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The diffraction of an acoustic wave by a penetrable strip introducing the Kutta-Joukowski
condition is investigated. Mathematical problem which is solved is an approximate model
for a noise barrier which is not perfectly rigid and therefore transmits sound. The problem
is solved using integral transforms, the Wiener-Hopf technique and asymptotic methods. It
is found that the field produced by the Kutta-Joukowski condition will be substantially in

excess of that in its absence when the source is near the edge.

tion of the result is discussed.
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1. INTRODUCTION

Unwanted noise from motorways, railways and
airports can be shielded by a barrier which inter-
cepts the line of sight from the noise source to a
receiver. To design and performance of noise bar-
riers, particularly, for the reduction of traffic noise,
has received considerable attention in recent
years."® In most of the calculations with noise
barriers, the field in the shadow region of the barrier
is assumed to be solely due to diffraction at the edge.
This assumption supposes that the barrier is perfect-
ly rigid and therefore does not transmit sound.
However, most practical barriers are made of wood
or plastic and will consequently transmit some of
the noise through the barriers. Rawlins® presented
a theoretical work on this model by considering
diffraction of a sound wave from an acoustically
penetrable half plane.

In the Lighthill’s theory® for flow generated
sound, regions of turbulence are modeled by spatial
distributions of acoustic quadruples. According to
this theory the intensity of the sound radiated by a
compact turbulent eddy is proportional to M® (M is
the Mach number). Ffowcs-Williams and Hall®

43. 20. Bi, 43. 20. Fn, 43. 60. Cg

demonstrated that, if a compact turbulent eddy is
situated within an acoustic wavelength of the sharp
edge of a rigid half plane, the radiated sound inten-
sity is increased over its free field value by the large
factor M 3. Thus the edge is likely to be the domi-
nant sound source especially when the source is very
close to the edge. Their findings were however
based upon the assumption of a potential flow near
the sharp edge with velocity becoming infinite there.
Therefore their inferences could no longer be regard-
ed as valid if a Kutta-Joukowski condition were
imposed at the edge.

If one wishes to prescribe that the velocity is finite
at the edge then there are two possible points of view
one could adopt. One way is to abandon
Lighthill’s theory® and use linearized Navier-Stoke’s
equation with source term as employed by Alblas.?
The other point of view is to retain the equation of
small amplitude sound waves and attempt to apply
a Kutta-Joukowski condition at the edge. This
cannot be done without giving up some property of
the field such as continuity and one method of doing
this is to introduce a vortex sheet.

Jones” adopted this approach and introduce the
wake condition to examine the effect of Kutta-
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Joukowski condition at the edge of the half plane.
He calculated the field scattered from a line source
parallel to a semi infinite rigid plane attached to a
wake. It was observed by him that the imposition
of the Kutta-Joukowski condition does not have
much influence on the scattered field away from the
diffracting plane. This condition produces a much
stronger field near the wake than elsewhere even
when the source is not near the edge. Thus the
wake acts as a convenient transmission channel for
carrying intense sound away from the source. This
problem was further extended to a point source by
Balasubramanyam® and to the diffraction of a cylin-
drical pulse by Rienstra.” Later on Rawlins'®
addressed the diffraction of a cylindrical acoustic
wave by an absorbing half-plane in a moving fluid.
The theory assumes that the acoustic sources are
fixed in position and that their only time variation is
harmonic. In comparisons between the cases when
Kutta-Joukowski condition is applied and when it
is not, the excitation of the sources is taken to be the
same in both cases. If the application of the Kutta-
Joukowski condition were to alter the distribution
of sources, as it might in turbulent flow, our deduc-
tions would need modifications. Nevertheless, it
would seem reasonable to conclude that, in general,
the effect of the Kutta-Joukowski condition is to
produce a beam of sound in the neighborhood of the
wake and to scatter a field elsewhere which is
approximately that given by Ffowcs-Williams and
Hall.® The aim of the present paper is to analyze
the diffraction of a cylindrical wave by a penetrable
strip introducing the wake condition to examine the
effect of the Kutta-Joukowski condition. The
mathematical method used to solve the problem is
Jone’s method. The diffracted far field is calculated
using asymptotic approximations.

2. FORMULATION OF THE PROBLEM
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Fig. 1 Geometry of the problem.

diffracted by a strip. A penetrable strip is assumed
to occupy y =0, —/<x<0 as shown in the Fig. 1.
The penetrable strip is assumed to be of negligible
thickness and satisfying the penetrable boundary
conditions on both sides of the surfaces. The time
dependence is assumed to be of harmonic nature
exp(—iw?) (w is low angular frequency), with the
free space wave number of the form

k==t ik, (1)
where c is the speed of sound. In Eq. (1), k£ has a
small positive imaginary part which has been
introduced to ensure the convergence (regularity) of
the Fourier transform integrals defined subsequently
(Eq. 10b). The primary source is taken to be a line
source which is located at the position (x,, o), Vo>
0. On suppressing the time harmonic factor, the
wave equation satisfied by the total velocity poten-
tial ¢ in the presence of line source is

F P
( ox* + oy?

+kz)¢t=a<x~xo>a<y—yo>. (2)

The approximate boundary conditions for a pene-
trable medium of width 24 are given by Ref. 3)

ia% bz, + 1)+ ikadlz, + 1)

+ ikBp(x, F h)=0, (3)
where
We shall consider small amplitude sound waves
a=< T2 exp(2ikh sin %) +[exp(—2:kh sin &) — R? exp(2ikh sin &)] > sin 8 (3 a)
[exp(— tkh sin 90)+ R exp(ikh sin o) [P~ T2 exp(24kh sin So) o
B: —ZTSil’l l90 (3 b)
[exp(—ikh sin &)+ R exp(ikh sin 8)1>— T? exp(2ikh sin &)
p— (1—N®sin 2Kk exp(—2ikh sin &) (o)

In Egs. (3 a, b), the reflection and transmission co-
efficients R and T respectively are given by Ref. 3)
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2N exp(—2ikh sin &)

== N%sin 2Kih+ 2iN cos 2K’

3d)

K1p C

- /QOl sin %’ n C1
Ki=V(n*—cos® &),

and p, ¢ and p,, ¢, are the density and sonic velocity
of the media |y|>#4 and |y|<h respectively. For
the penetrable strip of negligible thickness (2kA< 1),
Eq. (3) for —/<x<0, y=0 take the form

a—f/qst(x, 0%) + dkad(x, 0°) + ik, 0-)=0,

%gzst(x, 0°)— ikadi(x, 0)— ikp(z, 05)=0..

(4)
We also require that the field shall be radiating
outwards at infinity.

If we now ask that the field be continuous and
possess finite local energy we are led to the two
dimensional analogue of the field determined by
Ffowcs-Williams and Hall.® Under the conditions
stated this field is unique'® and does not satisfy the
Kutta-Joukowski condition of finite velocity at the
edge. Therefore, to find a solution of Eq. (2) which
satisfies the Kutta-Joukowski condition, we must
abandon some of the other conditions imposed.
We cannot dispose of Eq. (4) and it would seem
desirable to retain the requirements that the field has
finite local energy. Therefore, the only possibility
left is to discard the continuity of the field.

The way to introduce a discontinuity in the field
which seems most natural is to postulate a wake
occupying x<—1, x>0, y=0. The form of this
wake should be similar to that in steady flow but
modified to allow for the oscillatory nature of the
field. In spite of ¢ not being continuous across the
wake we shall assume that the normal velocity d¢/
oy is. Consequently we take the boundary condi-
tion as

%fﬁt(x, y*):a—z ¢z, y7),

(x<~1,2>0,y=0), (5)
¢z, y*)— dlx, y)=aexpl(inr),
(x>0, y=0), (6)
¢z, y*)— oz, yT)=aexp(—inx),
(x<—1, y=0).

In Eq. (6) a and g are constants.
regarded as known, ie.

The constant g is

(7)

where 0< A= 9, <7, Im 3, =0. While & has a posi-
tive imaginary part we shall take 0 <<A:9, <z and
I >0; eventually we shall be concerned primar-
ily with the case <9, =0, I 9, >0. 1In Eq. (6), ‘@
is as yet unknown and has to be found; its value
depends upon the conditions imposed at the edge.
We note that ‘a’= 0 corresponds to a no wake
situation. It is appropriate to split ¢ as

plx, v)=o(x, v)+d(x, ¥), (8)

where ¢, is the incident wave corresponding to the
source term and ¢ is the solution of homogeneous

p=kcos &,

.wave Eq. (2) that corresponds to the diffracted

potential. Thus ¢, and ¢ satisfy the following
equations
( a‘?; +aiy2+ /fz> $o(x, ¥)
=z —20)8(y —w0) , (9)
(g—ﬁ-f?ﬂf?) oz, )=0. (10)

3. SOLUTION OF THE PROBLEM
We define the Fourier transform pair by
_ 1 :
$v, y)="5= Sﬁmfﬁ(x, y)exp(iva)dz ,

- (10a)
¢z, y)=—J~21;ﬂ~S_w$(v, y)exp(—ivr)dy

where y is a complex variable. In order to accom-
modate three part boundary conditions on y =0, we

split ¢(v, ) as

(v, y)=d:+(v, y)+exp(—il)g_(v, y)

+ (v, v), (10b)

where

$+(v, y)=%8:¢(x, y)exp(iva)dx ,

— N 1 -1 \ .
b-(v, v) == S_m¢(x, y)exp(iv)(z+dr,
and
v, ) ==\ §(x, p)expliva)dz
WV, ¥y m - Y Pl .
In Eq. (10b), @, is regular for Tny> —Ink, ¢_ is
regular for Jmy<Omk and ¢,(v, y) is an integral

function and is therefore analytic in — Jnk < Jny <
Jmk. The solution of Eq. (9) is
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¢o(x, v)

42.1 HPLk((2— 20)> + (= 10)?)2]

___LS‘” exp — iz — o)+ i(k*~ V)"ly — ] Ay
47Z'Z —00 kz——- VZ ’

(1n
Making change of variables
o= 7 COS (90 ,  Yo=170sin (90 s (0< Fo< 71') ,

in Eq. (11) and letting r,—~co we obtain using the
asymptotic form for the Hankel function

$o="0 exp(—ik(x cos So+ysin %)),  (12)

where

b *Zkexp(z'(/fro—ﬂ/m ,

T4 ko (13)
and , is the angle measured from the x-axis. Now
taking Fourier transform of Eq. (10), we obtain
2
(Zs+7) 80, my=0, (14)
where y=./k2— 2 and the y-plane is cut such that
Imy>0. The solution of Eq. (14) which satisfies
the radiation condition is

- Ai(Wexp(ivy),  (y>0),
= 15
#o 2) Ax(v)exp(—iyy), (y<0).} (15)
Transforming the boundary conditions (4) to (6),
we have
#'(v, 0%)="F ikt adi(v, 05)+ BF (v, 0%)]
Fik(a+ 8)po(v, 0)

~0'(v,0), (16 a,b)
$+/(v, 0)=¢:'(v, 07)=¢."(v, 0), (17 a, b)
- N T -y ia
¢+(V, 0 ) ¢+(’/70 ) /27(2/-9‘,&) ) (183)

(v, 0~ G-(v, O’):%’ (18 b)

where “” denotes differentiation with respect to “p”.
From Egs. (10b), (15) and (17), we can write

¢+ (v, 0)+ 6 (v, 0exp(— ivl)+ &'(v, 0*)
=1r[3:+(v, 0%)+ (v, 0")exp(— wl)

+ (v, 01)] , (19 a)
¢+ (v, 0)+6_(v, 0)exp(— ivl)+ &/ (v, 07)
=—ir[¢:(v,07)+ ¢_(v, 0")exp(— wi)
+ (v, 07)]. (19 b)

After eliminating &,'(v, 0%) from (16 a) and (19 a),
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#/(v,07) from Egs. (16 b) and (19 b) and adding
the resulting expressions, we arrive at

$ (v, )+ & (v, 0)exp(—avl)~ iyN(v) Ji(y, 0)

— T __ay 1
=901, 0) 2m<(u+#)
(i)

(v—1p) (20)

where

N(u)zl—f—\k(a;ﬁ) ,

B, 0= 18, 0~ Ei(v, 07)].

In a similar way by eliminating ¢,(v, 0%) from Egs.
(16 a) and (19 a), &,(v,07) from (16 b) and (19b),
and subtracting the resulting expressions, we obtain

o N L (,0)
G+(v, 0+ (v, 0 )exp(-wl)—‘y;ygf"—
=1+ Ba Y do(v, 0)

iy ok st
T [, 0+ o, 00)], 1)
where
LO)=1+82 1000, 00— 06100, 0= (o, 0]

From Egs. (12) and (20), we have

B+ (v, 0)+ (v, 0)exp(— wl)—iyN(v)Ji(v, 0)
N[ L enpl=itv= )]

22 Lv+u v—u

_ ak(a—p) [ 1 exp(—i(u—ﬂ)Z)J
242 Lv+tpu v—u
— kb sin !90

B V2r(v—k cos %)
X[1—exp(=i(yv—k cos S)D)]. (22)

For the solution of the Wiener-Hopf functional
equations, we make the following factorizations :

r=k+V)"E- )" =K (WK (v), (23)
and
N(V)=N.(v)N_(v),
L) =L)L(), } (242,0)

where N,(v), L.(v) and K.(v) are regular for
Imy>—Onk and N_(v), L_(v) and K_(v) are
regular for Omy<OJmk. Using the method as dis-
cussed by Noble [Ref. 12), p. 164] the factorizations
(24) are given by

NI | -El ectronic Library Service



The Acoustical Society of Japan

S. ASGHAR and T. HAYAT : ACOUSTIC DIFFRACTION NEAR A PENETRABLE STRIP

Ne()=1- 2B (( oy~ 1) ecos (£ k)
(25a)
Li(m:171'—7‘;(@/@2—1)-”%05—1@ k). (25b)

Thus, substitution of Egs. (23) and (24) in Eq. (22)
yields

&/ (v, 0)+ ¢ (v, 0)exp(— i)+ Si(v)S-(v)]:(v, 0)
n iaS+(v)S-(v) [ 1 exp(—i(u—,u)l)]

2271 vt u y—u
_ ak(a—p) [ 1 exp(—i(u—/x)l)]
227 v+ u y—u
— kb sin &

~ V2rx(v—k sin %)

X[1—exp(—i{v—Fk cos %)I)]. (26)
In Eq. (26), S,(V)[=K.(V)N,(v)] is regular for
Ony>—Onk and S_(v)[ = K_(v)N_(v)] is regular
for Jmy<Omk. The unknown functions ¢,’(v, 0)
and ¢_(v,0) in Eq. (26) have been determined
using the procedure discussed by Noble [Ref. 12), p.
196] and are given by

;@st_%@wm)cl(uw T(1)S.(»)C)

L a </f(a—b’)_z'S+(#)S+(V)
2427 \ (v+u) (v+u)

T(u)S+(V)
o).

$+/( v, O):

(27 a)

_ —kbsin 9 _
- m (S—(V)G?-( )/)

+ T(—)S-(VC)
a (kla—p)
* 2J27r< (=)

T(~1)S.
).

¢-"(v,0)

iS+(/1)S-(V)
(z—v)

(27 b)

In Egs. (27 a, b),

S+(W)=VEk+VvNi(v),
S_(v)=exp(in/2)Vv—EN-(v),

S.(k)
=720 S,70T

S, (k)
[1—T%(%)S:*(k)]

. ZS+(#)S+(E)
=T 750 S0 |

G k) + Gi(k) T(k)S+(K)],

C=

[Gi(k)+ G k) T (k) S+ (K],

T(k)S+(k)—exp(ipl)],

Gl( I/):

1 [ 1
v—kcos & L S+(v)

_____L__}
Si(k cos &)

— Ry( u)exp(z'/fl cos &), (28 a)
Gv)= B

u+k cos % L S«(v)

km]

xexp(ikl cos %) — Ro(v), (28 b)

R 2(1/)

E_[W{—i(k*xkcos 8)l}— Wl{—z(/{+u)l}]
2mi(vF k cos So)

T()/)=2—mE— W—1{— l(/f‘{‘ I/)Z} ,
E_1=21 exp(iki—3ir/4) ,
W)= T ( ) explom/2m) > W -sm)

[m=—i(k+v)] and W,;is a Whittaker func-
tion]. Now from Egs. (10 b) and (15), we obtain

Ai(v) = As(v)=exp(— D[ ¢-(v, 07) — ¢_(v, 07)]
+[i(y, 01)— (v, 07)]

+[ (v, 0%)— $+(v,07)], (29 a)

A+ Ad)=3([#/(, 0= F(, 0]

+[8+'(v, 07) =84 (v, 07)]
+exp(—w)[¢-"(v, 0%)

— 35, 00]).
Using Egs. (17) and (18) in Egs. (29) and then

adding and subtracting the resulting expressions we
get

(29 b)

_ta [ 1 exp(—=ily—pw]
A= o Tz V=g
+(, 0+ L2 0, (30)
_ —da [ 1  exp(—i(yv—pw)]
Azm_zfz?? Ly+p v—p
—fl(u,0)+1"(z.’;—’°). 31)

Substituting the values of J;(v, 0) and J,"(v, 0) from
Egs. (20) and (21) into Egs. (30) and (31), we obtain

Al(u)—w_[yi# EXD(—VZ'EVI;#)Z)]

+ W [ é+' (v, 0)+ ¢_"(v, 0)exp(—ivi)

1

— o' (v, 0>+2F{y+p
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—iy— )i ki s +
~exp(=iv= DV ke [ 5, 00)

+¢_(v, 0")exp(—ivl)—(1+ B ) do(v, 0)

_exp(—i(v—ﬂ)l)}
v—p

__ia { 1
242z \vtp

~ B, 0+ B, 0], (32)

[ 1 78XD(_Z'(I/_/J)1)]
2/% vtp v

“W[@'(“’ 0)+&.(v, O)exp(— ivl)

Alv)=

— 2F{V‘}‘ﬂ

(—iv—p)) ko [ - +
-]t 500
+ (v, 0")exp(—ivl) —(1+ Ba ) do(v, 0)
_ exp(—i(u—ﬂ)l)}

yv—u

__ia {1
242 \v+u

B )+ 8, 0. (33)

We note that

NwW)=1+0(a, ), L(v)=1+0(a),

and assert that (ka/y) and (kB/y) are very very
small provided that |v/k| is not too near 1. This
can be justified under small parameters «, 8 and

J. Acoust. Soc. Jpn. (E) 18, 6 (1997)

A1()/)= —AZ(U)
:%(qﬂ’(y, 0)+ ¢-"(v, 0)exp(—ivl)
~#(,0).
Note that in writing Egs. (34), we have retained the
terms of order O[(a, 8)/v] and neglected the terms

of Olk(a,B)/y]. Substitution of Egs. (12) and
(27 a,b) in Eq. (34 c) yield

(34¢)

Al(V): ‘“Az(l/)
_ kb sin S { Si(y)
V27 iy(v—k cos %) | S+(k cos &)

_ Si(=v)exp(—i(v—k cos $h)l) }
Si(— % cos &)

kb sin S
_W{S+(U) T(v)Ci—S+(v)Ri(v)

X exp(ikl cos %)+ Si(—v)Ro( —v)

Xexp{— i)+ C:T(—v)S:(—v)
2—{ka—B)|

22riy { =B x

—wl Sy
ool 54

exp(—wl)Si(—v) GCs
u—vy ]+(k+ﬂ)[T(V)S+(V)

+exp(—ivl) T(— V)S+(—z/)]} .

Xexp(— )} +

+

(35)

low frequency of the acoustic wave. Thus using Now putting the values of 4,(v) in Eq. (15) and
this Eqgs. (25), (32) and (33) give taking inverse Fourier transform the field $(x, y)
(a—8) can be written as
N:()=1FLEEL 3a
() my (342) Pz, y)=¢*"(x, y)+ ™ (x, ), (36)
o3 where
L)~ 172, (34b)
se kb sm c% Si(V)exp(iyy —ivx)
¢z, y)= S —o 17{v—k cos 8)S+(k cos S) av
B /fb sin d S‘” exp(—i(yv—k cos 9)1)S+(—v)exp(iyy — ivx) dv
21 Jew 1y(v—Fk cos 80)S+(—k cos &)
a N GE N ER! exp(—wl)) - © S.(v) exp(—ivl)5+(—)/) }
+47T[k(a 'B)szy{u-f-,u u—y } ZS+(#)S {u+u “—y }
Xexp(iyy —ivx)dy, 37
int
¢ (x/c,by)' e 1 +exp(—wl) T(—v)S(—v)lexp(iyy —ivx)dy .
:$S_WW[S+(V)RI(u)exp(W cos &) (38)
— S (= V)R — v)exp(—ivl)— S:(v) T(v)Cy In order to solve the integrals appearing in Egs. (37)
—T(—v)S:(— y)exp(— iy[)cz]exp(iyy—iyx)dy and (38), we put x=r cos 3, y=r sin ¢ and deform
aCs (= the contour by the transformation y= —k cos(J+
+ dr(k+p) S [T(V)S*(V) i£). Hence after using Eqgs. (7) and (13), we have
294
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for large kr

_ texp(ik(r + )
47r/c(cos 8+ cos %)(rr

37 A(—Fkcos 9)

Mo /c Yi7Z [(a B)exp(in/4)
X{ . exp(ik/ cos & }
(cos hi—cos 9) * (cos di+cos 9)

n exp(—/4)S(k cos &) { Si(—Fkcos &)
k (cos $1—cos 09)

exp(ikl cos 8)S.(k cos &9) } .
- (cos &1 +cos 9) } exp(ikr), (39)

i exp(ik(r + 7))
Ar(rro)?
a exp(i(kr+ n/1))
22 mky)H?

Pz, y)= f{—k cos 8)

f(—kcos 9).
(40)

+

In Egs. (39) and (40),
fA(—Fk cos &)

— sin %[SJr(—/f cos 9)

S+(k cos )

_ Si(k cos 9)exp(zki(cos & +cos c%))]
Si(—k cos %) ’

fo(—k cos 9)
=sin [ S+(— k& cos §)Ri(—k cos &)exp(ikl cos S)
— Si(k cos )Rk cos 9)expl(ikl cos §)
—Si(—kcos )T(—Fkcos 8)C
— Sk cos 9) T(k cos 9)C: exp(ikl cos 8)],

f(—k cos 9)

- G
(k+% cos &)

+exp(ikl cos 9) T(k cos 9)S+(k cos 9)].

From Egs. (36), (39) and (40), we obtain

iexp(ik(¥ + 1)) [ f(—Fk cos 9)
4r(rr) %k (cos 8+cos %)

-t <ol
1

Sl =]
_exp(ikl cos §) B
+ (cos 91+ cos 8) }Jrfs( k cos 9)

_ 1S:(k cos &) { Si(—kcos &)
k (cos &1—cos 9)

exp(ikl cos 9)S.+(k cos &) }]
(cos 9;+cos &) .

In the limit »—0, Eq. (41) shows that

[T(—k cos 8)Si(—Fk cos 9)

Pz, y)=

+

(41)

ACOUSTIC DIFFRACTION NEAR A PENETRABLE STRIP

_expltkry) (.
e {A(—% cos 9)

k cos 9)}

#(z, y)*ZV’Z[
+§f2(—
+iaex_p(i7r/ﬁlg{(a— B)(1+exp(ikl cos 9))

(27[’{)“2

_ﬁi@%@.ﬁﬁ_(&(—k cos 9)

+exp(ik! cos §)S+(k cos 8))
f(—k 9)
n 2003 H

where we have neglected the terms which are con-
stant and O(r). Therefore, the velocity will remain
bounded at the edge if and only if the co-efficient of
r¥2 yanishes. Hence the Kutta-Joukowski condi-
tion requires that

_ exp(ikro—3ir/4)
= G ) g(—kcos 8), (42
where
g1(—k cos 9)
={A(—k cos 19)+—§f2(_.k cos 9)}
X {(Q‘B)(l“rexp(ikl cos (9))+}%(L2COSL9)_

_MZOS&)(&(—/C cos 9)

+exp(7kl cos 9)S+(k cos (9))}_1
Using Eq. (42) in Eq. (41), the far field is given by
¢=at dw, (43)

where ¢, denotes that part of ¢ that arises when
there is no wake and ¢y the part that arises when
there is a wake. They are explicitly given by

i exp(ik(r + 7))

¢A: 472_(77 )ng 52(*11( Cos L9) , (44)
iexp(ik(r +n))
Pw= 41(rr) "k gs(—kcos 9),  (45)
In Egs. (44) and (45)
r=(— k cos )= KBS Bhr k(i cos 9),
93(—k cos 9)
— g~k cos a)[fg(% cos 9)
_ 1 exp(#kl cos 8)
+a 'B){ (cos 1—cos 9) ' (cos 9 +cos (9)}
~ iS4(k cos &) { Si+(—k cos 8)
k (cos $1—cos 89)

explekl cos 9)S+(k cos 9) }]

+ (cos 1 +cos 9)
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4. CONCLUSIONS

The problem solved in this paper takes into
account the material properties and thickness of the
finite plane. It may be that in practice it is more
convenient to measure the reflection coefficient R
and the transmission coefficient 7 for a finite plane
(rather than determining the material properties), in
which case the Eq. (43) can still be represented in
terms of theses quantities via the expressions (3 a)
and (3b). It is also worth looking that the approx-
imate boundary condition (3) is insensitive to the
variation of the angle of incidence when the finite
plane is dense (K,;A—>o0). This is because the fac-
tors & and B in (3 a) and (3 b) become independent
of the incident angle. In addition, the diffracted
field is found to be strongly dependent upon the
frequency. The high frequency sound is diffracted
into the shadow of the barrier. Therefore, a noise
barrier should be designed to make the transmission
as small as possible, to reduce the low frequency
transmitted sound, and the edges should be treated
to reduce to a minimum the high frequency
diffracted noise. In the illuminated region sound
can be reduced by making the reflection as small as
possible. It is found from Egs. (39) and (40) that
¢ consists of two parts each representing the
diffracted field produced by the edges at x=0 and
x=—1[, respectively, as though the other edges were
absent while ¢'™ gives the interaction of one edge
upon the other. It is also of interest to note how the
parameter (a-@) enters the calculation. The
parameter (@-3) represents the absorption of the
barrier and is intimately included in the calculation
through its role in the terms N, and N.

Some simple physically interesting features of Eq.
(43) are also noted. First, it is observed that the
imposition or otherwise of the Kutta-Joukowski
condition does not have much influence on the
diffracted field away from the diffracting plane.
On the other hand, near the wake the field is
strengthened and weakend elsewhere even when the
source is not near the edge. Second, the results for
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no wake situation can be obtained by taking ‘a’=0.
Third, the field corresponds to a rigid barrier if we
put «=0=g. This situation occurs if the material
comprising the finite plane becomes very dense, ie.
Om(n)>0, |n|—>o00 (K,h—o0). Fourth, the results
for an absorbing finite plane in presence of a wake
can be obtained by taking =0 and a = pyc/z (p, is
the density of the undisturbed stream, c is the speed
of sound and z is the acoustic impedance of the
surface). Thus, the consideration of the penetrable
finite plane with wake present a more generalized
model in the theory of diffraction and quite a few
interesting situations can be obtained as a special
case by choosing suitable parameters.
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