800 NM(I) = 0
5810 IF MS = "D" OR MS = "d" THEN LE(I) = LE(I) + DDF(I)
5820 IF LE(I) <= LTQ(I) THEN 5930
5830 LE(I) = LE(I) - DCB(I)
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '
5840 '

     4410 PRINT "Now calculating..."
4420 CoLor 7: GOSUB 5510
4430 '--- END OF PROGRAM - OUTPUT OF RESULTS ON DISPLAY/PRINTER ---
4460 '--- END OF PROGRAM - OUTPUT OF RESULTS ON DISPLAY/PRINTER ---
4460 '--- END OF PROGRAM - OUTPUT OF RESULTS ON DISPLAY/PRINTER ---
4460 '---
4470 CLS
4480 PRINT SRIS; SRIS
4500 LOCATE 9, 6: PRINT "*": LOCATE 72, 6: PRINT "*"
4510 LOCATE 9, 7: PRINT "*": LOCATE 21, 7:
4520 PRINT "LOUDNESS N " ";
4530 IF N <- 16 THEN PRINT USING "####.#"; N; PRINT ";
4540 IF N > 16 THEN PRINT USING "####.#"; N;
4540 IF N > 16 THEN PRINT USING "####.#"; N;
4540 PRINT " sone G"; MS
4560 LOCATE 72, 7: PRINT "*": LOCATE 21, 8:
4580 PRINT "LOUDNESS LEVEL LN " "; PRINT USING "###.#"; LN;
4590 PRINT "LOUDNESS LEVEL LN " "; PRINT USING "###.#"; LN;
4590 PRINT "DHONG C"; MS
4600 LOCATE 72, 8: PRINT "*"
4610 LOCATE 72, 8: PRINT "*"
4611 LOCATE 72, 8: PRINT "*"
4620 LOCATE 73, 8: PRINT "*"
4630 PRINT SRIS; SRIS
4640
4650 COSUB 5370
4660 '
4670 COLOR 4: LOCATE 24, 17: PRINT "Print out of the table above? (y/n) ";
4680 PRS = INPUTS(1): COLOR 7
4690 '
4700 IF PRS = "y" OR PRS = "Y" THEN GOTO 4980
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       5830
5840
5850
5860
5870
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              S = .25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              MP1 = .0635 * 10 ^ (.025 * LTQ(I))
MP2 = (1 - S + S * 10 ^ (.1 * (LE(I) - LTQ(I)))) ^ .25 - 1
NM(I) = MP1 * MP2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       5880 MP2 = (1

5890 NM(1) = M

5910 IF NM(1)

5920 .

5930 NEXT I

5940 NM(21) = 0

5950 .

5960 .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF NM(I) <= 0 THEN NM(I) = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  '--- CORRECTION OF SPECIFIC LOUDNESS IN THE LOWEST CRITICAL BAND
TAKING INTO ACCOUNT THE DEPENDENCE OF ABSOLUTE THRESHOLD
WITHIN THIS CRITICAL BAND
           4690 'T PRS = "y" OR PRS = "Y" THEN GOTO 4980 4710 IF PRS = "n" OR PRS = "N" THEN GOTO 4730 ELSE GOTO 4680 4720 ' 4730 CLS : GOSUB 5370
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           6000 *
6010 KORRY = .4 + .32 * NM(1) * .2
```

```
:--- START VALUES
 6140 .
6150 '--- STEP TO FIRST AND SUBSEQUENT CRITICAL BANDS
 6150
6160 •
6170 FOR I = 1 TO 21
          ZUP(I) = ZUP(I) + .0001
           IG = I - 1
IF IG > 8 THEN IG = 8
           IF N1 > NM(I) THEN GOTO 6560
IF N1 = NM(I) THEN GOTO 6410
 6250
 6290
6300
6310
6320
6330
6340
                   DETERMINATION OF THE NUMBER J CORRESPONDING TO THE RANGE OF SPECIFIC LOUDNESS
                   FOR J = 1 TO 18

IF RNS(J) < NM(I) THEN 6410

NEXT J
6350 * 6360 * 6370 .* - 6380 * 6390 * 6410 6420 6430 6440 * 6450
                  CONTRIBUTION OF UNMASKED MAIN LOUDNESS TO TOTAL LOUDNESS AND CALCULATION OF VALUES NS(1Z) WITH A SPACING OF Z = 1Z \times 0.1 Bark
                  Z2 = ZUP(I)
N2 = NM(I)
N = N + N2 * (Z2 - Z1)
                  FOR K = Z TO 22 STEP .1

NS(IZ) = N2

IZ = IZ + 1

NEXT K
6460
6470
                   Z()= K
GOTO 6780
                  DECISION WHETHER THE CRITICAL BAND IN QUESTION IS COMPLETELY OR PARTLY MASKED BY ACCESSORY LOUDNESS
                  N2 = RNS(J)
IF N2 < NM(I) THEN N2 = NM(I)
D2 = (N1 - N2) / USL(J, IG)
Z2 = Z1 + DZ
IF Z2 <= ZUP(I) THEN 6680
                           ZUP(1)
                  DZ = Z2 - Z1

N2 = N1 - DZ * USL(J, IG)
```

ACKNOWLEDGEMENTS

This work was supported by Deutsche Forschungsgemeinschaft SFB 204 "Gehör," München. The authors are grateful to Mr. Tomoaki Sakai of the Public Works Research Institute for his kind advice concerning the equivalency of the program.

Note: It is being planned that the program will be offered on a floppy disc by the Acoustical Society of Japan.

REFERENCES

- 1) DIN 45631, "Berechnung des Lautstärkepegels und der Lautheit aus dem Geräuschspektrum. Verfahren nach E. Zwicker" (1990).
- 2) ISO 532B, "Acoustics—Method for calculating loudness level" (1975).
- 3) E. Paulus and E. Zwicker, "Programme zur automatischen Bestimmung der Lautheit aus Terzpegeln oder Frequenzgruppenpegeln," Acustica 27, 253–266 (1972).
- 4) E. Zwicker, H. Fastl, and C. Dallmayr, "BASIC-Program for calculating the loudness of sounds from their 1/3-oct. band spectra according to ISO 532B," Acustica 55, 63-67 (1984).
- 5) E. Zwicker, K. Deuter, and W. Peisl, "Loudness

```
6660 '--- CONTRIBUTION OF ACCESSORY LOUDNESS TO TOTAL LOUDNESS
             N = N + DZ • (N1 + N2) / 2

FOR K = Z TO Z2 STEP .1

NS(IZ) = N1 - (K - Z1) • USL(J, IG)

IZ = IZ + 1

NEXT K

Z = K
 6670
6680
6690
6700
6710
6720
6730
6740
6750
 6760 '--- STEP TO NEXT SEGMENT
              IF N2 <= RNS(J) AND J < 18 THEN J = J + 1: GOTO 6780
IF N2 <= RNS(J) AND J >= 18 THEN J = 18
Z1 = Z2
N1 = N2
             N1 = N2
IF Z1 < ZUP(I) THEN 6250
 6810
 6830 '
6840 NEXT I
6850 '
6860 IF N < 0 THEN N = 0
6870 '
 6880 IF N <= 16 THEN N = INT(N * 1000 + .5) / 1000
6890 IF N > 16 THEN N = INT(N * 100 + .5) / 100
 6910
             CALCULATION OF LOUDNESS LEVEL FOR LN < 40 PHON OR N < 1 SONE
6950 LN = 40 * (N + .0005) * .35
6960 LN = 3 THEN LN = 3
6970 *
6980 *--- CALCULATION OF LOUDNESS
7000 * OR N >= 1 SONE
             CALCULATION OF LOUDNESS LEVEL FOR LN >= 40 PHON OR N >= 1 SONE
7020 IF N >= 1 THEN LN = 10 * LOG(N) / LOG(2) * 40
7040 RETURN
7050 *
       SUBROUTINE FOR ERRORS OF PRINTER
SUBROUTINE TO WAIT FOR KEY INPUT
      LET AS = INKEYS
WHILE AS = "": LET AS = INKEYS: WEND: RETURN
```

meters based on ISO 532B with large dynamic range," Proc. Inter-Noise 85 (II), 1119-1122 (1985).

- 6) H. Fastl, "Noise measurement procedures simulating our hearing system," J. Acoust. Soc. Jpn. (E) 9, 75-80 (1988).
- 7) R. Hellman and E. Zwicker, "Measured and calculated loudness of complex sounds," Proc. Inter-Noise 87 (II), 973–976 (1987).
- 8) S. Namba and S. Kuwano, "Psychological study on L_{eq} as a measure of loudness of various kinds of noises," J. Acoust. Soc. Jpn. (E) 5, 135–148 (1984).
- 9) S. Kuwano, S. Namba, and H. Miura, "Advantages and disadvantages of A-weighted sound pressure level in relation to subjective impression of environmental noise," Noise Control Eng. J. 33, 107–115 (1989).
- 10) S. Kuwano, S. Namba, and T. Hashimoto, "On the psychological evaluation of amplitude-modulated sounds," Proc. Inter-Noise 89, 797–802 (1989).
- 11) Y. Suzuki, T. Sone, H. Sato, and S. Kono, "An experimental consideration on the tone correction (or adjustment) for environmental noise evaluation," Proc. Inter-Noise 86 (II), 849–854 (1986).
- 12) H. Tachibana, F. Sato, S. Kuwano, and S. Namba, "Comparisons of various kinds of noise assessment measures," Proc. Spring Meet. Acoust. Soc. Jpn., 415–416 (1987) (in Japanese).