PI-031

構造異性体 2,4-および 2,6-ジアミノトルエン 投与によるラット肝臓における トキシコゲノミクス解析

高沢博修、森脇紀親、河野友紀子、中山光二、 齋藤由希子、渡部秀次、中川宗洋、関島勝 (株) 三菱化学安全科学研究所 鹿島研究所

Toxicogenomic analysis of the structural isomers 2,4-diaminotoluene and 2,6-diaminotoluene in rat livers

Takasawa Hironao, Moriwaki Norichika, Kawano Yukiko, Nakayama Kouji, Saitou Yukiko, Watabe Hidetsugu, Nakagawa Munehiro, and Sekijima Masaru Mitsubishi Chemical Safety Institute Ltd. Kashima Laboratory

【目的】

芳香族アミンに属する 2,4-ジアミノトルエン (2,4-DAT) は、ラット・マウスの肝臓に発がん性を示すが、その構造異性体の 2,6-ジアミノトルエン (2,6-DAT) は、発がん性を示さないことが報告されている。これらの化合物は共に Ames 試験で陽性結果を示すにも関わらず、発がん性が異なる作用機構については十分解明されていない。今回、我々は 2,4 および 2,6-DAT の発がん性の作用機構の違いを調べる目的で、DNA マイクロアレイの網羅的遺伝子発現解析技術を用いて、ラット肝臓における毒性発現機構について検討を行った。

【材料および方法】

化合物の最高投与量は LD50 を目安に設定し、2,4-DAT (250, 50, 10, 2 mg/kg) および 2,6-DAT (200, 40, 8, 1.6 mg/kg) をそれぞれラット(雄, 5 週齢)に単回強制経口投与した。投与後 3, 6, 9, 24, 48 時間に肝臓を採取して、Affymetrix 社製 GeneChip® Rat Expression 230A Array を用いた遺伝子発現プロファイル解析を行った。また、同時に病理組織学的検査および血液生化学検査を実施した。

【結果および考察】

肝臓の total RNA の遺伝子発現プロファイル解

析では、2,4-DAT 投与 3 時間後から p53 カスケ ード遺伝子である p21 遺伝子の発現が増加し、ラ ット肝における DNA 損傷が示唆された。また投 与 24 時間以降では、アポトーシスの誘発に関連す る Bax 遺伝子の発現が顕著に増加した。薬物代謝 に関連する遺伝子では、両異性体とも CYP1A1 の 過剰発現が投与期間中に認められたが、薬物排泄 に関わる P-glycoprotein 遺伝子の発現は 2,4-DAT でのみ増加した。肝臓の病理組織学的検査で は、2,4-DAT の最高投与群において、投与後6時 間以降に肝細胞核の膨化が、24 時間以降で肝細胞 の単細胞壊死が、さらに 48 時間後では肝細胞の好 酸性化が観察されたのに対し、2,6-DAT 投与群で は、著変は認められなかった。また、血液生化学 検査では、2.4- DAT 投与群において投与用量およ び時間に依存して、ALAT および ASAT の有意な 上昇ならびに血清アルブミンおよび総蛋白質の有 意な低下が認められたが、2,6-DAT 投与群では有 意な変化はみられなかった。以上、遺伝子解析、 病理組織学的変化および血液生化学の結果は、い ずれも 2,4-DAT および 2,6-DAT の毒性差異を示 すとともに、毒性発現差に関してそれぞれ相関す る結果が得られたと考える。現在、in vivo-in vitro ラット肝 UDS/RDS 試験を上記と同様の条件で 追加検討し、遺伝子発現プロファイルの結果との 比較解析を実施中である。