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Abstract: In this paper, we  introduce a new  method  of  robust  speech  recognitien  under  noisy

conditions  based on  discrete-mixture hidden Markov models  (DMHMMs), DMHMMs  were  originally

proposed  to reduce  calculation  costs  in the decoding  process. Recently, we  have  applied  DMHMMs  to

noisy  speech  recognition,  and  fbund that  they were  eflective  for modeling  noisy  speech.  Towards the
further improvernent of  noise:robust  speech  recognition,  we  propose a nevel  normalization  method  for
DMHMMs  based on  histogram equalization  (HEQ). The  HEQ  method  can  compensate  the nonlipear
efTects  of  adclitive  noise.  It is generally used  for the feature space  normalization  of  continuous-mixture

HMM  (CMHMM)  systems.  In this paper, we  propose both model  space  and  feature space  norma-

lization of  DMHMMs  by using  HEQ.  In the model  space  normalization,  codebooks  of DMHMMs  are

modified  by the transform  function derived from the HEQ  method.  The proposed methed  was

compared  using  both conyentional  CMHMMs  and  DMHMMs.  The results showed  that the model

space  norrnalization  ef  DrmMs  by multiple  transfbTm functions was  effective  for noise-robust
speech  recognition.
           '
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              1. INTRODUCTION

   in recent  speech  recognition  systems,  continuous-

mixture  hidden Markov  models  (CMHMMs)  have been

used  as acoustic  models.  The parameters of  CMHMMs  can

be  estimated  eMciently  under  the assumption  ef  a  nomial

distribution. Meanwhile, discrete HMMs  (DHMMs) based
on  vector  quantization (VQ) have  a problem that they  are

affected  by quantizatien distortion. However, CMHMMs
may  not  be suitable  for noisy  speech  recognition  because of
the false assumption  of  a  normal  distribution. The  DHMMs
can  represent  more  complicated  shapes  and  they are

expected  to be  usefu1  for noisy  speech.

   Recently, discrete-mixture HMMs  (DMHMMs), for
which  the quantization size cari  be  reduced,  have been

proposed in [1,2]. DMHMMs  require  a  smaller  amount  of

training  data than  ordinary  DHMMs.  However,  they  still

require  a 1arger ameunt  of  training data than  CMHMMs.
To  solve  the problem of  trainability, we  proposed a  MAP

'e-rnail:

 tkosaka@yz.yamagata-u.ac.jp
te-mai1:katoh@yz.yamagata-u.ac.jp

¢
e-mail:  kohcla@yz.yamagata-u.ac.jp

estimation  of  DMHMMs  to further reduce  the amount  of

training  data [3]. It was  reported  that this method  achieved

an  average  error  rate  reduction  of  28.1% in nonstationary
conditions  compared  with  CMHMM-based  recognition  [4],
   In this paper, we  propose a  normalization  method  of

DMHMMs  based on  histogram equalization  (HEQ), This
technique is commonly  applied  for feature space  normal-

ization [5]. In this method,  a transform function is

calculated  directly from the histograms of  both training
data and  test clata, and  the method  can  compensate  the
nonlinear  effects  of  additive  neise.  This method  can  be

applied  to the normalization  of  an  input feature vector,

However,  it cannot  be  used  fOr medel  space  normalization

if CMHMMs  are  used  as  acoustic  models.  In a  normal

distribution, the shape  of  the distribution is represented  by a

continuous  function that has two  parameters, the mean  and

variance.  The  mean  can  be shifted  by the transform function

based on  the HEQ  method.  However, the shape  of  the

distribution cannot  be modified  by such  a nonlinear  trans-

form function because it is determined  only  by  the  variance.

In contrast,  the shape  of  a  Dmm  can  be modified  because
each  sample  value  of  the discrete stochastic  variable  can

be shifted  by the nonlinear  transform  function.
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   In this paper, we  propose  both feature space.  and  model

space  normalization  based on  the HEQ  method.  The
normalization  in model  space  has a  merit  compared  with

that in feature space,  In the former, a  transfbrm function
can  be prepared  for each  acoustic  model  or model  class

separately,  It is expected  that  the transform  functions will
depend on  the feature of  each  phoneme  or phoneme  class.

Then, experiments  on  normalization  using  multiple  trans-

form functions are conducted  in this study  to verify  the

effectiveness  of  multiple  transformations.

   The paper is organized  as fo11ows. In Sect. 2, we  present
a  brief overview  of  the parameter  estimation  of  DMHMMs,

In Sect. 3, both model  and  featuTe space  normalization

methods  based on  HEQ  are described. The experimental

setup  is described in Sect, 4, In Sect. 5, we  present results
showing  the improved performance of  this method.  Finally,

we  conclude  this paper  in Sect, 6,

     2. PARAMETERESTIMATIONOF
        DISCRETE-MIXTURE  HMMS

2.1. Discrete-MixtureHMMs

   In this section,  DMHMMs  are briefiy introduced. In
recent  years, two  types of  DMHMM  have been proposed,

One is subvector-based  quantizatien [2] and  the other  is
scalar-based  quantization [1]. In the fbrmer method,  feature
vectors  are  partitioned into subvectors,  and  then the
subvectors  are  quantized using  separate  codebooks,  In the
latter, each  dimension of  the feature vectors  is scalar-

quantized, The quantization size  can  be reduced  markedly

by partitioning the feature vectors.  For example,  in [2], the

quantization size  was  reported  as 2 to 5 bits, and  in [1], it
was  4 to 6 bits. Because the quantization size  is smal1,  the
DMHMM  has superior trainability for acoustic  modeling,

In this work,  subvector  quantization is used  because it has

been reported  that the subvector-based  method  is more

effective  than the scalar-quantized  method.

   The subvector-based  method  can  be described as

fo11ows. The  feature vector  is partitioned into S subvectors,

Ot =  [oit, ･ ･ ･ , ost, ･ , , , ost]. VQ  codebooks  are  provided fbr
each  subvector,  and  then the feature vector  ot is quantized,

       g(ot) =  [qi(Oit),･･-,gs(Ost),･･･,qs(ost)]- ,(1)

The  output  distribution of  the DMHMM,  bi(ot), is given by

          hi(ot) ==  ]Z) wimHp,i.(q,(o,t)),  (2)
                  m s

where  wi.  is the  mixture  coerncient  fOr the  mth  mixture  in

state i, and  P,i. is the probability of  the discrete symbol  for
the sth  subvector.

2.2. MAPEstimationforDMHMM

   In ML  estimation,  the  effect  of  the  prior distribution

is ignored; however, an  appropriate  prior distribution is

used  for parameter  estimation  in MAP  estimation.  In
this sectien,  the training of  DMHMMs  based on  MAP
estimatien  is described, The ML  estimate  of  the discrete

probability p,i.(k) is calculated  in the fo11owing fbrm:
                     T

                    £  7imt 6(qs(Ost),k)
                    t=1
            Psim(k) =                                             (3)
                          T

                         E"mt
                         t=1

           6(qs(ost),k)=I8 kfie,S;G),,=,,k7 (4)

where  k is the index of  the subvector  codebook  and  1ila.t is
the  probability of  the mth  mixture  component  being in state

i at time  t. We  assume  that the prior distributien can  be
represented  by the Dirichlet density. The  MAP  estimate  of

DMHMM,  P,i.(k), is given by

                  T ' P?im(k) +  nim  ' Psim(k)
          Psim(k)= .                                             (5)
                         T+nim

                        T

                  nim=E"mt,  (6)
                       t=1

where  p?i.(k) is the constrained  prior parameter and  T

indicates the relative  balance between the corresponding

prior parameter and  the observed  data. In our  experiments,

T was  set to 10,O based on  the results of  experiments  in [4],
Although both the mixture ceeMcient  and  the transition

probability can  be estimated  by MAP,  only  the output

probability is estimated  by MAP  in this paper.

2.3. PriorDistribution

   The  specification  of  the parameters of  prior distribu-.
tions is one  of  the key issues of  MAP  estimation.  In our

work,  it is assumed  that the prior distributions can  be
represented  by models  that are converted  from CMHMMs
to DMHMMs.  In this case,  the parameters of  the  prior
distribution p,Oi.(k) are given by

             P?im(k) 
=

 E:2is"r,lii(,ili))' (7)

                       k

where  bgi,.O is the probability density of  the CMHMM,
and  v,(k)  is the centroid  fbr each  subvector  s. While p?i.(k)
has the constraint  that  it must  be a  normal  distribution                                               7

P,i.(k) in Eq. (5) does not  have such  a constraint.  Thus, it
is expected  that  fi,i.(k) will  be updated  to represent  more

complicated  shapes  in the training session.

2,4. Compensation  for Discrete Distributions

   To  improve noise  robustness,  a  compensation  method

for discrete distributions is applied.  It is more  likely that
the significant  degradation of  output  probability will  appear
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in the case  of  mismatch  conditions  caused  by unknown

noise,  This method  can  reduce  the negative  effect  of

unknown  noise  in the decoding process. It is panicularly
effective  for short-duration  noise  [4], The compensatien

method  is given as  fOllows: If P,i.(q,(o,t)) <  dth in Eq, (2),
the output  probability is set to dth, where  dth is the
threshold for the subvector,

      3. CODEBOOKNORMALIZATION
           BASED  ON  HISTOGRAM

                EQUALIZATION

   The HEQ  technique is commonly  applied  fbr feature

space  normalization  [5]. In this paper, this technique is
applied  for both feature space  and  model  space  normal-

ization of  DMHMMs.  Model space  normalization  can  be

realized  as a  method  of  codebook  normalization  of

DMHIMMs,  While model  space  nomialization  can  be

applied  to DMHMMs,  it carinot  be applied  to CMHMMs.
For CMHMMs,  the shape  of  the distribution cannot  be

modified  by a nonlinear  transform  function because the
shape  is determined only  by the variance.  In contrast,  the

shape  of  the DHMM  can  be modified  because each  sample

value  of  the discrete stochastic  variable  can  be shifted

using  the nonlinear  transform function. There is a merit  in

choosing  model  space  normalization.  In the method  of

model  space  normalization,  a transform function can  be

prepared for each  acoustic  model  or  model  class.  For

example,  a  voiced  model  and  an  unvoiced  model  can  be
normalized  separately.  It is expected  that a  more  accurate

method  using  multiple  transformations will  improve
recognjtion  performance.
   The basic idea of  HEQ  is that･ a  coefficient  is trans-

formed from one  probability distribution to fit another,

Cumulative density functions (CDFs) of  both  training  and

test･ data are  used  to calculate  the transformation function.
Two  types  of  normalization,  model  space  normalization

and  feature space  normalization,  are described. The trans-

fbrm  function HE2.0  fbr codebook  normalization  can  be

written  as  fbllows:

      e;(ost) =  HEC.(es(ost)) =  CE-i(CT(qs(ost))), (8)

where  CE is the  CDF  estimated  from  test data and  CT  is the

CDF  from training data. Note that only  the centroid  q, is
transformed  and  the digcrete probability P,i. is not

changed,  Then  this normalization  can  be carried  out  using

a  small  amount  of  input speech  fdr CDF  estimation.

Furthermore, since  al1 models  share  a set  of  codebooks,  it is
not  necessary  to normalize  each  mode]  individually,

   The transfbrm function HE2f(  ) fbr feature space

normalization  is given by

           o2, ==  HE2f(ost) =  Cii(CE(o,t)), (9)

In this case,  both CDFs,  CT  and  (:E, are  the same  as the
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    Fig. 1 Block  diagram of  codebook  normalization.

Fig. 2 Block diagram of  feature vector  nermalizatton.

CDFs  in Eq, (8), and  HEQfO  is the inverse transform of

HEe.o  
'

   In the experiment,  the parameters are 39 MFCCs  with

12mel  cepstrum,  log energy  and  their first- and  second-

order  derivatives, There are  various  HEQ  methods  for

transfbrming  time derivatives [6]. In this work.  each

dimension is transformed  independently.

   Figure 1 shows  the block diagram ef  codebook  normal-

ization, and  Fig. 2 shews  that of  feature vector  normal-

ization. In Fig, 1, histograms derived from both training
and  test data are  calculated  to make  a transfOrm function.

Then  each  codebook  fbr the subvectors  is normalized  using

the  transforrn  function. Only acoustic  models  are modified

by using  the normalized  codebooks,  and  they  are  used  in

decoding process. In Fig, 2, each  input utterance  in the

evaluation  data is analyzed  and  norrnalized.

         4. EXPERIMENTALSETUP

   The analysis  conditiens  are  sUmmarized  in Table 1. A
set  of  shared  state  triphones  was  used  as  an  acoustic  model.

The  total number  of  states was  2,OOO, and  the  number  of

mixture  c6mponents  was  16,

   Fer experiments,  we  used  
"JNAS:
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          Table 1 Analysis  conditiens, Table2  Codebookdesign,

Sampling  rate

Frame  period
Frame  length

  Analysis

         16kHz
          8ms
          32ms
MFCC  (1-12), log power+A  +  AA

Parameter logP ci,

      C2C3,C4C5,

 C7,

C6  CSCy,cleCllTC12

Cedebeok  size"6464an646464

Table  3Set  of  recognition  experiments.Notation

Moclel Normalization
wfo  Normalization Noise Utterance

DMHMM
Featllre

DMHMM
DMHMM-fer-noise DMHMM-fer-utter

Model DMHMM-mod-noise DMHMM-mod-utter

CMHMM
Feature

CMHMM
CMHMM-fer-noise CMHMM-fer-utter

Model CMHMM-mod-noise

Anicle Sentences" as  training and  test data, which  contains

speech  recordings  and  their orthographic  transcriptions,

Text sgts  for reading  were  extracted  from the 
CtMainichi

Shinbun"  newspaper.  We  prepared two  sets  of  training

data, One  was  used  fbr clean  training, and  the other  was

used  fbr multicondition  training  [7], The  training  data set

consisted  of  15,732 Japanese sentences  uttered  by 102 rnale

speakers,  For clean  training, no  noise  was  added  to the

data, For multicondition  training, the utteran ¢ es were

divided into 20 subsets.  No  noise  was  added  to 4 subsets,

In the  rest of  the data, noise  was  artificially  added.  Four

types of  noise  (car, exhibition  hall, crowd  and  train) were

selected  and  added  to the  utterances  at  SNRs  of  20, 15, 10

and  5dB.  The neise  data were  selected  from the JEIDA
noise  database [8], and  the type of  noise  was  determined

with  reference  to the AURORA  training set [7]. The set of

clean  training data was  used  for parameter estimation  ef  the

initial CMHMMs,  After obtaining  the initial CMHMMs,
they were  converted  into DMHMMs  by Eq. (7). in order
to obtain  noisy  aceustic  models,  the parameters  of

DMHMMs  were  retrained  using  multicondition  training

data, Initial CMHMMs  were  also retrained  using  multi-

condition  data, and  retrained  models  were  used  for
comparative  experiments,  The  total number  of  states and

the number  of  mixture  components  were  the same  as  those

ef  the DMHMM,

   Two  sets  of  test data were  prepared  for evaluation.

Testset A  The noise  condition  is the same  as  that in the

   multicondition  training  set,  Car, exhibition  hal1, crowd

   and  train noises  are  used.

Testset B  The  noise  condition  is different from that in the

   multicondition  training dataset, Station, factory, street

   crossing  and  elevator  hall noises  are  used,

In testset A, the selected  noise  data were  similar  to the

AURORA  closed  testset. With the exception  of  stationary

noise  data such  as  air conditioning  noise  and  noise  data in

testset A,  there were  six types of  noise.  Four types of  noise

data out  of  the  six  were  used  as testset B,  and  the rest

(distribution center  and  public telephone box) were  omitted

because  they were  similar  to the  noise  data in testset B.

Each type of  noise  was  added  to 1OO sentences  uttered  by
10  male  speakers  at  SNRs  of  10dB.  Thus, the number  of

utterances  was  4eO fbr each  testset,

   All results  presented here were  extracted  using  a

decoder  with  a  word  bigram with  a 5 K  word  voeabulary,

Table 2 shows  the subvector  allocation  and  codebook

size,  In the table, although  A  and  A2  are  omitted,  these
                                        '
codebooks  were  designed in the same  manner.  The
codebook  design  was  determined  with  reference  to the

results  in [2] and  the split vector  quantizer in the DSR  firont
end  [9], In [2], it was  reported  that  DMHMMs  with  from

9 to 24 subvectors  shQwed  better perfOrmance. The feature
vector  was  partitioned into subvectors  that contain  two

consecutive  coeMcients.  The  consecutive  coeracients  that

comprise  subvectors  are  expected  to be more  correlated,

Also, it was  reported  in [2] that subvectors  that contained

consecutive  coerncients  performed well.  The LBG  algo-

rithm was  utilized  fbr creating  the codebook.  Multicondi-

tion training data･was used  fbr,codebook creation,

      5. RESULTSANDDISCUSSION

5.1. Comparison  of  Nornialization Methods

   Table  3 shows  the  set of  experiments  we  conducted  in

this section.  The nine  methods  shown  in the table were

compared  in Japanese speech  recognition  experiments,  The

description of  the table is as follows:
model  Two  types of  model  were  compared.  

`DMHMM'

   means  a  discrete-mixture HMM  trained by multi-

   condition  method.  
`CMHMM'

 is a  conventional  con-

   tinuous-mixture  HMM  trained in the same  way  and  is

   used  for perfbrmance comparison.
normalization  Two  types of  normalization  were  com-
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   pared. 
`Feature'

 means  feature space  normalization

   and  
`}nodel'

 means  mQdel  space  normalization.

normalization  data Two  types  of  normalization  data were

   compared,  In the `noise'

 condition,  the histogram of
   the  test data was  calculated  fbr al1 the utterances  of  one

   noise  type, In the 
`utterance'

 condition,  the histogram

   of  the test data was  calculated  only  by each  utterance

   that  would  be  recognized.  Then,  histogram  estimation

   is carried  out  using  a  very  short  calibration  speech  in
   this case,

For example,  
`DMHMM:fer-noise'

 means  that the

DMHMM  is normalized  in feature space  using  all  the

utterances  of  ene  noise  type, and  
`DMHMM'

 means  that
the DMHMM  is used  without  norrnalization.  As  we

mentioned  in Sect. 3, HEQ  cannot  be applied  to CMHMMs
in model  space  in a  general way  because the shape  of  the

distribution is represented  by  the  variance.  In our  experi-

ments,  model  space  normalizatien  of  the CMHMM  was

carried  out  by transforming  mean  values  only.  Thus,  the

shape  of  the distribution of  the CMHMM  was  not  changed

in this case.  The mode]  space  norrnalization  of  the

CMHMM  for each  utterance  was  not  perfbrmed. For
DMHMMs,  all acoustic  models  can  be normalized  by
changing  only  the  codebQoks.  In the  case  of  CMHMMs,

however, it is diMcult to perform the normalization

because the mean  values  of  all  the models  should  be

norrnalized  for every  single  utterance  and  the calculation

cost  is high. The threshold value  dth was  set to 215 ×  10-4
in all  the  experiments  in this section.  A  detailed discussion
of  the threshold is described in Sect, 5.3,

   Figure 3 shows  the recognition  results  (word error  rate)

fbr testset A  and  testset B, and  the sarne  results  are  shown

in Table 4.

   In the case  ef  testset B, the recognition  perfOrmance of
the DMHMM  was  greater than  that of  the conventional

35.0

Sl 25,Oblwl

15.0

5.0

Testset A Testset B

Fig. 3 Recognition results  for testset A  and  testset B.
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Table 4 Recognition  results  for testset A  and  testset B.

 Average WERs  (%) of  four types of  noise  are

 indicated.wlo

 norm.  -fer-noise 
-med-noise

 
-fer-utter

 -mod-utter

testset A

CMHMMDMHMM17.3417.42IS.84162517.6316.33IS.8215.9215.76

testset B

CMHMMDMHMM40,3236.9329.8229.7140,5329.6129.7928,7828.55

CMHMM.  AII types of  normalization  methods  provided
significant  improvements  with  respect  to the  DMHMM  for
testset B. [[1ie improvements of  normalization  fbr testset A
were  small.  Because  testset A  consisted  of  known

conditions  and  models  were  matched  to noisy  condjtions,

the improvements were  not  large. These results mean  that

the codebook  nomnalization  based on  HEQ  is able  to

compensate  the nonlinear  mismatch  well.

   The  perfbrmance  of  HEQ  in feature space  was  similar

to that in model  space  for both testset A  and  testset B
with  the exception  of  

CCMHA4M-inod-noise,'
 This can  be

interpreted to mean  that the direction of  transformation  is
different between the two  HEQ  methods,  but the effect  is

simi1ar.  In orde;  to obtain  further improvernents for HEQ
in model  space,  a transform function may  be prepared
for each  acoustic  model.  The  recognition  performance
of  

"CA(fHMM-mod-noise'
 was  worse  than that of  the

CMHMM  without  normalization,  In the  case  of

`CMHMM-mod-noise,'

 only  mean  values  were  normalized

and  the shape  of  the distribution was  net  changed,  This fact

means  that the normalization  of  the distribution shape  is
important fbr HEQ  in model  space.

   Comparing the difference in perfOrmance between
`noise'

 and  
`"tterance,'

 
`utterance'

 showed  slightly  greater
improvements on  average.  It is shown  that one  utterance  is

sufficient  to estimate  the transform functions. The average

length of  a  test utterance  is 3.9s. Thus, the preposed

norrnalization  can  be canied  out  using  a very  short

calibration  speech.  In both testset A  and  testset B, the best

performance was  obtained  for the `DMHMM-mod-utter'

condition.  However, the difference in perfbrman¢ e between
`DMHMM:fer-utter'

 and  
`DMHMM-mod-tftter'

 was  small.

Hence, the superiority  of  model  space  normalization  could

not  be confirmed  in these experiments.

   Figures 4 and  5 show  the recognition  results  fbr each
noise  condition  for testset A and  testset B, respectively,

From  these results, it turns out  that recognition  perfbrrnance
depends on  the noise  type. In general, histogram normal-

ization was  effective  for noise  data in which  the variation
in noise  was  large, and  it was  less effective  fbr noise  data
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Fig. 4 Recognition results  for each  noise  in testset A.
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Fig. 5 Recognition results  for each  noise  in testset  B.

Fig.6 Movernent  ef  codeboek  centreids  after normal-

 ization for "train

 conditioll."  x:  befere normalization.

 A:  normalization  using  entire  evaluation  data, e:

 normalization  using  one  utterance.
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with  a  small  variation  such  as 
"crowd,"

 
"exhibitien

 hall"
and  

"elevator
 hall." For  testset A,  a significant  improve-

ment  was  obtained  fbr "train"

 using  one  utterance  com-

pared with  the 
`noise'

 condition,  while  other  noise  types

were  not.  This is because large variations  of  the noise

condition  caused  by passing train occur  in the "train"

condition.  The  
"crossing"

 cendition  in testset B  is similaar to

the 
"train"

 condition,  because large variations  of  neise  are

observed  due  to cars  passing, Figures6  and  7 show  the

movement  of  codebook  centroids  on  the C1-C2  plane after
normalization.  Figure 6 shows  results  for the C`train"

condition  and  Fig. 7 shows  those for the  
"car"

 condition,

Compared  with  the centroids･  before normalization  for
"train,"

 the difference in position is not  large in the case

ef  normalization  using  the entire  evaluation  data. However,
in the case  of  normalization  using  one  utterance,  these

centroids  move  significantly.  In the 
"car7'

 condition,

because the noise  spectrum  is concentrated  at low frequency
and  is relatively  stable,  the movement  of  centroids  is small.

52. Normalization Using

     tions

   In the previous section,

Multiple  Transform  Func-

only  ene  transform function

-25  -20  -15  -10-5clo5  10 15

Fig.7 Movement  of  codebook  centroids  after  norrnal-

 ization for "car"

 conditioll,  x:  before normalization,

 i:  normalizatiori  using  entire  evaluatiQn  data, e:

 norrnalization  using  one  utterance.

was  used  for normalization,  However,  it is expected  that

the transforrn function depends on  the features of  each

phoneme  or  phoneme  class. For example,  in the  MLLR

adaptation  method  [10], which  is widely used  as a  method

of  model  space  transfOrmation for speaker  adaptation,

multiple  transform  functions are  usually  used  to improve

adaptation  perfbrmance. From  a  similar  point of  view,

experiments  on  nermalization  using  multiple  transform

functions were  conducted.  Since each  transform function
needs  to be used  fbr each  model  or  model  class  in this
method,  model  space  nermalization  method  is required,
Nenmalization using  multiple  transfbrrn functions cannot

be carried  out  by  the conventional  feature space  approach,

   In the experiments,  acoustic  medels  were  phonetically
classified  inte voiced  and  unvoiced  groups. Those  groups
are  shown  in Table 5. Both silence  (sil) and  closure  (cl)
classes  were  classified  into unvoiced  classes.  Since the
distinction between  voiced  and  unvoiced  classes  was  based

71
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Table 5 Classified list of  phonemes.

Voiced a aaTlr  u  uue  ee el ooo  ou

 bdgmnNzjwyxyr

Unvoiced hfs  sh  ts ch  ptk  cl sil

Table6  Comparison of  recognition  perforrnance be-

 tween  1-class and  2-class normalizations  using

 DMHMM  on  testset B (WER  %).

w!onorm,  -fer-noise -mod-noise -mod-noise
                    1-class 2-class

  Station

  Factory

 Crossing
Elevator hal1

39.7S47.2028.1632.6130.S536.3422.5729.0931.4735,0922.3629.5030.4333.4422.2627.64

Ave. 36.93 29.71 29.61 28.44

on  recognition  results using  acoustic  models  without

norrnalization,  some  detemiination  errors  were  included,
For the normalization  of  the voiced  class, the histogram
was  calculated  using  voiced  speech  and  it was  used  fbr the

normalization  of  voiced  phonemes. For the unvoiced  class,

the histogram was  caiculated  using  voiced  and  unvoiced

speech  and  it was  used  fbr the normalization  of  unvoiced

phonemes  because it showed  better perfbrmance than the
method  by which  the  histograrn was  calculated  using  only

unvoiced  speech.  Lack  of  data sometinles  causes  a problem
in such  a multiple  classification  approach.  In parti¢ ular,

in the case  of  
`utter,'

 lack of  data tends te be a problem
because the duration is short. Therefore, the experiments

on  testset  B  were  conducted  vvith the condition  of  
`noise'

 as

the first stage.

   The  results  are  shown  in Table 6, From  the results, the
2-class normalization  method  showed  better results  than
the 1-class nermalization  rnethod.  Compared  with  feature
space  normalization  (29,71%), 2-class norrnalization

(28.44%) sho'wed  statistically  significant  improvement

(significance level of  5%), while  the perfbrmance of  1-
class  normalization  did not  show  significant  improvement,

As  described above,  multiple  transform  normalization  was

successfu11y  perforrned in model  space  and  it showed  better

performance than feature space  normalization.

5.3. Inyestigation on  Likelihood  Compensation

   All experiments  described above  were  perfOrmed with
dth :=  2,5 ×  10-4  which  was  the threshold for compensa-
tion and  introduced in Sect. 2.4. In order  to clarify the

robustness  against  the value  of  this threshold, recognnion

experiments  were  perfbrmed on  testsetB  with  various

values  of  threshold, In the  experiments,  dth was  varied

frorn O to 1.0 ×  10-3 arid the word  error  rate  for each
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Fig.8  Recognition  performance  at  various  threshold

 values  ef  likelihood compensation.

method  Was  calcu]ated.  The resu]ts  are shown  in Fig. 8.
The perfbrmance of the methods  using  HEQ  was  relatively

stable  apart  from the case  of  dth =  O.O. From  these results,

it can  be concluded  that  the proposed method  is robust

against  the variation  in threshold,

              6. CONCLUSIONS

   In this paper, we  propesed a  normalization  method  of

discrete-mixture HMMs  (DMHMMs) with  the aim  of

improving  the performance of  recognition  under  noisy

conditions.  The  normalization  method  was  based on  histo-

gram equalization  (HEQ) and  can  compensate  the nonlinear

effects of  additive  noise,  Both model  space  normalization

and  feature space  normalization  methods  were  proposed. It
was  difficult to apply  the HEQ  methed  to CMHMMs  in
model  space  in a  general way,  because  the  shape  of  the

distribution was  determined by the variance.  In contrast,
the codebook  normalization  of  the DMHMM  made  model

space  nomialization  possible, In our  experiments,  the
model  space  normalization  of  the CMHMM  was  carried

out  by  transforming  the mean  values  only,  In this case,  the

shape  of  the distribution,of the' CMHMM  was  not  chai}ged

and  the  recognition  perfOrmance was  unsatisfactory.

   From  the results of  recognition  experiments,  both
feature and  model  space  normalization  methods  were

effective  for noise-robust  speech  recognition.  From  the

comparison  between feature and  model  space  normaliza-

tion, the recognition  perfOrmance was  similar  when  a single

transform  function was  used,  Model space  normalization

using  multiple  transfbrrn functions showed  better perfbrm-
ance  than the method  using  a single  transform  function.

   In this paper, only  2-class transform functions were

used  for the method  using  multiple  transfbrm  functions.
We  plan to  improve  recognition  performance further by

testing a  wide  variety  efphoneme  classes,  We  also  plan to
use  this method  for speaker  normalization  in an  LVCSR

task such  as 
"CSJ:

 Corpus of  Spontaneous Japanese."
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