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Abstract: In this paper, we propose a simple method that considers boundary conditions in a finite
difference time domain (FDTD) scheme by varying density, sound speed and flow resistance. A
method based on a Rayleigh model is also proposed, and by these methods, we can design the
frequency characteristics of normal incident absorption coefficient arbitrarily. These methods have
three advantages: 1. easy coding, 2. easy designing of a frequency characteristic of normal incident
absorption coefficient and 3. easy configuration of material thickness. For example, by our method, we
can simulate the sound field in a reverberation chamber with a thick material such as glass wool. To
confirm the accuracy of the model used, we compare the normal incident absorption coefficient with a
one-dimensional exact solution. Results show that the model is sufficiently accurate. Although our
method requires a high cost for calculation power and memory, a practical increase in elapsed time can

be ignored. This method provides an easy way of analyzing the inner region of a material.
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1. INTRODUCTION

In most finite difference time domain (FDTD) methods
in acoustics, the ‘surface impedance model’ is used to
examine boundary conditions. In this paper, we propose an
alternative method in which a material is modeled on the
basis of density, sound speed, and flow resistance using a
Staggered-Grid mesh [1,2]. By setting these three param-
eters on each grid, a difference in characteristic impedance
is proposed, and simultaneously, they are recognized as
boundary conditions. This is a very simple and primitive
way of creating arbitrary boundary conditions.

Surface impedance is widely used as a boundary
condition in numerical acoustic simulation. This is also true
in an FDTD method, and several surface impedance
models were proposed, for example, in [1,2]. In previous
models, surface impedance is expressed as coefficients that
are set between the sound pressure and particle velocity
grids in the x, y and z directions.

In particular, in the method developed by Chiba and
Kashiwa [1], surface impedance is modeled by an RCL
equivalent circuit, and this model makes it possible to
design frequency characteristics. In these methods, surface
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impedance can be directly considered, and the inner region
of a material can be ignored. Therefore, they reduce the
number of calculation grids, and require a lower CPU
resource. On the other hand, intense coding effort is
required for the normal vector direction of a boundary,
particularly in the case of an arbitrary shape.

Typically, surface impedance is considered at the
boundary of two mediums with different characteristic
impedances. However, in the FDTD method, it is possible
to set the medium properties on each calculation grid, and
the set properties, such as density, sound speed, and flow
resistance, can modify the characteristic impedance on the
grid. A modified characteristic impedance yields surface
impedance equivalently. As a result, it is possible to set up
surface impedance in the FDTD simulation by modifying
the characteristic impedance on the grid.

Two boundary models are assumed in this paper. The
first model involves varying density and sound speed, and
is coded more easily than an impedance vector model. The
second model is a generally extended Rayleigh model
[3,4], which makse it possible to simulate sound fields with
a porous material of finite thickness.

Using the Rayleigh model, we can describe the porous
materials, such as glass wool. It is a very simple model
and is given by a continuous equation and an equation of
motion with a flow resistance term. On the other hand, the
Delany-Bazley [5] or Miki [6] model is a well-known
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model for porous materials. These models are expressed as
frequency-domain functions, and are useful for steady-state
analical methods, such as the boundary and finite element
methods. These models are reliable and useful, because
they are given by an experimental regression line. On the
other hand, since a wave equation is directly digitized in
the FDTD method, it is difficult to use the frequency
domain model. This is the reason why the Rayleigh model
is adopted here.

In this paper, first, the formulization of each model
is explained. Secondly, the accuracy of normal incident
sound absorption coefficient is explained by comparing it
with a one-dimensional exact solution. Lastly, two-dimen-
sional calculation examples of each model are shown, and
the effectiveness of the proposed method is examined.

2. FORMULIZATION

2.1. Finite Difference Expressions of Equations
An equation of continuity of sound wave in air is given
by

ap Ou,  duy,  du,
P T My ) 1
8I+K(8x+8y+81 M

where p is the sound pressure, u,, i, and u, are the particle
velocities in the x, y and z directions, respectively, and « is
the bulk modulus of the medium. An equation of motion in
the x direction is given by

op iy
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Sound pressure and particle velocities are discretized
by placing a Staggered-Grid mesh. The finite difference
version of the equation of continuity is expressed as
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and the discretized form of the equation of motion in the x
direction is expressed as
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where p(i, j, k, n) is the sound pressure on the grid of (i, j, k)
at the time of n and u,(i, j, k, n), u,(i, j, k, n) and u,(i, j, k, n)
are the particle velocities in the x, y and z directions,
respectively. Az is the sampling time, and Ax, Ay and Az
are the grid widths in the x, y and z directions, respectively.
The sampling time is determined by sound speed and
spacial grid width for stability [7]. For example, the Matlab
source code in a two-dimensional finite difference equation
is written as (in the example, the two-dimensional case is
assumed for simplicity) '

%equation of continuity
for i=1:I-1
for j=1:J-1
P2(i,j) = P1(i,j)...
-dt*K/dx*( Ux1(i+1,j)~Ux1(i,3) )...
-dt*K/dy*( Uyl (i, j+1)-Uy1(i,j) );
end
end

%equation of motion
for i=1:I-1
for j=1:J-1
Ux2(i+1,3j) =Ux1(i+1,3)...
-dt/dx/rho* ( P2(i+1,j)-P2(i,j) );
Uy2(i,j+1) =Uyl(i,j+1)...
-dt/dy/rho*x( P2(i,j+1)-P2(i,j) );
end
end

%swapping matrix

tmp = P1; P1 =P2; P2 = tmp;

tmp = Ux1; Ux1 = Ux2; Ux2 = tmp;
tmp = Uyl; Uyl = Uy2; Uy2 = tmp;

where P1 is the current variable of sound pressure and P2
is the updated variable of sound pressure. Ux1 and Uy1, and
Ux2 and Uy2 are the current and updated variables of the
particle velocities in the x and y directions, respectively. K
is the bulk modulus constant, and rho is the mass density
constant. dx and dy are the variables of spacial grid width,
and dt is the variable of sampling time. I and J are the
variables of calculation field size. If the code is iterated, it
can be monitored that P1, Ux1 and Uyl vary momentarily.

2.2. Existing Model of Surface Impedance
The simplest surface impedance model is proposed in
[2], in which the surface impedance Z is expressed as
z=", 5)
u
where p is the sound pressure and u is the particle velocity.
Figure 1 shows an example of an arrangement of grids at a

17

NI | -El ectronic Library Service



The Acousti cal

Soci ety of Japan (ASJ)

A A u, (i, j+1/2)

uy(i -1, j+112) Zy +
+>

PG J) T u(i+li2, )

>
pli-1,4)

u,(i-172, j)

A A

uy(i-1,j-1/2) uy (i, j -1/2)

p(i-1,j-1) pG, j-1)
(i -172, j-1) w (4172, j-1)

Fig.1 Layout of grids and impedance vector in pre-
viously used model.

two-dimensional sound field with impedance boundaries,
and finite difference equations that update u, (i + 1/2,j,n +
1) and u,(i,j+ 1/2,n 4+ 1) are expressed as

u(i+1/2,j,n+1) = pQi,j,n+1/2)/Z,, (6)

wy(i,j+1/2,n+1) = p(i, j,n+1/2)/Z,. @)
Z, and Z, are the impedances in the x and y directions,
respectively. If the direction of surface impedance is outer,
it is necessary that the spacial index of particle velocity,
which is different from sound pressure indexes, must be
incremented. By this method, we can avoid the calculation
of iterating in the inner region of a boundary, and the CPU
load can be lower. However, this method requires special
Judgment of directions for arbitrary boundary conditions.
This indicates that more difficult programming is required
in this method than in Method I presented in Sect. 2.3.

2.3. Method of Varying Sound Speed and Medium
Density (Method I)

Figure 2 shows two mediums with different mass
densities and sound speeds. These mediums also have
different characteristic impedances. The densities are
denoted p; and pp, the sound speeds, ¢; and c¢», and
characteristic impedances, Z; = pic; and Z; = p,c;, re-
spectively. The normal incident absorption coefficient o
is calculated as

2

Zy — 7, @)

2+ 7

Ol0=1-—

and the ratio of characteristic impedance a is

1+ VT-
a=T_ o
If we set the medium property as p, = ap; or ¢, = acy, the
normal impedance can be set as having the desired normal
incident absorption coefficient. In this method, the consid-
ered field shows the distribution of sound speed at each

)
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Zi=p1c1

Density: p1
Sound Speed: €1

Fig.2 Two mediums with different characteristic impedances.

calculation grid. In the FDTD method, sampling frequency
is determined by sound speed and spacial grid width for
stability [7]. The maximum sound speed of the sound field
must be used for the stability condition. The coding of this
method is very easy, and the simplified Matlab code is as
follows.

%equation of continuity
for i=1:1I-1
for j=1:J-1
P2(i,j) =P1(i,j)...
-dt*K(i,j)/dx*( Ux1(i+1,3j)-Ux1(i,j) )...
-dt*K(i,j)/dy*( Uyl(d, j+1)-Uy1(i,j) );
end
end

%equation of motion
for i=1:1-1
for j=1:J-1
Ux2(i+1,3) =Ux1(i+1,j)...
-dt/dx/rho(i,j)*( P2(i+1,j)~-P2(i,j) );
Uy2(i,j+1) = Uyl(i,j+1)...
-dt/dy/rho(i,j)*( P2(i,j+1)-P2(i,j) );
end
end

%swapping matrix

tmp = P1; P1 =P2; P2 = tmp;

tmp = Ux1; Ux1 = Ux2; Ux2 = tmp;
tmp = Uyl; Uyl = Uy2; Uy2 = tmp;

where rho is the variable of mass density, K is the bulk
modulus, and the other variables are the same as those in
Sect. 2.1. The change in sound speed is included in the bulk
modulus in this case.

2.4. Method Based on Rayleigh Model (Method II)
In the Rayleigh model [3,4], a porous material is

replaced by a set of thin pipes with perfectly rigid bodies,

as shown in Fig. 3. In this model, the equation of continuity
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Rigid Bodies

Fig.3 Image of Rayleigh model in which the set of thin
pipes with rigid bodies are assumed.

in the porous material is the same as that in air and is given
by

op duy  Ouy Buz)
— 4kl —=+=2+=) =o0. 10
az+K(ax o (10)

Here, we assume that air viscosity is dominant, and the
distribution of air flow is constant in the thin pipes. This
distribution is regarded as the constant flow distribution,
and the equation of motion is described by adding a
diffusion term in which particle velocity is multiplied by o,

which s flow resistance. Thus, the equation of motion in
the x direction is expressed as

ap ouy

—+ p— 4 ou, = 0. 11

TP x (11
Although excess attenuation is treated only in the x
direction in the original Rayleigh model, the model can
be extended to two- or three-dimensional cases straight-
forwardly. The expanded equation of motion is expressed

as
%-’—paa—u;—{—oxux:O, (12a)
% + p?—:?y + oyuy = 0, (12b)
2—Z+p%btt—z—+—ozuz =0. (12¢)

Although the flow resistance of the material may
depend on the directions, o, and oy are set to be identical
in this paper for simplicity. Further discussion should be
required to verify the accuracy of the method of introduc-
ing the angle dependence of flow resistance in the FDTD
method.

The finite differential version in the x direction is
expressed as

Ato,
u (i, j.k,n+ 1) = (l -2 )ux(i,j,’@n)
0

Arp (111
- _’ __’ _.__’n -~
axp |PU T2 T2 TP,

R S | 1 1

—p(z—E,J——E,k—E,n—f—E):l. (13)
We must update Egs. (3) and (13) in the inner region of the
material. The difference from the original traveling case in
air is the term of flow resistance in the x, y and z directions.
If we express the equation of motion in a two-dimensional
field as the x and y terms in Eq. (12), the update equations
are expressed as follows;

%equation of continuity
for i=1:I-1
for j=1:J-1
P2(i,j) =P1(i,j)...
—dt*K/dx*( Ux1(i+1,3)-Ux1(i,j) )...
-dt*K/dy*( Uyl (i, j+1)-Uy1(i,j) );
end
end

%equation of motion
for i=1:I-1
for j=1:J-1
Ux2(1,j)=(1-at*sx(i,3)/rho)*Ux1(i,j) ...
-dt/dx/rhox( P2(i+1,j)-P2(i,j) );
Uy2(i,j)=(1-dt*sy(i,j/rho))*Uyl(i,j)...
-dt/dy/rho*( P2(i, j+1)~-P2(i,j) );
end

end

%swapping matrix

tmp = P1; P1 =P2; P2 = tmp;

tmp = Ux1; Uxl = Ux2; Ux2 = tmp;
tmp = Uyl; Uyl = Uy2; Uy2 = tmp;

where sx(i,j) and sy(i,j) are the flow resistances in
the x and y directions, respectively, and the other variables
are the same as those in Sect. 2.1. If these resistances are
equal to zero, there is no absorption by flow resistance, and
the equation of motion corresponds to that in normal air. In
this case, only setting the flow resistance makes it possible
to analyze the sound field with an absorbing material of
finite thickness.

3.  EXAMINATION OF ACCURACY OF
METHOD 1

3.1. Normal Incident Sound Absorption Coefficient
A one-dimensional pipe is assumed, as shown in Fig. 4,
and the normal incident absorption coefficient is calculated
by one-dimensional FDTD. The grid width is 0.0025m,
and the sampling frequency is set to be 388,060 Hz. The
sampling frequency is determined by the constant multiple
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Fig.4 Image of one-dimensional sound field in which
acoustic tube of infinite length and material of infinite
thickness are assumed.

057
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Relative Sound Pressure
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Spacial Index

Fig.5 Image of source distribution calculated using Eq. (15).

of time period, which satisfies the stability condition as

Fy=2+2-¢c/Ax, (14)

where Fj is the sampling frequency, c is the sound speed,
and Ax is the grid width.

As an initial condition, an impulse source is assumed
in a time domain. In a spacial domain, the distribution of
sound pressure is set to be

0.5+ 0.5 cos(tr/R) if r <R,

15
0 if r > R, (15)

m0=i
where r is the distance from the center position of the
sound source and R is the radius of the sound source.
Figure 5 shows the condition of the sound source in this
calculation in which R = 100 - Ax. Using this condition,
the absorbed boundary condition is not set; however, a
large calculation field is assumed to equivalently realize an
infinite field. Figure 6 shows the waveform of the observed
sound pressure. The incident and reflected waves are
completely separated, as in the case in which an ideal
absorbed boundary condition is assumed. The normal
incident absorption coefficient ay(w) is calculated as

Prcf(w)
Pinc(w)

2

; (16)

(@) =1 -

where Pin.(w) and Prs(w) are the frequency responses of
the incident and reflected waves, respectively. They are
obtained by the Fourier transform of truncated waves, as
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Fig. 6 Calculated waveform at receiver. The incident
wave is separated from the reflected wave. The relative
sound pressure is normalized using the initial ampli-
tude of source.
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Fig.7 Normal incident absorption coefficient calculated
from spectra of incident and reflected waves shown in
Fig. 6. The expected value is 0.5 at all frequencies, and
the result of the simulation is the desired value.

shown in Fig. 6. The conditions assumed are the density
p2 = 7.0524kg/m’ and the sound speed ¢; = 343 m/s in
the material. The normal incident absorption coefficient,
which is calculated from the waveforms in Fig. 6, should
be 0.5 under this condition with an exact solution given by
Eq. (8). Figure 7 shows that the normal incident absorption
coefficient is equal to 0.5 at all frequencies.

Another calculation is carried out by varying the sound
speed in the material. Figure 8 shows the results of this
calculation, in which the material mass density p; is fixed
to be 20kg/m> and the sound speed c; is varied to 43, 143,
243, and 343 m/s. All the results are determined by the
same procedure as that used in Fig. 7, i.e., by comparing of
the incident wave spectrum with the reflected wave
spectrum. It is observed that the normal incident absorption
coefficients correspond to exact solutions. These results
suggest that it is possible to consider various conditions,
including the lower sound speed in the material than in air
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Fig.8 Normal incident absorption coefficients obtained
by FDTD (solid line) and using exact solution given by
Eq. (8) (broken line). The material sound speed in
material ¢; is varied with the fixed mass density p» =
20kg/m>.

in this method; that is, locally reactive conditions can be
examined.

4. EXAMINATION OF ACCURACY OF
METHOD II BASED ON RAYLEIGH MODEL

o
o

©
~

reflected ’k

o

k=

incident

Relative Sound Pressure
o
N

O
o

0 5 10 15 20
time [ms]

Fig. 10 Calculated waveform at receiver in Rayleigh
model. The relative sound pressure is normalized using
the initial amplitude of source.

separated. In this case, it is possible to assume that the
material has an infinite thickness. The material character-
istic impedance Zy is expressed as [3]

ig\?
Zm():poc(]— ) (17)

Pow

where = is the flow resistance. The normal incident sound

4.1. Material of Infinite Length

To confirm the accuracy of the Rayleigh model, a one-
dimensional tube is assumed, as shown in Fig. 9, and the
calculation of sound pressure is carried out by a one-
dimensional FDTD method. The normal absorption coef-
ficient is calculated and compared with the exact solution.
The conditions used are as follows: a spacing grid of
0.0025 m, a sampling frequency of 388,060 Hz, a porosity
of 1, and a flow resistance of 15,000kgm~>s~!. The
sampling frequency of 388,060Hz is determined using
Eq. (14). In air, sound pressure is updated by using Egs. (3)
and (4). In the material, Egs. (3) and (13) are used. The
sound source and infinite field used are the same as those in
Sect. 3.1.

Figure 10 shows the waveform of sound pressure at the
receiver and that the incident and reflected waves can be

Fig.9 Image of one-dimensional sound field used in
examination of Rayleigh model, in which acoustic tube
of infinite length and porous material of infinite
thickness are assumed.

absorption coefficient ¢ is calculated as

2

ZmO - ZaO (1 8)

ow=1—|———
ZmO+ZaO

where Z, is the characteristic impedance of air.

Figure 11 shows the calculated result with the exact
solution of the normal incident absorption coefficient. The
calculated result is similar to the exact solution.

4.2. Material of Finite Thickness
Figure 12 shows a one-dimensional pipe and a material

Absorption Coefficient

200 400 600 800
Frequency [Hz]

1000

Fig. 11 Normal incident absorption coefficient obtained
by FDTD method with Rayleigh model (solid line) and
using exact solution given by Eq. (18) (broken line).
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Porous Material of 0.1 m thickness
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0.5m 0.5m

Fig. 12 Image of one-dimensional sound field used in
examination of Rayleigh model, in which acoustic tube
of infinite length and porous material of finite thickness
with rigid back are assumed.

with a rigid back. The calculation conditions used are as
follows: a spacing grid width of 0.0025m, a sampling
frequency of 388,060Hz, a porosity of 1, a flow resis-
tance of 15,000kgm‘3 s71, and a material thickness of
0.1m. The sampling frequency of 388,060Hz is deter-
mined using Eq. (14). The sound source and infinite field
used are the same as those in Sect. 3.1. The characteristic
impedance Z, of the material with a rigid back is
expressed as [3]

» igZ\?
Zo1 = —iZ. cot[d— (1 _ ) } (19)
c 00w

where d is the thickness of the material and Z,, is the same
as Eq. (17). It is assumed that the rigid back in the FDTD
method is realized by setting the particle velocities to be
zero on the grids.

Figure 13 shows the result of comparing the normal
incident absorption coefficient and exact solution. The
normal incident absorption coefficient, which is calculated
by the FDTD method, corresponds to the exact solution.

1 T
$ o8
S
D aal
8 0.6
3 FDTD
S o4l - - =- EXACT
g
?
£ 027
<
0 i i i L

200 400 600 800
Frequency [Hz]

1000

Fig. 13 Normal incident absorption coefficient obtained
by FDTD method with Rayleigh model (solid line) and
using the exact solution given by Eq. (19) (broken
line).
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Porous Material of 0.1 m thickness
Air Layer of 0.1 m thickness

IR N
Source Receiver
® [0)

—

0.5m 0.5m

» o0
X

Fig. 14 Image of one-dimensional sound field used in
examination of Rayleigh model, in which acoustic tube
of infinite length and porous material of finite thickness
with air layer and rigid back are assumed.

4.3. Material of Finite Thickness with Air Layer at Its
Back

Figure 14 shows another calculation model. The one-
dimensional pipe with the material with an air layer at its
back is simulated by a one-dimensional FDTD method.
The calculation conditions used are as follows: a spacing
grid of 0.0025m, a sampling frequency of 388,060 Hz,
a porosity of 1, a flow resistance of 15,000kgm—>s~!,
and material and air layer thickness of 0.1 m. The sound
source and infinite field used are the same as those in
Sect. 3.1. The characteristic impedance of the air layer
(Z,1) with a thickness of d[m] is expressed as [8]

Zoy = —iZy cot(kd), (20)

where d is the thickness of the material and Z,, is the
characteristic impedance of air. The characteristic impe-
dance of the material with the thickness d[m] thickness is
given by Eq. (19). The total characteristic impedance Z is
written as [8]

_ _iZaIZml + Zm02
Zal - Zml

, (2D

where Zp; is the same as Eq. (19). Finally, the normal
incident sound absorption coefficient «; is calculated as

2

Z—Zy 22)

Z+Za0

Ch:l—’

where Z, is the characteristic impedance of air. Figure 15
shows the normal incident absorption coefficient. The
numerical absorption coefficient corresponds to the exact
solution.

5. NUMERICAL EXAMPLE IN TWO-
DIMENSIONAL SOUND FIELD

5.1. Method I: Varying Sound Speed and Medium
Density
Figure 16(a) shows a two-dimensional sound field
enclosed by a rigid boundary and two different mediums.
A spacial grid width of 0.05m and a sampling frequency
of 19,403Hz are assumed. This sampling frequency is
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Absorption Coefficient

200 400 600 800
Frequency [Hz]

1000

Fig. 15 Normal incident absorption coefficient obtained
by FDTD method with Rayleigh model (solid line) and
using exact solution given by Eq. (21) (broken line).

5 [m]

1.25 [m]

2.5 [m]

center position
of sound source

5 [m]

1.25[m]

2.5[m]

center position
of sound source

porous matetial

Fig. 16 Image of two-dimensional sound field enclosed
by rigid boundary. The left-hand side is filled with air,
and the right-hand side is filled with a different
medium in (a), and the porous material of finite
thickness is arranged at the center in (b).

determined by using Eq. (14). The left-hand side of the
field is filled with air, and the right-hand side shows the
material with a high density and various sound speeds. The
sound source is calculated by using Eq. (15), and the
source radius 2R is the eleven grid width, as shown in
Fig. 17. Figure 18 shows the results obtained at a density
of 6.05 kg/m? and a sound speed of 343 m/s. The reflection
wave on the left-hand side and the transmitted wave on the
right-hand side are shown. Figure 19 shows the results
obtained at a density of 60.5kg/m> and a sound speed of

Fig. 17 Image of source distribution given by Eq. (15).

343 m/s. The characteristic impedances of the materials
assumed in Figs. 18 and 19 are identical. However, in the
case in Fig. 19, the sound speed is low, and the transmitted
wave on the right-hand side diverges very slowly from that
in Fig. 18.

5.2. Method II: Rayleigh Model

The Rayleigh model makes it possible to calculate
sound fields with porous materials of various sizes and
conditions. Figure 16(b) shows the simulated sound field
with a porous material with a large air layer at its back. The
calculation conditions used are as follows: a grid width
of 0.05m, a sampling frequency of 19,403Hz, a flow
resistance of 8,000 kgm'3 s~} and a material thickness of
0.1 m. The sampling frequency of 19,403 Hz is determined
by using Eq. (14). The source condition is the same as the
previous condition. Figure 20 shows the changes in
calculated field. It is observed that the reflected wave has
a complex pattern and that the transmitted wave is
moderatly attenuated.

Since a practical material does not have uniform
characteristics, we have tried to consider such a random
variation. Inside the material, we set the mass density p to
be 1.21kg/m? & 25%, the sound speed c to be 343 m/s +
25% and the flow resistances o, and o, to be 8,000
kgm™3s~! 4 25%. Inside the material, all properties of
each grid are calculated as

p=121-(1+0.25-N), (23)
c=343-(1+0.25-N), (24)
o, = 8000 - (1 +0.25 - N), (25)
o, = 8000 - (140.25 - N) (26)

where N is the random value calculated for each grid
and the range of this value is from —1 to 1. Figure 21
shows the calculated field with the randomized conditions.
It is observed that the reflect wave is dissymmetric because
of the randomized medium. This method enables us to
examine cases in which the target material has a large
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0.93 [ms]

1.86 [ms]

3.71 [ms]

Fig. 18 Changes in the absolute relative sound pressure
distribution on linear scale. The relative sound pres-
surre is normalized using the initial amplitude of the
source. A mass density of 6.05kg/m> and a sound
speed of 343m/s are assumed in the right-hand side
medium.

distribution of properties, such as sound speed and flow
resistance. In this example, the calculation is stable, but
general stability conditions should be discussed in a future
study.

6. CONCLUSION

In this paper, we propose a method that considers
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0.93 [ms]

1.86 [ms]

3.71 [ms]

Fig. 19 Changes in absolute relative sound pressure
distribution on linear scale. The relative sound pressure
is normalized using the initial amplitude of the source.
A mass density of 60.5kg/m> and a sound speed of
34.3m/s are assumed in the right-hand side medium.

boundary conditions by changing density, sound speed, and
flow resistance in an FDTD scheme. A model for the
changes in density and sound speed suggests the possibility
of considering the various conditions. Another model,
which is an extended Rayleigh model, makes it possible to
analyze a sound field with a porous material of finite size.
Both models show good correspondence with exact solu-
tions and have large advantages in that practical coding is
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0.77 [ms] 0.77 [ms]

1.55 [ms] 1.55 [ms]

2.32 [ms] 2.32 [ms]

3.09 [ms] 3.09 [ms]

Fig.21 Changes in absolute relative sound pressure
distribution on linear scale. The relative sound pressure
is normalized using the initial amplitude of the source.

Fig.20 Changes in absolute relative sound pressure
distribution on linear scale. The relative sound pressure

is normalized using the initial amplitude of the source. A mass density of 1.21kg/m’ % 25% and a sound
A mass d.ensity of 1.21 kg/m?® and a sounq speed of speed of 343 m/s £ 25% in the air layer, and a flow
343m/s in the air layer, and a flow resistance of resistance of 8,000kgm~3s! %+ 25% for a 0.1-m-
8,000kgm™3 s~! for a 0.1-m-thick porous material are thick porous material are assumed.
assumed.
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