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Nonlinear threads in the coat of acoustics'

Robert T. Beyer

Department of Physics, Brown University,
Providence, RI, 02912

In 1972, I gave an invited paper at the Buffalo
meeting of the Acoustical Society of America on
nonlinear acoustics. It was a narrowly focused
talk, almost exclusively in physical acoustics. At
the end of it, however, I borrowed a phrase from a
then current Coca-Cola advertisement to claim that
nonlinear acoustics was not a sideline, “it was the
real thing.”

Apparently I had at least one listener in my
audience. Professor Akira Nakamura attended
and, when he went back to Japan, wrote an article
for the Japanese Journal of Acoustics, reviewing the
meeting.V

The last paragraphs of that paper appear in Fig.
1. T am told that the article says that I gave an
invited paper that was very humorous and interest-
ing, that the recent progress in this scientific field
was considerable, and that we must say “that is real
thing.” 1In the next instant, Professor Nakamura
wrote, a roar of laughter filled the room. I cannot
guarantee roars of laughter today, but I can docu-
ment my belief that many if not all portions of
acoustics have their nonlinear chapter, and that
these threads, as I have called them, have been
around for a long time.

Before beginning the talk proper, I must warn the
audience that, when they get an old man to be the
lead-off speaker, they will get a bridge to the past, a
la Bob Dole, rather than a bridge to the future. But
I prefer to think that there is in our case only one
bridge, the bridge that extends from the past to the
future, and we are in the middle of that bridge. [
shall describe where we have come from in non-

" Talk given at the joint meeting of the Acoustical
Society of Japan and the Acoustical Society of Amer-
ica, Honolulu, HI, 2 Dec 1996

linear acoustics, and all the other papers during the
rest of the meeting will tell you where we are going.

The basic subjects of vibration and sound are
governed by a number of differential equations, of
which the wave equation is the most prominent,
followed by the equation for forced, damped vibra-
tions. We like to think of these equations as linear
equations, ie., differential equations in which the
dependent variable—the displacement or the dis-
placement velocity—does not appear in products of
itself or of its derivatives. Thus the wave equation,
in one dimension, takes the form

cz%+R%€——%2t%=F(x, t). (1)
Here R 9y/dt is the dissipation term, F(x, t) is the
forcing or source term. This equation can also be
used for forced oscillations by eliminating the first
term. It has dominated our thinking in acoustics
for two hundred years. But it often does not reflect
reality. Nevertheless, somewhat like Procrustes
and his infamous bed, acousticians have tried to
make the linear wave equation fit all situations, and
have tended to conceal those situations for which it
is not satisfactory. And yet, throughout the nine-
teenth century, there was an undercurrent of research
on nonlinearity in acoustics, as we shall see later in
this talk. Textbooks rarely mentioned anything
nonlinear. As an example, the first edition of
Kinsler and Frey’s book on acoustics, published in
1950, never refers to the subject, while the earlier
books by Ricardson and by Arthur Tabor Jones,
refer to it only in connection with the description of
Tartini tones. And so, let us begin with Tartini.?

In one sense, the subject of nonlinear acoustics
begins with Giuseppe Tartini. In the first half of
the eighteenth century, this Italian musician (Fig. 2)
reported his observation that he could hear
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Fig. 1 Prof. Nakamura’s account of my talk at
Buffalo, NY, 1972.Y
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Fig. 3 Difference tones (Helmholtz?).

difference tones when he played two musical notes
loudly on his violin.¥  As you can see from his
portrait, Tartini was nonlinear right down to the tip
of his nose. A sample of these difference tones is
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shown in Fig. 3.9

Tartini’s work was confirmed by other observers,
and the next hundred years saw a succession of
arguments as to whether this was a form of beats,
and therefore a linear phenomenon, or whether it
was due to something nonlinear.

We note that this first discussion of what today we
call nonlinear acoustics came in the field of music.
The second acoustical subfield to be concerned was
hearing, and in the middle of the nineteenth century
Helmholtz assigned the origin of the difference tones
to the middle ear. He recognized, correctly that the
difference tones were a nonlinear phenomenon, but
thought, incorrectly, that the small bones of the
middle ear—the ossicles—had a nonlinear response
to the sound wave impinging on them. By con-
sidering simply a square-law dependence for this
response, he was able to justify the appearance, not
only of difference tones, but also summation tones,
which Helmholtz had already reported hearing.
Helmholtz also maintained that he could produce
these various combination tones outside the ear, so
that they were objective tones, as against the subjec-
tive tones perceived in the ear.

Helmholtz’s work was apparently not accepted.
This is surprising because, by midcentury there had
been considerable work on the effect of high ampli-
tude sound on its propagation, in what we would
call today physical acoustics. The French scientist
Poisson had argued in 1808 that the velocity of
propagation in a sound wave consisted of the sum of
the small-amplitude sound velocity and the displace-
ment or particle velocity of the wave.® It was then
pointed out in the 1840’s by the English scientists
Airy and Stokes that Poisson’s thesis would lead, in
the absence of attenuation, to a distortion of the
wave, with one portion of the wavefront becoming
steeper and steeper until a discontinuity resulted.
These ideas were confirmed (before the work of
Helmholtz) by the research of Riemann® in the
1850’s and by a paper by Samuel Earnshaw in
1860.” If two waves of different frequency were
introduced into the equation of Earnshaw, it would
have been clear that various combination tones
would inevitably result. But no one did that.
And if this were not enough, Riicker and Edser in
England published a paper in 1895, demonstrating
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conclusively that they could detect the sum and
difference frequencies in a laboratory setup.®

Nevertheless, the effect was still not accepted.
“None are so deaf as those who won’t hear” might
have been the motto of the acousticians of the day.
It was in fact not until our own times (or, at least,
until my own time) that Fubini in 1935 produced
the explicit form of Earnshaw’s equation® and vari-
ous observers, beginning with Thuras, Jenkins and
O’Neil at the Bell Laboratories detected the sum and
difference frequencies in air.!®

One should also note in passing that the results of
Fubini had actually been obtained earlier by Georg
Bessel. David Blackstock pointed out the fact that
Bessel, in working on an astronomical problem,
invented the Bessel functions to solve Kepler’s equa-
tion for the eccentricity of an ellipical orbit, an
equation that was identical in form to the equation
developed by Earnshaw.!? Ah, if only we read the
literature !

The equation that Earnshaw and Fubini solved is
one without dissipation. When dissipation is in-
cluded, the problem of course becomes much more
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complex, and for a long time it defied solution.
Approximate solutions of the equation proved to be
of very limited usefulness, since one soon ran out of
the region of convergence of the solutions. What
was needed was a new technique. Glimpses of this
technique were provided first by Richard Fay with
his idea of the ‘almost stable waveform’ in the
1930’s,'? and then by Mendousse in the 1950s,'® but
full exploitation had to await the work of Khokhlov
and his students.¥

An excellent verification of the existence of these
combination tones in the ear was provided by Wever
and Lawrence in determination of the response of an
intact guinea pig ear due to two exciting tones (Fig.
419,

Mendousse described the solution of the problem
as equivalent to riding along on the crest of a wave
and viewing the changes in the wave form from that
point. Mathematically, one makes an adroit sub-
stitution and converts the problem from the approxi-
mate solution of an exact equation to the exact
solution of an approximate equation—in this case,
Burgers’ equation :
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Fig. 4 Difference and combination tone responses of an intact guinea pig ear, stimulated at 1,000 Hz (/) and

2,800 Hz (7)) (Wever and Lawrence!®).
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The beauty of this move stems from the fact that
another substitution converts Burgers’ (nonlinear)
equation to a linear one, for which a solution can
easily be found. Incidentally, this method of
converting a nonlinear equation to a linear equation
happens with some frequency in the field of non-
linear equations, but, thus far, no one has found a
single guiding principle that makes the discovery of
this substitution inevitable.

The work on Burgers’ equation was extended by
Zabolotskaya and Khokhlov in 1969 to take
diffraction effects into account.!” This relation,
known as the K-Z equation, applied only to a
nondissipative medium. However, a modification
of this equation was introduced by Kuznetsov a few
years later to take approximate account of
diffraction effects.!® This KZK equation has also
been widely studied. Since that time, numerous
papers have appeared, both in the U.S. and abroad,
applying, with the help of computer programs, these
equations to the solution of practical problems.
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Fig. 5 Beam patterns of parametric array sonar.
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Another major advance was made in the 1950’s by
Sir James Lighthill.’® He noted that Rayleigh, in
studying the scattering effects of small-scale in-
homogeneities in fluids, had written out the full
wave equation, including terms for the iIn-
homogeneities due to density and sound velocity
variations in the medium, and then discarded all the
nonlinear terms

2y 2dc Fpe 3 AP>3ﬁs
' ¢ ot oy < oy
24 -—[72 771,, a2p
Pp=07p PRREYOR
e & :
p=— F (ousat;+ pis— c’08s) ,

Lighthill in turn kept the nonlinear terms as forcing
terms, but discarded the inhomogeneity terms. He
then proceeded to solve the resulting equations
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Primary beam 200 kHz, difference frequency beam 12 kHz.
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for various cases involving the production of noise
by jet turbulence.

Applying the theoretical work of Lighthill, Peter
Westervelt developed an analysis for the interaction
of two collimated sound beams. In this analysis,
Westervelt arrived at two conclusions—one widely
accepted, and one that has proved to be controver-
sial for forty years. First, it was concluded that the
difference frequency would propagate with high
directivity and with no side lobes (Figs. 5, 6).202)

From Westervelt’s work and later from that of the
Russian school of Khokhlov and his colleagues, it
became clear that the production of the different
frequency had application in wunderwater sound.

o

The employment of two concentric ultrasonic beams
of neighboring frequency—say at 100 and 101 kHz,
would lead to a difference frequency beam at 1 kHz.
This beam had the high directivity of the ultrasonic
frequency and the low attenuation of the audio
difference frequency. This so-called parametric
array sonar has been put to use in shallow water
detection of various objects (Fig. 7)?? and in the
search for buried objects, be they mines or treasures
(Fig. 8).2®

The controversial conclusion of Westervelt relates
to the possible scattering of sound by sound outside
the region of interaction.?¥ Westervelt maintained
that the intersection of two collimated beams at
right angles would lead to no such scattering, and
indeed, that such scattering at the sum or difference
frequency could exist only if the two beams were

Fig. 6 Beam pattern for a 20-kHz difference
frequency, 1-MHz primary (Novikov et al.??).
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Fig. 8 Parametric array sonar used in search of buried treasure (Novikov et al.?®).
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collinear. Numerous papers, both theoretical and
experimental, have been lined up on the two sides of
this question. It would appear that the resolution
of the controversy lies in the boundary conditions
that we have applied to the propagating waves, and
whether or not the medium is dispersive.

A surprise application of the Tartini tones has
been found in small radios, whose loud speakers
were too small in diameter to allow effective radia-
tion of the bass notes in musical compositions.
The ear recognizes the second and third harmonics
of the bass tone and therefore perceives the difference
frequency which, is of course the missing fundamen-
tal tone. Between this and the underwater sound
apparatus discussed above, we thus have applica-
tions of engineering acoustics.?®

The nonlinearities of ultrasonic propagation are
of two kinds. One is due to the nonlinearity of the
wave equation itself, which takes the form

PE _ o’ &
o <1+§E>7+1 oa (2)
da
in gases or
825 — C()2 525 ( 3 )
2 2+B/A 2
ot <1 4 _g§ ) +BI4 da
a
in liquids. But the nonlinearity may also stem

from a nonlinearity in the relationship between the
excess pressure and the density changes, which can
be written in the form

p=t+As+yy s (4)

where
A=p0 (%—)S,fhpo — P o’

82 _
B - ‘002 < 301; )S,P=Po s :ﬁ_f—g

The pursuit of the ratio of B/ A4 has formed an
important part of my own research career, but it has
attracted the attention of many others. In 1940, the
Indian physicist M. R. Rao?® set up a relationship
between the sound velocity and the specific volume
of a liquid,

cPy=R,

where R is a constant for a given liquid, called the
Rao number. About 10 years later, the Japanese
physicist Y. Wada introduced a variant of this

114

J. Acoust. Soc. Jpn. (E) 18, 3 (1997)

relationship, called Wada’s rule,?” in which the
adiabatic compressibility xs and the density were
related in the form

B=(M/p)xs™""

where B is a pressure-independent constant for a
given liquid. These two empirical formulas are
closely related to one another, but what is of interest
from our point of view is that they yield an expres-
sion for the ratio B/A=6. Thus, they bear an
intimate relationship with nonlinear acoustics, al-
beit a very approximate one. The ratio B/ A for
liquids has been found to vary from about 2 up to
11, although there is a cluster of liquids for which
the value is close to 6. There are still many un-
answered questions involving the ratio of B/ A and
the structure of liquids that might give a bearing on
these values, and, as it is said at the end of every
contract report, more research needs to be done.

Another well-studied feature of nonlinearity is
radiation pressure, the small but measurable one-
directional force produced by a traveling wave.
This phenomenon has resulted in some levitation
(Fig. 9%) and in a control system (Fig. 1029) that
can lead to containerless processing of materials.

Another result of the nonlinearity of wave propa-
gation is the production of acoustic streaming, a
phenomenon first observed by Michael Faraday in
the 1830’s (Fig. 11).3® My colleague, Peter Wester-
velt would point out that streaming is the result of
the self-interaction of a finite amplitude wave, which
produces both the sum frequency—the second har-

Fig. 9 Leviation of a steel ball above a siren.
The diameter of the ball is 1.9 cm (Barmatz??),
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Fig. 10 Triple-axis levitator for holding a sam-
ple at the center by beams of three orthogonal
sound waves (Wang et al.2?).

Fig. 11 Acoustic streaming due to an ultra-
sonic source at the left (L. Liebermann3®),

monic—and the difference frequency—the zeroth
harmonic or acoustic streaming.

The field of shock waves is still one more branch
of nonlinear acoustics. Here, the acoustical phe-
nomenon has led to acute noise problems on the one
hand—through the appearance of the sonic boom
generated by high-speed aircraft (Fig. 12)3V or pro-
jectiles (N waves, Fig. 13%®)—and to the medical
field of lithotripsy, or the focusing of shock waves to
break up kidney and other stones embedded in body
organs (Fig. 14%¥).

Solitons.* One of the basic characteristics of linear
acoustics is the principle of superposition, according

* Those who attended the talk in Honolulu will recog-
nize that about here the author became ill and had to
leave the platform. He did, however, survive.

Fig. 12 Generation of a sonar boom (Beyer3?).

t pressure

time

Fig. 13 N wave (Beyer®?).

to which the different solutions of a single equation
can exist independently of one another. But, in
recent years, it has been found that the solutions of
certain nonlinear differential equations, known as
evolution equations, have, in the words of one
observer, G. L. Lamb, Jr.,, “a special type of elemen-
tary solution. These special solutions take the form
of localized disturbances or pulses that retain their
shape even after interaction among themselves, and
thus act somewhat like particles.”* In 1965,
Zabusky and Kruskal remarked that these “interact-
ing localized pulses do not scatter irreversibly, and
gave them the name of solitons—ie., solitary
waves.”’39

It has been a lot easier to produce solitons in
hydrodynamic waves than in acoustical ones, and
the acoustical research has mainly been in the former
area. Some samples of solitons or solitary waves,
going back to Russell in the 1840’s are shown in Fig.
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Fig. 14 Shock-wave lithotripter for gallstones
(Sauerbruch et al.?¥).

The Great Wave of Translatiorv
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Russell’s original sketches of the generation of a solitary
wave.

Fig. 15 Generation of a solitary wave

(Russell®®).

15, and Figs. 16*” and 17.39

Sonoluminescence. The phenomenon of sonolu-
minescence was first observed by Frenzel, Hinsberg
and Schulte back in 1929—the appearance of lumi-
nescence when air or oxygen had been dissolved in
water and a sufficiently strong ultrasonic signal
irradiated the liquid.?® After a long quiet period,
the study of sonoluminesence was once again been
taken up, vigorously, by Larry Crum and his
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Fig. 16 Interaction of two solitons (Drazin and
Johnson3®?).

-

— e T =TT

Fig. 17 Array of solitons: ;=54 mm, /,=18
cm, exciting frequency 10 Hz for (0,6) mode
(Wei et al ®®).

Fig. 18 Single bubble and multiple bubble
sonoluminescence (Crum and Roy*?).

associates.*® They have colored slides, whereas
this paper is in back and white, but the results of
both single bubble light scattering and multiple
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bubble scattering have been spectacular (Fig. 18).
These studies have led to a new branch of sono-
chemistry, but they have also interconnected with
cavitation—the appearance of holes or bubbles in a
liquid upon intense ultrasonic irradiation, still
another branch of nonlinear phenomena in acous-
tics. The study of the collapsing cavitation bubble
goes back to Lord Rayleigh. The mathematics
have been formidable and checkable results in the
area of sonoluminescence have not yet appeared.
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Fig. 19 The spectra of acoustic cavitation
noise. Nota (e), where a second period dou-
bling occurs (Esche*?).

The study has led to an intriguing development
—the creation of very high temperatures during the
bubble collapse. Estimates of these temperatures
by Seth Putterman and others have been as high as
100 million degrees, which approximates the level
necessary for nuclear fusion.*¥ It may be that the
collapsing bubbles of cavitation have an great un-

. developed future before them.

The phenomenon of cavitation has lead to still
another field prominent in modern physics, that of
chaos. In addition to the luminescence produced
by cavitation that we have just discussed, cavitation
was also known to produce a hissing noise. In
1952, Esche plotted the spectra of such noise for
sound sources of different frequencies (Fig. 19%?).
As can be plainly seen from the figure, the noise
contains the fundamental of the exciting frequency
and its higher harmonics. But what is also present
is a collection of half frequencies. In modern terms
this is period doubling. And period doubling
leads to chaos. More recent work by Lauterborn is
shown in Fig. 20.4®

I have now escorted you on a tour of nonlinear
acoustics, from the harmonies of Tartini’s music, to
chaos, which latter is possibly a symbol of our
modern times. I have dropped the names of more
than half of our technical committees in dealing
with nonlinear processes, and I hope that I have
therefore made the point that the thread of non-
linearity runs through much of this magical coat of
acoustics.
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