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Vibrational analysis of glass harp and its tone control
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Abstract: In this paper, we focus on the control of the tone of a glass harp during the process of
manufacturing, and on the analysis of the vibration of the glass harp using a finite element method.
First, the effect of various factors on results is studied, such as the element type that enables a good
geometries approximation and the number of divisions on the accuracy of mode frequencies. Second,
we examine how each mode frequency changes with the bulge of the glass harp. The results
demonstrate that the use of a bulge is effective in controlling the pitch and the timbre. Third, the pitch
can be varied over a wide range by changing the bulge of the cup. In particular, it can be finely
adjusted by cutting the inside bottom of the cup so as to form of a small circular groove instead of
using a conventional method, which involves cutting the outside of the cup.
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1. INTRODUCTION

In recent years, several experimental and analytical
studies have been carried out on glass harps [1-4].
However, the analytical studies have been focused on the
tuning of a commercially available wineglass by filling it
with water and/or by cutting the outside of the bottom of
the cup. We have four glass harps for use in concerts, which
were developed for the Tsukuba International Exposition
held in 1990 [5], and since then we have started analyzing
them by a finite element method (FEM). However, large
discrepancies in the mode frequencies were found between
theory and experiment. We thus need to make the error as
small as possible to permit quantitative discussion. In this
study, we also aim to use the glass harp as a percussion
instrument, in addition to as a conventional instrument,
which is to rub the rim to produce only harmonic tones. A
glass harp can be used as a percussion instrument in a
performance, and its tapping tone is also clear. Therefore,
by studying the possibility of whether/how we can control
the pitch and tone quality by changing the bulge, we
intend to design a glass harp as a percussion instrument.

2. MEASUREMENT OF GEOMETRY
AND MATERIAL CONSTANTS

We could not obtain the dimensions of the glass harp
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with satisfactory precision, even though we tried various
methods such as using a photograph and a nondestructive
technique based on the use of a contour measuring
machine. The geometry of a glass harp is too complex to
measure by conventional nondestructive techniques.

Following Ref. [2], we also cut the cup in half after
dividing a glass harp into a cup part and a stem part, and
then the precise cross section of the cup was obtained using
a copy machine (Fig. 1).

We cut off two strips (50 x 10.1 x 2mm) from the
stem to calculate the density by measuring their weight and
Young’s modulus. The frequencies of the fundamental
bending mode were obtained from tapping tones recorded
on a digital audio tape recorder (DAT) in an anechoic room
and using a fast Fourier transform (FFT); the frequency
resolution is 2.7 Hz.

The densities and Young’s moduli of the two strips are
given in Table 1. The material is crystal glass containing
24% PbO [5]. We used the average values of the two
samples in this study (Table 2) because the discrepancy
between the two sets of values obtained above is small. The
value of Poisson’s ratio in Table 2 was measured in our
laboratory using another larger specimen. The values of
Young’s modulus and Poisson’s ratio listed in Table 2 are
almost the same as those in Ref. [2].

3. SPECTRA OF TONES OF GLASS HARPS

The rubbing and tapping tones were detected using a
1/2 inch condenser microphone (B&K, type 4190) about |
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Fig. 1 Cross section of cup of glass harp.

Table 1 Densities and Young’s moduli of two strips.

Sample Density [kg/m?] Young’s modulus [GPa]
1 3010 61.27
2 3004 61.15

Table 2 Material constants used for FEM analysis.

61.2 [GPa]
0.262
3010 [kg/m?]

Young’s modulus E
Poisson’s ratio o
Density p

meter from the stem of the glass harps in an anechoic room
and recorded on a DAT (SONY, type DTC-ZASES). Glass
harps were played by rubbing the rim with a wet finger and
by tapping the rim with a wooden mallet. Examples of the
spectra of the rubbing and tapping tones of the glass harp in
Fig. 1 are shown in Figs. 2 and 3, respectively. The spectra
were obtained by FFT analysis of the tones recorded on the
DAT. The duration of the tone analyzed was 2s. From
Fig. 2, we can see that the rubbing tone has only small
overtones and thus produces almost sinusoidal tones [1,2].
On the other hand, the tapping tone has rather large
inharmonic components and the affect the timbre, although
the pitch is the same as that of the rubbing tone. Some
important dimensions of our four glass harps are given in
Table 3, and the frequencies of the components of the
spectra, their ratios to the frequency of the first component
(in parentheses), and the nearest note to each frequency are
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Fig.3 Example of spectrum of tapping sound.

Table 3 Some important dimensions of four glass harps

(A, B, C, D) [mm].

A B C D
Diameter at top 61.0 62.0 72.0 81.4
Maximum diameter 71.0 75.6 106.0 123.2
Height of cup 65.0 66.6 102.0 114.5
Thickness of rim 1.4 1.3 1.3 1.7
Length of stem 55 55 60 60
Diameter of stem 20.4 20.0 20.9 20.5

given in Table 4.

From Table 4, we can see that not only the pitch but

changing its dimensions and geometry.

also the timbre of the glass harp can be controlled by

Table 4 Frequencies of components, their ratios (in parenthesis), and the nearest note to the tapping tones of the four glass

harps.
Component no. A Note B Note C Note D Note
1 1,160(f) D’ 585(f) D? 1.271¢f) D*# 630(f) D#
2 2,226(1.92f) CH 1,532(2.621) G’ 3,099(2.44f) G* 1,652(2.62f) G#
3 4,056(3.501) H* 2,950(5.04f) fh 5,759(4.531) % 3,12004.951) G*
4 8,995(7.751) — 4.335(7.41 1) C# 8.988(7.07/1) s 4,753(7.541) D3
425
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Fig.4 Subdivision of whole glass harp into 1,152
parabolic isoparametric elements.

Fig. 5 (2,0) mode shape.

4. FINITE ELEMENT ANALYSIS

In this study, a general-purpose finite element code
MSC/NASTRAN [6.7] was used to obtain mode shapes
and frequencies, and a graphic pre/postprocessor program
MSC/PATRAN was used to visualize mode shapes.

The cross-sectional geometry (the right-half portion of

Fig. 1) is inputted and rotated 360 degrees, thereby forming
the shape of a glass harp for the finite element method.
Five-sided and six-sided parabolic isoparametric elements
were used for the model. The cross section was subdivided
into 48 elements in the circumferential direction, 24 in
the height direction, and 1 in the thickness direction. A
glass harp model completely into 1,152
elements is shown with a grayscale pattern in Fig. 4. The
main mode shapes obtained by FEM analysis are shown in
Figs. 5-8 [10].

subdivided
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Fig. 6 (3.0) mode shape.

Fig.7 (4,0) mode shape.

Fig. 8 (5.0) mode shape.

The mode frequencies and shapes obtained here
correspond to those in other Refs. [1,2]; thus, the lowest
four modes are denoted as (2,0), (3.0), (4,0), and (5,0)
following Ref. [1]. To examine the accuracy of the mode
frequencies, the mode frequencies obtained by FEM and
FFT analyses of its tapping tone were compared. The
results are given in Table 5 for material A in Table 3.
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Table 5 Mode frequencies obtained by experiment and
FEM analysis.

Table 7 Mode frequencies for various boundary con-
ditions and length of stem.

Mode Experiment [Hz] FEM [Hz] Deviation {%]
2.0y 1,161 1,169 0.68

(3.0) 2,227 2,295 3.0

4.0) 4,056 4,161 2.5

(5.0) 6,350 6,491 2.2

From Table 5, we can see that the deviation is less than
3% (1/2 semitone) for every mode and, in particular, the
deviation for the most important mode (2,0) is less than
0.7%. Therefore, we can consider that the results obtained
by the FEM analysis are sufficient in accuracy for
quantitative discussion.

5. COMPARISON OF TWO TYPES
OF ELEMENT

We examined the difference between the mode fre-
quencies obtained by FEM using 20-noded (parabolic) and
8-noded (linear) isoparametric elements.

First, we tried to analyze the model divided into 20-
noded isoparametric elements, which has 40 divisions in
the circumferential direction, 20 in the height direction and
one in the thickness direction. Next, we analyzed the model
divided into 8-noded isoparametric elements, which has 80
divisions in the circumferential direction, 40 in the height
direction and 2 in the thickness direction. Therefore, the
latter model has 8 times the number of elements than the
former; that is, the total number of analytical nodes is
slightly greater (the calculation time is roughly propor-
tional to the square of the total number of nodes) than that
of the former. The mode frequencies are given in Table 6,
and the differences between the mode frequencies are also
given in the fifth column of the table. From Table 6, it is
clear that all the mode frequencies of the 20-noded model
are markedly lower and closer to those obtained in the
experiment than those of the 8-noded model. Therefore, it
can be said that the difference originates from errors in the
geometrical approximation (the smoothness of the shape is
greater for the 20-noded model) and/or the intrinsic
accuracy of the elements used [8.9].

We conjecture that sufficient accuracy can be obtained
by FEM analysis using the parabolic isoparametric ele-

Table 6 Mode frequencies obtained by using 20-noded
and 8-noded isoparametric elements.

Mode 20-noded [Hz]

(2,0) 1,169 (1.00)
3.0 2.299 (1.97)
(4.0) 4,169 (3.57)
(5.0) 6,505 (5.56)

§-noded [Hz]

1,483 (1.00) 26.9
2.810 (1.89) 222
4,738 (3.19) 13.6
7.004 (4.78) 9.05

Difference [%]

Boundary condition Free Free Fixed Free Fixed
Stem length [mm)] 3 55 55 100 100

2.0y mode frequency [Hz] 1,169 1,168 1,168 1,168 1,168
(3,0) mode frequency 2203 2294 2204 2294 2204
(4,0) mode frequency 4,158 4,158 4,158 4,158 4,158
(5,0) mode frequency 6,487 6,486 6487 6487 6487

ments even when the FEM is applied to a vibrator with
curved surfaces such as a glass harp. The quantitative
differences between the mode frequencies in Figs. 8 and 10
in Ref. [2] may originate from the difference between the
cross-sectional shapes of real glasses and those of the
analyzed glasses using 8-noded elements.

6. CHANGE IN MODE FREQUENCY
DUE TO BOUNDARY CONDITIONS

As shown in Fig. 1, a glass harp used for a concert is
different from a commercially available wineglass. The
glass harp has a thinner rim and a thicker stem than a
wineglass [5].

The change in the mode frequency with the length of
the stem and the manner of fixing was examined. In the
boundary conditions, “Fixed” indicates that all the nodes
on the cylinderlike handled stem are perfectly fixed three
dimensionally. The result is given in Table 7.

From the Table 7, we can see that the length of the
stem and the boundary condition (free or fixed) do not
change the mode frequencies at all. This result implies a
great practical advantage, because we need not consider
how to fix the handle of the glass harp. We also confirmed
the result experimentally by measuring the spectral peaks
of the tones of the four glass harps held by hand and by a
thick (20 mm) brass plate with holes of various diameters.
The diameters of the top holes were made slightly larger
than those of the bottom holes to fit the slightly tapered
handles of the glass harps.

Thereafter, a stem of 3mm length (hereafter called
the standard geometry) was used to save on calculation
time.

7. CHANGE IN MODE FREQUENCY
CAUSED BY BULGE OF CUP

A change in the frequency of components may be
possible using a cup with a bulge (which is characterized
by the diameter at the height of the middle of the cup). The
bulge was examined by keeping both the height of the cup
and the diameter of the rim the same as those in the
standard geometry. The bulge was changed substantially,
as shown in Fig. 9, to examine by how much fundamental
and higher mode frequencies and their ratios can be
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Fig.9 Cross sections of overdrawn glass harp with
various bulge coefficients.

changed by the bulge. The intermediate maximum diam-
eters of the cup are 0.5, 0.816 (cylindrical cup), 1.5, and 2.0
times that of the standard geometry. We set the bulge
coefficients to be 0.5, 0.816, 1.5, and 2.0 (see Fig. 9).

The results are shown in Figs. 10 and 11. The
horizontal axis is the bulge coefficient. The vertical axis
in Fig. 10 indicates the mode frequency normalized by
the respective standard mode frequency (see Table 5), and
the vertical axis in Fig. 11 indicates the mode frequency
normalized by each (2,0) mode frequency. The fundamen-
tal mode frequencies increase by making the bulge
coefficient both large and small. For example, the funda-
mental frequency for a bulge coefficient of 0.5 is more than
twice the frequency for the standard geometry.

From Fig. 10, it can be seen that the (2,0) mode
frequency is increased to values greater than unity with
either smaller or larger bulge coefficients in the range of
0.5-2.0; the change in the high mode frequency is smaller
than that in the (2,0) mode frequency for the smaller bulge
coefficient.

Therefore, it may be possible to tune the frequency of
the 2nd or 3rd partial to a small integer ratio by reducing
the bulge coefficient slightly.

Figure 11 shows the higher mode frequencies of the
partials normalized by the respective foundamental (2,0)
mode in the case of five bulge coefficients. These are an
effective shapes when we think about the timbre of the
tapping sound. We can see from Fig. 11 that the frequency
ratio can be controlled by adjusting the bulge coefficient.
Furthermore, we can obtain a normalized frequency of the
2nd or 3rd component of 1.5, 2.0, 2.4, 2.5, or 3.0. In
particular, for the standard glass harp, the frequency of the
second mode is approximately an octave higher than that of
the fundamental mode and a fifth higher for cylindrical cup
(0.816x).

Having consulted a manufacturer, we found that there
is no additional difficulty in making a glass harp with the

428

Acoust. Sci. & Tech. 28, 6 (2007)

Normalized frequency

; . ‘ : : ‘ [
06 08 1 12 14 16 18 2
Bulge coefficient

Fig. 10 Effect of bulge coefficient on mode frequencies
normalized by respective mode frequencies whose
bulge coefficient is equal to unity.

Frequency ratio

Bulge coefficient

Fig. 11 Effect of bulge coefficient on frequency ratios
of modes higher than the respective fundamental mode.

various cross sections shown in Fig. 9 compared with
making one with the standard (1x) cross section.

8. FINE TUNING REALIZED BY
CUTTING BOTTOM OF CUP

To make a musical instrument, it is important to tune
the pitch of a glass harp exactly. In Refs. [2,5], the pitch is

tuned slightly by cutting out portions from the outside of

the bottom of the cup, which weakens the mechanical
strength.

We propose a new technique of slightly cutting the
inside of the bottom in an annular manner. We studied the
change in mode frequencies with the depth of cutting.
Although the cutting curve cannot be exactly determined
quantitatively in this study, the depth of cutting is

approximately | mm—4 mm. Half of the cross section of

the cutting model is shown in Fig. 12, and the results are
shown in Figs. 13 and 14.

From Fig. 13, it can be seen that the pitch decreases
almost in proportion to the amount of cutting; the rate is
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Fig. 12 Cross sections of glass harp with bottom cut out
to various depths.

Frequency ratio

L

Cutting depth [mm]

Fig. 13 Effect of cutting depth on mode frequencies
normalized by respective mode frequencies, where
cutting depth at inside bottom is equal to unity.
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Fig. 14 Effect of cutting depth on frequency ratios of
modes higher than respective fundamental mode.

slightly larger than 2% per | mm, and the frequencies of

higher modes are almost unchanged (less than 1%). From
Fig. 14, we can also see that the frequency relations
between the (2,0) mode and the higher modes, therefore the
timbre, change little.

We consider the reason for the frequency decrease to be
as follows. The bottom of the cup undergoes great stress,
although the vibration is small. Therefore the rigidity acts
as a spring constant. Cutting the bottom of the cup reduse
the thickness of the slight cylindrical groove and the spring
constant equivalently. The effect is larger for the funda-
mental mode because the vibrating part for the lower mode
is close to the bottom of the cup [1].

In practice, we can cut gradually using a milling
machine and a jig with a cylindrical tip covered by
carborundum or diamond powder, keeping the handle
fixed, and checking the pitch by rubbing or tapping lightly
while cutting.

9. CONCLUSION

The mode frequencies and mode shapes of a glass harp
for concert use were studied by FEM and by experiments
using the glass harp.

The important results obtained in this study are as
follows: (1) The vibration of the glass harp is determined
by the cup alone; the length and boundary conditions of
the stem do not matter. (2) The pitch and timbre of a
glass harp can be changed by changing the bulge of the
cup. (3) Pitch can be finely adjusted by cutting the bottom
of the cup.

In a future study, we intend to examine the effect of the
bulge of the cup and other parameters more precisely. We
also want to make a new percussion instrument from
crystal glass.

REFERENCES

[1] T.D. Rossing, “Acoustics of the glass harmonica,” J. Acoust.
Soc. Am., 95, 1106-1111 (1994).

[2] K. Oku, A. Yarai and T. Nakanishi, “A new tuning method for
glass harp based on a vibration analysis that uses a finite
element method,” J. Acoust. Soc. Jpn. (E), 21, 97-104 (2000).

[3] K. W. Chen, C. K. Wang, C. L. Lu and Y. Y. Chen,
“Variations on a theme by a singing wineglass,” Europhys.
Lett., 70, 334-340 (2005).

[4] Y. Y. Chen, “Why does water change the pitch of a singing
wineglass the way it does?.” Am. J. Phys.. 73, 1045-1049
(2005).

[5] C. Ozawa, “On development of the crystal-glass instrument,”
J. Acoust. Soc. Jpn. (J), 47, 579-587 (1991).

[6] E. Hinton and O. R. J. Owen, Finite Element Programming
(Academic Press, London, 1977).

[7] H. G. Schaeffer, MSC/NASTRAN Primer (PDA Engineering,
Calif., 1988).

[8] T. Nakanishi, K. Oku and A. Yarai. “Vibration analysis of a
glassharp by finite element method — Minor pitch change due
to water filling in the vessel —," Proc. 1997 Jpn.-Chin. Jt.
Meet. Musical Acoustics, pp. 15-20 (1997).

[9] T. Nakanishi, I. Nakai and A. Yarai, “Vibration analysis of a
glassharp by finite element method — Minor pitch change due
to localized showing of the bottom part —." 3rd Ji. Meet.
Acoust. Soc. Am. and Acoust. Soc. Jpn., pp. 397-400 (1996).

[10] An example of the animation of the (2.0) mode is available at

“http://swallow.ee.uec.ac.jp/glshrp.html™ on the Internet.

429

NI -El ectronic Library Servi

ce




The Acousti cal

430

Soci ety of Japan (ASJ)

Koichi Uchida was born in Kanagawa Pre-
fecture in 1976. He received the B.Eng. and
M.Eng. degrees from The University of Electro-
Communications. He is a member of ASJ.

Acoust. Sci. & Tech. 28, 6 (2007)

Kenshi Kishi was born on January in 1945 in
Yamagata Prefecture. He received B.E., MLE.
and Dr.Eng. degrees from Tohoku University.
From 1972 to 1973, he was with Tohoku
University and he is currently an associate
professor of The University of Electro-Commu-
nications. His research interests include the
vibration analysis of the musical instruments,
especially of the stringed instruments and
percussion instruments. He is now a member
of ASJ, ASA, and IEICE.

NI -El ectronic Library Servi

ce




