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The modeling error shown by the difference of the characteristics between the secondary
paths and its models will cause the improper adaptation of the filtered-x LMS adaptive filters
in active noise control systems. It is necessary to use the on-line modeling systems for
avoiding such improper adaptation, and several on-line modeling methods have been
proposed hitherto. Especially, one of them is very useful because the method can identify
the primary and the secondary path characteristics without using any additional signal.
This method, however, will not always provide the proper modeling results, and the condi*
tions for optimizing the results have not been discussed yet. This paper investigates the
conditions for optimal on-line modeling of the primary and the secondary path characteris-
tics without using any additional signal for identification. Theoretical analysis produces
the specific conditions which the noise control adaptive filter should satisfy. Those results
of the theoretical consideration are confirmed by the computer simulation in which the
impulse responses measured in a vehicle cabin are used.

Active noise control, Filtered-x LMS algorithm, Modeling error, On-line
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path. The difference between the correct transfer
function of the secondary path and their model, that
is called modeling error, will cause the improper
adaptation. In other words, the noise control
adaptive filter cannot update itself correctly due to
modeling error that originates from any sources.’~®

We can avoid such improper adaptation caused
by modeling error using on-line modeling tech-

1. INTRODUCTION

The filtered-x LMS (Least Mean Square)
algorithm? has been applied to many practical
cases in active noise control. This algorithm has
the simple structure and shows the relatively good
performance. Therefore, the filtered-x LMS algo-
rithm is very useful in most of the engineering

problems, even though the algorithm has tight limi-
tation. This algorithm contains the transfer func-
tion model of the secondary path, which has the
acoustical transfer function between the output of
the noise control adaptive filter and the output of
the error sensor. Thus, the performance of the
algorithm would inevitably be influenced by accu-
racy of the transfer function model of the secondary

niques. Several on-line modeling methods have
been proposed in the last decade.”"'” In those
proposals, there are basically two approaches.
Very useful one of them identifies all the unknown
transfer functions, those are the transfer functions of
the primary and the secondary paths, through the
adaptive processing without using any additional
signal for identification.®'® This particular meth-
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od, however, will not always provide the proper
modeling results, and the conditions for optimizing
the modeling results have not been discussed yet.
Hence, we must clarify the conditions to improve the
on-line modeling method. It will provide the great
possibility to build up the active noise control sys-
tems with better performance.

~In this paper, we carefully investigate the condi-
tions for optimal on-line modeling through theoreti-
cal approach and computer simulation. Theoreti-
cal analysis will contribute the particular conditions
for accurate on-line modeling that relating to the
noise control adaptive filter. The theoretical results
are confirmed through the computer simulation in
which the impulse responses measured in a vehicle
cabin are used.

2. LIMITATION OF FILTERED-X LMS
ADAPTIVE FILTER

2.1 Active Noise Control System

A block diagram of the active noise control
(ANC) system that uses the filtered-x LMS algo-
rithm is shown in Fig. 1.

In Fig. 1, x(n) is a reference signal at time n and
y(n) is an output signal of the noise control
adaptive filter. The output signal y(n) is calcu-
lated by the convolution of the reference signal x(n)
with the impulse response of the noise control
adaptive filter w(n). And the filtered reference
signal represented by uy(n) is calculated by the
convolution of the reference signal x(n) with an
impulse response of the model of the secondary path
¢y- An impulse response vector of the primary
path is represented by &, and d,(n) is the noise at the
control point. A vector ¢ means an impulse
response of the secondary path, and d.(n) is the
anti-noise at the control point. An error signal is

primary path
= h

noise x(n)
source

noise control
adaptive filter / secondary

wWn) path
x(n) > w(n) %— c
model of d.n)

secondary path

dy(n)

—a (1)

e Cp LMS |-

udn)

Fig. 1 A block diagram of active. noise control
system.
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represented by e(n).

We assume that the primary and the secondary
paths are finite impulse response (FIR) systems.
And the noise control adaptive filter is also FIR
type. Using vector form, the tap weight vector
update equation for the time domain filtered-x LMS
algorithm is given by,

(1)

where the tap weight vector w(n) and the filtered
reference signal vector wy(n) are T,-by-1 vectors.
The step size (convergence coefficient) & and the
error signal e(n) are scalars.

w(n+1)=w(n)— aun(n)e(n),

2.2 Influence of Modeling Error

If once the modeling error occurs, for example,
when the impulse response of the secondary path is
time variant, the filtered reference signal vector
uy(n) in equation (1) will differ from the ideal one
u(n) that is calculated by the convolution of the
reference signal x(n) with the impulse response of
the secondary path ¢. The difference caused by
modeling error will lead the noise control adaptive
filter into improper adaptation.

In the worst case, the adaptive filter will be
unstable.®*~® On the other hand, if the noise con-
trol adaptive filter is stable, the noise reduction
performance of ANC system under modeling error
condition will be inferior to that under ideal condi-
tion to some extent in general.*® Therefore, it is
necessary to use the on-line modeling system that
identifies the characteristic of the secondary path.

3. ON-LINE MODELING OF PRIMARY
AND SECONDARY PATHS

3.1 Conditions for Optimal On-line Modeling
The error signal e(n) is expressed as equation (2).

e(n)=dwn)+dd{n). (2)

When the primary and the secondary paths are the
finite impulse response systems, the noise d,(n) and
the anti-noise d.(n) in equation (2) are rewritten as :

dln)=x(n)"h, (3)
and
d{n)=y(n)e, (4)

where the reference signal vector x(n) and the un-
known impulse response vector of the primary path
h are T,-by-1 vectors. And the output signal
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vector of the noise control adaptive filter y(n) and
the unknown impulse response vector of the sec-
ondary path ¢ are T.-by-1 vectors. Superscript T
expresses the transpose of matrix.
Applying the equation (3) and (4) into the equa-
tion (2), the error signal e(n) is expressed as:
h
e(n)=[x(n)" y(n)T][ . ] : (5)
Therefore, the unknown vectors 4 and ¢ will satisfy
the equation (6).

E[ x(n)x(n)”

y(n)x(n)" it ][ : ]*E{ oot ] ’

ymyn) L e ] L p(n)e(n)
(6)

where E[-] shows the expectation operator. We
can identify the unknown vectors & and ¢ correctly
by solving the equation (6) when the correlation
matrix in the left side is nonsingular.

Now, we represent the correlation matrix in the
left side of the equation (6) as R. That is,

_Jxmx(n)" 2(n)y(n)
R_E[ y(n)x(n)"  y(n)y(n) } '

The size of the matrix R is (7,+ T,)-by-(T,+ T,),
and consequently, the matrix R is nonsingular when
its rank is T,+ T,. It is not always ensured, how-
ever, that the nonsingularity of the correlation
matrix R is maintained. When the correlation
matrix R is singular, we cannot identify the un-
known vectors A and ¢ correctly.

Here, let us discuss the nonsingularity of the
matrix R in detail. Using the assumption of statis-
tical independence between the quantities,*>'") the
correlation matrix R can be expressed as equation

(M.

E[ x(n)x(n)' r(n)y(n)T]
y(n)x(n)"  y(n)y(n)
=E[ Wf’(’;)T ]E[.n(n) ()]
‘E[I, We(n)], (7)
where
x(n)=L"x(n), x(n)'=x.(n)'Ir,
and

y(n)'=x(n)" We(n) .

In addition, the size of x.(n), Ir or We(n) is depen-

y(n)=We(n) x(n),

dent upon T,, T, and T..
(CASE ID

When the condition T,< T,+ T.—1 is satisfied,
the size of the new reference signal vector x.(n) is
(T,+ T.—1)-by-1, and Ip is a (T,+ T.—1)-by-T,
matrix that is written as:

1
Ir=
P [0"]7

where I is a T,-by-T,, identity matrix and 0, means
a {(T,+ T.—1)— T,}-by-T, zero matrix. The size
of the matrix Wp(n) is (T,+ T.—1)-by-T,, and the
matrix Wp(n) is writtén as:

We(n)=W(n),
where
W(n)
w(0, n) 0 0 ]
w(l,n) w0 n-1)- « -
w(l, n—1) -
w(Tw—1, n) . o e 0
= o wTegl L w@ - T
N M)(l, n— Tc+1)
0 . .0 w(Tw—1,
L n— Tc+1> ]

Thus, the matrix E[Ip, Ws(n)] is expressed as:

E[I, Wp(n)]=E[ 0’

We(n)] is (T,+ T.—1)-by-

W(n)],

and the size of E[I,
(T, +To).
(CASE 2>

When the condition T,+ T.—1=T, is satisfied,
the size of the vector x;(n) is T,-by-1, and Ir is a
T,-by-T, identity matrix I. The size of the matrix
Ws(n) is identical to the T)-by-T,, and the matrix
Wpe(n) is written as:

We(n)=W(n).

Thus, the matrix E[Ip
ElI» W:(»)]=E[I W(n)],

We(n)] is T,-by-

We(n)] is expressed as:

and the size of the matrix E[I»
(T, + 7).
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(CASE 3>

When the condition T,+ T.— 1< T, is satisfied,
the size of the vector x.(n) is T,-by-1 and Ir is a
T,-by-T, identity matrix I. The size of the matrix
Wp(n) is a T,-by-T_ and the matrix Wpx(n) is written
as:

o< "

0.

where W(n) is a (T,+ T,— 1)-by-T, matrix and 0,
means a {7,—(T,+ T,—1)}-by-T. zero matrix.
Thus, the matrix E[I,  Wp(n)] is expressed as:

W(n) }
0. ’

and the size of E[Ip Ws(n)] is T,-by-(T,+ T,).

Next, we discuss the decomposition of the auto-
correlation matrix of the reference signal E[x.(n)
x,(n)T].  Since an auto-correlation matrix is always
nonnegative definite and almost always positive
definite, we assume here that the auto-correlation
matrix E[x;,(n) x.(n)"] in equation (7) is nonsin-
gular. When the matrix E[x;(n) x.(n7)7] is non-
singular, we can decompose it as equation (8) by
using Cholesky factorization'? because the auto-
correlation matrix is always symmetric.

E[IL( n) .l'L( n)T] = 1414T .

E[I, Ws( n)]=E[ I

(8)

Accordingly, the correlation matrix R is rewritten as
equation (9).

E[ x(n)x(n)" -r(n)y(n)r]
y(n)x(n)" y(n)y(n)"
L .
=E[Wp(n)T]AA El, Wew)]. (9)

Equation (9) indicates that the correlation matrix
R is represented as the product of the two transpose
matrices of each other. Therefore, the rank of the
matrix in the right side of the equation (9) is identi-
cal to that of the matrix ATE[Ir, Wax(n)]. And the
rank of the matrix ATE[I, Wp(n)] is equal to that
of the matrix E[Ir Wx(n)] since the triangular
matrix A4 in equation (9) is nonsingular when the
auto-correlation matrix E[x,(n) x.(n)"] is nonsin-
gular. Thus, we can evaluate the nonsingularity of
the correlation matrix R according to the rank of the
matrix E[I, Wp(n)]. If the rank of the matrix
E[Ir Ws(n)] is equal to T,+ T, the correlation
matrix R is nonsingular.
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Since the size of the matrix E[I, W;(n)] in
case 2 or case 3 is T,-by-(T,+ T,), the rank of E[I»
We(n)] will be always smaller than T,+ 7.
Therefore, we can not identify the unknown impulse
response vectors & and ¢ correctly in case 2 or case
3.

On the other hand, the size of the matrix E[I,
We(n)] in case 1 is (T,+ T,—1)-by-(T,+ T.).
Therefore, the rank of E[I, Wp(n)] in case 1 is
T,+ T, if the tap length of the noise control
adaptive filter T, is longer than the tap length of the
primary path 7,, and one of the tap weights
E[w(T,)]~E[w(T,—1)] is a non-zero coefficient at
least when the tap weight vector of the noise control
adaptive filter is represented as equation (10).

Elw(n)]=E[w(0, n)w(1, #) --- w(Tx, n)

- w(Tw—1, n)]. (10)

As long as the tap weights of the noise control
adaptive filter w(n) satisfy the above conditions, we
can expect the accurate on-line modeling.
However, it is not always ensured that the above
conditions are maintained. If the conditions de-
scribed above are not satisfied, we may manipulate
the tap weights to meet the requirement with the risk
of degradation of the noise reduction performance.

3.2 On-line Adaptive Modeling

When the correlation matrix in the equation (6) is
nonsingular, we can identify the unknown vectors A
and ¢ correctly by solving the equation (6). Sev-
eral methods can be applied to solving the equation
(6), and one of them is the on-line adaptive model-
ing. A block diagram of the on-line adaptive
modeling system is shown in Fig. 2.

d),(")
x(n)—ﬂ——@ e(n)
+
x(n) »~O—y— €(n)
y(n){

Fig. 2 A block diagram of on-line adaptive
modeling system.
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In Fig. 2, k’(n) represents the tap weight vector of
the adaptive filter that is used to identify the un-
known impulse response of the primary path A.
And ¢’(n) is the tap weight vector of the adaptive
filter that is used to identify the unknown impulse
response of the secondary path c¢. The estimated
noise or anti-noise at the control point is represented
by d,’'(n) or d/(n). When we use the LMS algo-
rithm for adaptation, the tap weight vectors of the
adaptive filters for identification A’(n) and ¢’(n) are
updated according to the equation (11).

[h’(n+1)]=[h’(n)]+u[x(n)}€(n)y an

c(n+1) c'(n) y(n)

where &(n) is the identification error, and g is the
step size.

4. COMPUTER SIMULATION

4.1 Method of Computer Simulation

The computer simulation has been performed to
confirm the theoretical results described in the previ-
ous section 3.1. A block diagram of the ANC
system that was used in our computer simulation is
shown in Fig. 3.

In our simulation, the impulse responses acquired
in a vehicle cabin were used for the primary and the
secondary paths. Because an active noise control
system for the interior car noise is one of the typical
applications.’>!® The tap length of those impulse
responses were 128, and they were identified by
using an adaptive filter with the sampling frequency
of 2kHz. The reference signal x(n) in our com-
puter simulation was white noise with zero mean
and the unit power, and the adaptive modeling
system shown in Fig. 2 was used for identification.

We used the unique vector in order to confirm the

primary path
(128 taps)

LT

N 1022
|

x(n)

noise control dy(n)

filter n)

x(n) — w X
white noise

mean : 0 (160 taps)
power : |

AV

e(n)

secondary path
(128 taps)

adaptive
modeling
system
L] shown in
Fig.2

Fig. 3 A block diagram of active noise control
system used in computer simulation.

conditions for optimal on-line modeling described
in the previous section 3.1. We set the tap weight
vector of the noise control adaptive filter w(n) being
a constant vector as shown in the equation (12).

In the equation (12), &(i j) is Kronecker’s delta :

8(i, /)=1 (i=j)
=0 (i#))

In other words, only one element of the tap weight
vector w(j) is equal to 1 (one) and others are equal
to 0 (zero). For example, when T,=5 and j=3,
w(j) is written as:

w)=w?3)=[0 0 1 0 0]

In our simulation, T,, was set as 160.

4.2 Results of Computer Simulation

Figure 4 shows the squared identification errors
versus number of iterations. Here, the primary or
the secondary path squared identification error was
calculated by the below equation :

primary path squared identification error (dB)
=10 logio {(dh( n) - dh,( n))z/E[ dh( n)z]} s

or

secondary path squared identification error (dB)
=10 loguo {(d{n)— d:'(n)*/E[d{n)*]} .

The primary or the secondary path squared
identification error at j=129 (> T,=128) is shown
in Fig. 4(a) or (b). In this case, both the primary
and the secondary path squared identification errors
decreased gradually since the tap weights of the
noise control filter satisfied the conditions for opti-
mal on-line modeling described in the section 3.1.
On the other hand, when the tap weights of the noise
control filter did not satisfy the conditions, both of
the primary and the secondary paths squared
identification errors decreased scarcely. The pri-
mary or the secondary path squared identification
error at j=64 (< T,,=128) is shown in Fig. 4(c) or
(d). In this case, we could not identify the un-
known impulse responses correctly.

Identified impulse responses both of the primary
and the secondary paths are shown in Fig. S.
Figure 5(c) or (d) shows the identified impulse
response of the primary or the secondary path at j=
129 (> T,=128). In this case, all the unknown
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Number of iterations
(a) Primary path.
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80F ............ ............ ]
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Number of iterations

(c) Primary path.

Fig. 4 Squared identification errors versus number of iterations.

conditions are satisfied.

impulse responses were identified accurately since
the conditions for optimal on-line modeling were
satisfied. On the other hand, the results of the
on-line modeling were different from the true
impulse responses when the conditions for optimal
on-line modeling were not satisfied. The identified
impulse response of the primary or the secondary
path at j=64 (< T,=128) is shown in Fig. 5(e) or
(). In this case, all the identified impulse responses
were not correct.

The mean squared identification errors versus the
parameter j in the equation (12) are plotted in Fig.
6. Here, the primary or the secondary path mean
squared identification error was calculated by the
below equation :

primary path mean squared identification
error (dB)=10 log.o {E[(dx(n)
—di/'(n))’1/Eldn(n)’]},
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(a), (b) Identification errors when the

(c), (d) Identification errors when the conditions are not satisfied.

or

secondary path mean squared identification
error (dB)=10 logio {E[(d(n)
—d/(n))*)/Eldd(n)?]} .

As soon as the conditions for optimal identification
which the tap weights of the noise control filter
should satisfy became unsatisfied, the mean squared
identification errors increased rapidly.

From these results shown in Figs. 4-6, we can say
that it is possible to identify all the unknown
impulse responses accurately when the tap weights
of the noise control filter satisfy the conditions for
optimal on-line modeling. In other words, the
results shown in Figs. 4-6 confirm the conditions for
optimal on-line modeling derived theoretically in
the previous section 3.1.
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Fig. 5 Identified impulse responses of the primary and the secondary paths. (a), (b) True impulse responses.
(c), (d) Identified impulse responses when the conditions are satisfied. (e), () Identified impulse responses

when the conditions are not satisfied.
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Fig. 6 Mean squared identification error.

5. CONCLUSIONS

In this paper, we investigated the conditions for
optimal on-line modeling of the primary and the
secondary path characteristics in active noise control
systems without using any additional signal for
identification. Theoretical analysis produces the
specific conditions which the noise control adaptive
filter should satisfy. And the theoretical results
were confirmed by the computer simulation. In
this simulation, the impulse responses acquired in a
vehicle cabin were used as the primary and the
secondary paths. Thus, we confirmed not only the
theoretical results but also derived the useful infor-
mation for the realization of better interior car noise
control systems.
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