降雪粒子の立体形状と落下速度計測

民田晴也 (名大地球水循環) 津田紀生 (愛知工大) 西川将典 藤吉康志 (北大低温研)

はじめに

レーダ降水強度の校正機として、粒子形状と粒径分布 を計測する低コストなラインスキャナ型の観測機器を 開発している⁽¹⁾。レーダ降雪強度の高精度化には、降 雪粒子のマイクロ波散乱特性の理解を理論・観測の両面 から深める必要がある。理論計算には粒子形状と誘電率 (温度と含水量に依存)の構造モデルが必要である。観 測的には粒子種別毎(雪、霙、雨)の粒径分布、レーダ 反射因子のデータベース作成が有効であり、粒子立体形 状は種別判別で利点がある。先ずは粒子立体形状と落 下速度を計測する機器を試作、2015年1月27日から3 月24日の間、北海道大学低温科学研究所において、含 水量の組込みを視野に低温科学研究所の含水率計と同 期した試験観測を実施した。本報告では粒子立体形状再 現と落下速度計測の初期結果を紹介する。

機器概要

ラインスキャナ(計測分解能 105 μm、画素数 384、 計測幅 40 mm、スライスレート 18 kHz)を 45 度毎に配 置、4 方向から計測シート光を通過する粒子影を取得、 立体形状を再現する。図1 に機器外観と計測シート光の 配置構成を示す。シート光には高さオフセットがあり、 シート光間の検出時間差から落下速度を見積もる。

降雪粒子計測結果

計測粒子画像と立体形状再現例を図1に示す。計測 画像のグレイ部は落下速度見積の計測時間差を表す。計 測画像と同方向から見た立体画像を比べると形状再現 性が確認できる。但し、影画では窪みや奥行きを表現で きず、上下方向から見ると多角形近似の立体モデルであ る。現在は、粒子形状の上下連続性を利用した形状復元 であり、より実在形状に近づけるための計測機能増設と アルゴリズム開発を予定している。図2に、2015年3 月13日の粒子サイズと落下速度の関係を示す。サイズ 20 mm を超える雪片を観測、0000-0200 JST には落下 速度1m/s前後の降雪粒子、1500-1900 JST には落下 速度5m/s程度までの霙粒子の混在を示す。図3に再 現立体形状から得たフラクタル次元 Df と落下速度の関 係を示す。雪片の D_f は 1.6-2.4 を示し、D_f が小さい 板状粒子ほど落下速度が遅い相関を示し、立体形状と落 下速度計測の妥当性を示唆している。落下速度が2m/s 以上の霙粒子の D_f は 1.9-2.5 を示し、雪片同様に D_f が大きな粒子ほど落下速度が速い傾向を確認できる。

謝辞

本研究は科研費 (26400464) および北海道大学低温科学研究所 共同研究の助成を受けている。

参考文献

1. Minda et al., 2014, IEEJ TEEE, 9, 542-547.

図 1: 機器外観、内部スキャナおよび計測シート光配 置。計測粒子画像(左下)と立体形状再現(右下)の 例。(2015 年 3 月 13 日 00:15:45、粒子サイズ 22mm)

図 2: 粒子サイズと落下速度の関係(2015年3月13日)。 サイズは計測影画内の最大幅で1.2 mm 以上。

