日本で発生する竜巻などのシビアストームの予測可能性

*櫻井渓太(富山大・理)・川村隆一(富山大院・理工)

1. はじめに

Niino et al.,1997) や数値モデルを用いた研究(坪木ほ か,2000;吉野ほか,2002 など), ドップラーレーダーなどの 観測的研究(Suzuki et al.,2000;Kobayashi.,2003;中井ほ か,2005; 柴田,2006 など) があるが、日本で発生する竜巻の 発生環境場の特徴を統計的にまとめた研究報告はなく、竜巻 などのシビアストームの予測可能性の基盤となる発生環境の 理解が不十分である.本研究では、米国の竜巻発生環境場と の比較という視点から,主に観測データ(レーウィンゾンデ [RAwinsonde Observation: RAOB]データ,ウィンドプロフ ァイラ [Wind Profiler Network and Data Acquisition System:WINDAS]データ)と再解析データ (JRA-25 長期 再解析データ,気象庁メソ客観解析データ MSM の解析値) を用いて、統計的に日本の竜巻発生環境場の実態を調べ、シ ビアストームの予測可能性の展望について議論することを目 的として解析を行った.

<u>2. 事例の抽出</u>

米国の竜巻に関する研究報告 (McCaul, 1991; Rasmussen and Blanchard,1998 など)を参考に, 竜巻発生場所から時 間・距離に関して一定の基準(近傍基準)を設け、それらを 満たす観測点(RAOB・WINDAS)データを抽出した.本研 究では発生前後2時間・発生場所から半径 50km 以内(以下 2h50km)を用いた、これにより、抽出された事例は、RAOB データは 55 事例, WINDAS データは 10 事例となった.

3. 竜巻発生環境場の統計的解析

抽出された RAOB データについて、大気の安定度に関する パラメータ (SSI, Li, Ki, TT, CAPE, CIN, LCL-LFC), 水平風の鉛直シアーに関するパラメータ(MS0.3km, MS0.4km, MS0-5km, MS0-6km, SRH05R85, SRH30R75, ※MS,SRHの前の 添字は、それぞれ計算高度間とストームの移動ベクトルの仮 定を示す),それらを複合させたパラメータ (BRN, VGP. EHI05R85, EHI30R75, ※EHI の添字は, それぞれ計算に用い ている SRH が SRH05R85 と SRH30R75 であることを示す)の 計算結果を用いて、各パラメータの閾値の設定と先行研究と の比較,予測可能性としての有効性の評価を行った. 閾値は, 検出率が80%となるように設定し,発生前と発生後の事例で **分けて計算した(表 1)**

大気の不安定度に関するパラメータの中では、Ki と CIN の閾値は他の不安定度パラメータよりも大気状態の不安定を 示し、本研究が対象としている大気状態を適切に表現してい ると考えられる. このため Ki と CIN の有効性が高いと判断 した.また,複合パラメータの計算に用いられている CAPE に関しては、閾値がかなり低く、大気状態が十分に不安定で あるということを示している事例が少ないため、CAPE は日 本の竜巻発生環境における不安定度パラメータとしては必ず しも有効性が高いとは言えない. SRH に関しては, 05R85 と 30R75 のストームの移動ベクトルの仮定は, それぞれ柴田 (2006)と吉野(2002)が用いているが、本研究では、単純 に SRH05R85 と SRH30R75 のどちらが予報ツールとして有効性 が高いかということを調べ, 値の大きさから SRH30R75 が SRHosRss より有効であるという結果になった.

4. 有効性の高いパラメータを用いた予測可能性の検証 複合パラメータに関しては、CAPE が複合パラメータの有 効性を低くしているので、どの複合パラメータも有効性が低 かった. したがって, 既存の複合パラメータでは, 日本にお ける竜巻の発生予測を行う際には不向きである。そこで、 CAPE を他の有効性の高い大気の不安定度に関するパラメー タに差し替えることで、複合パラメータの有効性を改善する 事を試みた.具体的には、大気の不安定度に関するパラメー タを CAPE から Ki に変えた EHI (EHIKi) を用いて, 従来 の EHI (EHI_{30R75}) の示す環境場の特徴との比較や, その新 しいパラメータ(EHI_{Ki})の予報ツールとしての有効性を検 証した. EHIKiと EHI30R75の関係を見ると(図1参照), EHIKi が低く (<1.0[K²・ms⁻¹]), EHI_{30R75} が高い (>1.0[Jkg⁻¹・ m²s²]) 事例がない. つまり, EHI_{30R75} が示す環境場は EHI_{Ki} の示す環境場に含まれ、新しいパラメータ(EHIKi)の方が 予報ツールとしての有効性が高いことがわかる.また、EHIKi

の 有 効 性 の 検 証 と し て , 予 測 成 功 事 例 (HighEHI_{Ki}/LowEHI_{30R75}), 予 測 失 敗 事 例 (LowEHI_{Ki}/LowEHI_{30R75}), そして, EHI_{30R75}でも予測成功事 例(HighEHI_{Ki}/HighEHI_{30R75})の3種類の事例解析を行った. 図2は、HighEHIKi/LowEHI30R75 事例の一例である. <u>5. おわりに</u>

日本の竜巻発生環境場の大気における不安定度を示すパラ メータは CAPE では不向きであり,Ki と CIN の有効性が比 較的高いことがわかった。このことは、米国中西部の竜巻発 生環境場と大きく異なる点である。また、本研究で提案した Kiを用いた EHI (EHI_{Ki}) は、複合パラメータの予報ツール としての有効性が高い.また、日本の竜巻発生環境場は、中 層が湿潤であることなど、いくつかの環境場の特徴をまとめ、 さらに、環境場の条件によっては、各パラメータの有効性が 変化することが明らかになった.

当日は、抽出した WINDAS データによる MSM データを 使った事例解析についても発表する.

表1	本研究で設定し	、た各パラメ・	ータの閾値
----	---------	---------	-------

パラメータ	閾値(全事例)	閾値(発生後)	閾値(発生前)
SSI[K]	3.1	2.8	3.2
Li[K]	2.8	2.8	2.3
Ki[K]	27.9	28.1	27.6
TT[K]	41.2	42.7	41.0
CAPE[J/kg]	66.1	45.4	71.3
CIN[J/kg]	-30.8	-46.9	-25.6
LCL-LFC[hPa]	116.7	122.0	107.1
$SRH_{05R85}[m^2/s^2]$	17.5	6.6	37.3
$SRH_{30R75}[m^{2}/s^{2}]$	72.5	64.1	114.2

図 1 抽出した RAOB データで計算した EHI30R75 と EHIKi の散布図、総観気象状況別にプロットの形を変えている、点 線は EHI_{30R75}=EHI_{Ki}の直線. それぞれの閾値(1.0) に太直 線を引いている. RAOB データは CAPE がゼロでないものを 使用している.図右下には EHIKiの定義式を示した.

Press. reduced to MSL [hPa] Energy Helicity Index with Ki&SRH [K^2+m/s]

