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Abstract

   The  linear stability  of  a  front whose  lcvwer layer has a  uniform  potential  vorticity  is investigated. The
results  are  compared  with  the unstable  modes  of  a  frontal model  which  censists  of  two  homogeneous fiows
with  an  interacting interface. Unstable modes  with  a  phase  speed  close  to the  velocity  of  the  basic flew in

the lower layer, which  exist  in the frontal model  of  two homogeneous flows, are  stabilized  in the present
model.  This feature is explained  by the  absence  of  Rossby  waves  in the reduced  one-layer  problem  of  the

Iower layer resulting  from  the  uniformity  ef  its potential  vorticity.  The  results  show  that  the  stability

of  a  front is strongly  affected  by the potential vorticity  distribution. Careful attention  is needed  for the

application  of  the  frontal model  with  uniform  potential vorticity,  which  is a  critical  situation.

1. Introduction

  The  Iinear instability of  a  front which  consist$  of

two  homogeneous  flows provides a  theoretical basis
for understanding  the atmospheric  disturbances as-

sociated  with  frontal systems.  It was  originally  for-
mulated  kry Kotschin (1932) and  the unstable  modes

that  develop  upon  it were  obtained  by  Orlanski

(1968). The  same  problem  was  recently  reconsid-

ered  and  explained  in physieal  terms by  Iga (1993).
The  analysis  of  such  a  sirnple  model  sheuld  be useful

in understanding  the basic characteristics  of  frontal
instability as  it exists  in the atmesphere.  However,

it is apparent  that any  real  situation  has chara £ ter-

istics that are  different from those  of  the model.

  Figure 1 shows  a  convergent  cloud  band  over  the
western  part of  the Japan Sea in winter  as  simu-

Iated in a  forecasting rnodel.  This band  has  a  frontal

structure  (Fig. 2) like other  cases  (e.g., Nagata,

1987), where  a disturbance develops later to become

a  meso-scale  low. This frontal surface  is not  a  plane
Iike the model  formulated by Kotschin (1932) shown

in Fig. 3a, but  its inclination becomes  steeper  as  it

approaches  the ground.  Moreover, the velocity  in a
layer, in particular in the lower layer, is not  constant

but varies  depending on  the distance from the sur-
face front. In the lower layer, it is not  the velocity

but potential vorticity  which  is almost  uniform  as

shown  in Fig. 2. Considering the formation  process
of  this front, it is more  natural  for the lower 1ayer to
have homogeneous  potential  vorticity,  rather  than to
have  a  homogeneous  velocity  distribution, since  the

@1997, Meteorological  Society  of  Japan

origin  ef  the air  in the lower layer is a  large-scale
cold  airmass  formed over  the continent.  However,
when  applying  atheory  to this phenomenon,  the re

sults  of the analysis  of  the frontal model  with  two

uniform-flow  layers, whose  basic state  is very  easy

to describe, were  often  used  (e.g., Yamaguchi  and

Magono  1974). Here arises  a question: how  far can
we  apply  the results  ef  the analysis  of  the  model

f6rmulated by Kotschin (1932) to  such  a  situation?

Can  we  derive qualitatively  the  same  conclusion,  or

does the situation  of  almost  constant  potential vor-

ticity lead to substantial  differences? If there is no

essential  difference, it may  be appropriate  to apply

the theory  of  the frontal model  which  consists  of

two  unifbrm  flcvws to such  fronts over  the Japan Sea,
but, if the uniformity  of  the potential vorticity  has a
crucial  influellce on  its stability, we  must  reconsider

carefuIIy  the structure  of  such  fronts. In this pa-
per, we  will  consider  frontal waves  at a  front whose
lower layer has unifbrm  potential vorticity  (Fig. 3b) 

,

and  investigate how  far we  can  apply  the  qualitative
features of  simplified  models  like that of  Kotchin

(1932).
  The  frontal model  treated in this paper  itself is

still  quite a  simplified  one.  Recently, analysis  of

the stability  of  fronts with  continuous  stratification

has  been  attempted  (e,g., Snyder,  1995; Moore  and

Peltier, 1990). One  could  in principle analyze  eom-

plicated models  with  various  effects in order  to in-
vestigate  detailed features of  each  situation.  How-
ever,  we  want  to focus here on  qualitative discus-
sions:  how  far we  can  apply  results  of  a  certain  sim-

ple model  to other  situations,  or what  conditions  aL
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Fig. 1. Sea-}evel pressure and  lower-

   most-level  wind  predicted by  the  Japan

   Spectral Model (JSM), after  15 hours us-
   ing  the  initial data at  OO Z, January 22,

   1990.  A  convergence  zone  is formed  over

   the westeTn  part  of  the Japan  Sea.
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Fig. 2. Cross section  (potential tempera-

   ture)  and  absolute  vorticity  in the  lower

   layer along  the  thick  line in Fig. 1. [I]he

   value  of  absolute  vorticity  (f -  dUldy)

   is normalized  by  f. A  double thick line
   indicates  the  frontal  surface  defined as

   Ievel where  the vertical  gradient  of  po-

   tential  temperature is maximal.  PropoT-

   tionality between the height of  frontal
   surface  and  the absolute  voTticity  in the

   lower layer shows  the  llniformity  of  the

   potential vorticity  in the  ]ower layer.

Fig. 3. (a) Fbontal model  investigated by

   Kotschin (1932), Orlanski (1968) and

   Iga (1993). (b) Ibontal model  investi-

   gated  in this papeT.  (c) Fbeontal model

   investigated  by  Killworth  et  al. (1984).

ter, in a  fundamental manner,  the stability  of  fronts.
Although  analysis  of  frontal models  with  continuous

stratification  have  been  made,  there are  still  many

restrictions;  Snyder (1995), for example,  obtained

the unstable  modes  indirectly by time  integration.

Moore  and  Peltier's (1990) work  does  not  suffer  from

this problem.  However, there  are  questions as  to  the

role  that the boundary  conditions  employed  had on

the results  obtained.  Analysis  of  a  simpler  model

will  be more  appropriate  to reveal  qualitative con-

clusions,  For example,  it allows  one  to ideTitify the
origins  of each  mode  of  instability, Therefbre, we

choose  to  analyze  a  simpler  model  in this  paper. The

computations  were  dene at  suffciently  high resolu-
tion  so  as  to resolve  the  qualitative features of  the

simulation  (see Appendix).

  There  ame  other  studies  of  a  frontal model  with  a

layer of  unifbrrn  petential vorticity,  in particular as  a

model  of  fronts in the ocean.  In most  models  ofthis

s6rt  such  as Paldor  (1983 a,b)  and  Kubokawa  (1986),
the  lower layer has an  infinite depth,  so  that  the

situation  is essentially  a  one-layer  problem.  On  the

other  hand, a two-layer model  with  the configuration
shown  in Fig. 3c was  invest･igated by  Killworth et  al.

(1984). In all  t･hese studies,  the  frontal interface does

not  intersect the  sea  bottom.
  Cornparing  the model  fbrrnulated by  Kotschin

(1932) with  that treated by Killworth et  al. (1984),
we  notice  two  important  difrerences; the unifor-

mity  of  the potential vorticity  and  the configuration

whether  the  frontal surface  intersects both (upper
and  lower) boundaries. Thus, we  cannot  directly
conclude  which  of  the differences is responsible  for
the differences between'the results  of  Iga C1993) and

those  ef  Killworth  et  al. (1984). The  model  inves-
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Fig. 4. Frontal  surface  model  The  lower

  layer has a  uniform  potential  vorticity.

tigated in this paper  fi11s this gap; it differs from
the model  of  Kotschin (1932) by the uniformity  of

the potential vorticity,  and  from that of  Killworth et
al. (1984) by  having  an  interface intersecting both

boundaries. Hence, by investigating this model,  we

will  be able  to identify how  the two  conditions  afiect

the unstable  modes.

  First, we  will  derive basic equations  in Section
2. In Section 3, the numerical  solutions  are  shown.

We  will  describe one-layer  problems  which  are  nec-

essary  to interpret the  unstable  modes  in the twa

1ayer problem  in Section 4, and  classify  the unstable

modes  obtained.  We  will  compa[re  the results  ob-

tained  with  those of  Iga (1993) in Section 5.

2. Basic  equations

2.1 Basic  sate

  We  consider  a front which  consists  of two  layers
of  incompressible hornogeneous fiuid bounded  above

and  below by rigid  horizontal planes at  z.  =:  O and

x.  ==  ". We  assume  that the fluid of  the lower
Iayer has a  unifbrm  potential vorticity  and  that  up-

per Iayer has a  uniform  velocity.  We  can  assume  the

fluid in the upper  layer is at  rest  by considering  a

coordinate  system  moving  with  the velocity  of  the

upper  labrer (Fig, 4).

  The  basic equations  for this problem  are  the same

as  (1), (2) and  (3) in Iga (1993). First, we  will de-
scribe  the basic state.  The  equations  fbr geostrophic
balance, hydrostatic balance  and  uniform  potential
vorticity  of the first (lower) layer are

   o=  
ufu*

 
-;ddRy.i,

 (2･1)

   ai-R,2=Apgij.,  (2.2)
       dU.

    
f-

,.dy*
 .. S, (,,,)

If we  assume  that  the  fluid in the  upper  1ayer is

at  rest,  we  caii  assume  without  loss of  generality
R2  i  O. Then,  from  (2.1) and  (2.2), we  obtain

O-93.o  -2.o . -1.o o.o

   Fig. 5. Configuration of  the frontal surface
     for various  values  of  Ri. The  unit  of  hor-

     izontal scale  is AR.

LO

  q=-ApPfg geyl, (2 4)

and  from (2.3)

  ij* =H  (1 middUy L.) (2'5)

Substituting (2.5) into (2.4), we  obtain  a  differential
equation  with  respect  to U.

  q=Appfg,Hdd2yU.l, (2.6)

Under the boundary condition  of dUlfdy. =  O at

y. ==  O, this yields

    q=  -cfAR  cosh  (ilS';), (2 7)

   n. =:H(1+asinh(Sli'  )), (2･8)

         where  AREi(AppgH)
if2,

where  C  is the constant  of  integration and  the only

non-dimensional  parameter  which  characterizes  the

basic state.  However, in this paper  as  in Orlanski

(1968) and  Iga (1993), we  will  use  Ri defined as

square  of  the ratio  of  the frental-zone width  L to
the Rossby's radius  of  deformation AR  instead of  C
as  the non-dimensional  parameter  characterizing  the

basic state.  The  width  L  satisfies

･

 ij.(-L) =  fi.(-Rii12A.)

         =H(1-CsinhRii12)

         =  o,

and  thus, the parameter C  is expressed  by Ri as

  C=  11 sinh  Ri'!2. (2.9)

Shapes of  the frontal surface  fbr vamious  values  of  Ri
are  shown  in Fig. 5. If Ri is small  enough,  the frontal
surface  becomes more  plane and  the velocity  distri-
bution is indistinguishable from that of  the frontal
model  which  consists  of  two  homogeneous  fiows.
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2,2 Eguations for disturbance and  boundafw condi-

   ttons

  We  consider  the perturbed  motion  on  this basic
state,  The  variables  are  palrtitioned into the basic

part and  the disturbance part as  fo11ows:

   u.1  =  Ul +Ut.1 , U.2  =  Ut.2  , V.j  =  V:j  ,

   p*i- =JIi  +pl, , n* =  n.+ep:. (2,io)
Substitution into the basic equation  with  the neglect

of  higher order  terms  yields:

 
a,-,Lf

 .  .. 
o,rii

 .  .:, 
d,U,f

 -  fv:, -;  
O,ti*f

 ,

                 eu'.2                              1 {ip:2

                  et. 
=

 fV#2- 7J om. '

          
Oo",?

 +  u. 
ae'ii

 -- -fu'., -  i; {lll:'.i ,

                  
eovt;.2

 ..  
-fu,.2-;OoPS.2,

              pai -  pL2 =  Apgep2,

 
o,ep,ik

 -=-u.,e.nyi  - ,o.. ("..t,) - ,a,. (,..1,),

     =  oe.. ((" 
-  fi.) u:2)  +  o6y. ((H 

-
 ij.) v:,)  .

  The  variables  x.  and  y. are  non-dimensionalized

by AR; u:,,  v:j  and  Ul by fAR.; t. by 1/f; i7. and

n; by  H;  p., by  ApgH.  Assuming  a  sinusoidal  form

in the x.-direction  (u:j,v:j,p:i,n: oc  e'k(X-Ct)),  we

get the non-dimensional  equations:

                  dU
                                    (2.11)  -ikcul +  ikUul  +                    vl  =  vl  -  ihpl,
                  dy

  
-ikcu2=v2-ikp2,

 (2.12)
                       C(I)i

                                    (2.13)   
-thcvl

 +  ikUvl =  
-ul

 
-

                       dy 
'

                dl)2
                                    (2,14)   

-ikcv2
 ==  

-u2
 
-

                dy 
'

  pi-p2=ny,  (2.15)
                         d

   
-iicc,7

 
=

 
-ikUn

 
-
 
iknui

 
-
 op (nvi),                                    (2.16)

                      d

         
=

 
ik(1

 
-
 fi)u, +  El!1 ((1 

-
 fi)v2), (2.17)

As  in Section 2.2 in Iga (1993), the boundary con-

ditions for non-dimensional  variables  are:

  ui,vi  regular  aty=-Rilf2,  (2.ls)
       ui  ==  -ivi aty=O,  (2.19)
        u2;iv2  aty=-Riif2,  (2.2o)
  u2,v2  regular  aty=O.  (2.21)

 2.3 Derivation  of the  eigenvalue  problem

  We  will  derive the equations  of  the form of  Az  =

 cz  from equations  (2.11) N  (2.17). Expressing the

Journal of  the  Meteorological Society of  Japan                              Vol. 75, No.  1

vorticity,  divergence  and  the divergence of  the mass

transport in each  layer, respectively,  as:

              du,
    Cz [-  iicvi -
              dy'

              dvt
    Di i  ikui +
              dy'
               d

  
FDi

 
=
 
ikitUi

 
+
 Iili ("Vi),

                    d

  
FD2

 
i
 
ik(1

 
-
 n)u2 +  zip ((1 

-
 n)V2),

(2.16) is rewritten  as

  
-ikcn

 ==  
-ikUny-FDi.

 (2.22)
Subtracting (2.22) from  the  vorticity  equation  in the

lower layer

  
-ikc<i

 ==  
-ikU<i-FDi,

 (2.23)
which  is derived from  ik(2.13) -  d/dy(2.11), we  ob-

tain the potential vorticity  equation  in the lower
layer

  
-thc(<i

 
-n)

 ==  
-iicU(<i

 
-ny),

 (2,24)
On  the other  hand, using  (2.15), the differences
of  the equatien  of  motion  between the two  layers,

(2.11)-(2.12) and  (2.13)-(2.14) become

-ikc(ui -  u2)  =  -ikUui  +  fivi -  v2  -  ikn, (2.25)

 
-ikc(vi -  v2)  =  -ikUvi  -ul  +  u2  - [liti. (2.26)

Since ny is expressed  as

  ikUn  
==

 
-FDi-FD2,

 (2.27)
which  is derived from (2.16)-(2.17), we  obtain  the

equations  of  the form of  eigenvalue  problem  by sub-

stituting  (2.27) into ny in (2,24), (2.25), (2.26) and

(2.17)

kc (li 
-
 
iFDiiJiFD2)

 --ku  (3i 
-
 
iFDik+uiFD2)

 ,

                                     (2.28)
                            iFDI  +  iFD2
kc(ul-u2)  

==

 hUul+"iVl-iV2+  u  ,

                                     (2.29)
 kc(ivl -  iv2) =  kUivl  +  ul  -  u2

                  +IX} (iFDiiJiFD2),
                                     (2.30)
kc(iFDi +  iFD2)  =  kUiFD2.

                                     (2.31)
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Fig. 6, The  isqlines of  the  imaginary part of

  phase speed  of  the  fastest grewing mode

  when  the  parameter  Ri  and  wavenum-

  ber are  given. We  take  kl(2tanhRii12)

  as  the wavenumber  aJcis  and  showed  the

  isolines of  2 sinh  Rii12 ･ct for convenience

  of  comparison  with  the  Fig, 3 in Iga

   (1993). The  contour  intervals are  O.05,

  Hatched  areas  indicate the  regions  where

  there  is no  unstable  mode  (where lc,I of

  the  first mode  is zero).

3.0

3. Numerical  solutions

  The  eigenvalue  problem of  (2.28), (2.29), (2.30)
and  (2.31) was  solved  using  finite differences. The
numerical  method  in detail is described in the  Ap-

pendix, Figure 6 shows  the imaginary  part of  the

phase speed  of  the fastest grewing mode  fot each
combination  of  parameter Ri and  wavenumber  k,
For convenience  of  comparison  with  Fig. 3 in Iga

C1993), we  take kl(2tanhRii12) instead of  k as

wavenumber  axis, and  displayed 2 sinh  Riif2 - c, in-
stead  of  ci as  the imaginary part of  the phase  speed.

Dispersion relations  in the cases  of  Ri =:  1,O and  3.0
are  shown  in Figs. 7 and  8,

  As Fig. 6 shows,  there are  various  unstable  modes

in this model;  in particular, in the region  of  large
Ri and  k, some  complicated  unstable  modes  exist,

Elirom the dispersion relation  for Ri =  1.0 shown

in Fig. 7, we  can  see  fbllowing features, There are

fainilies of  unstable  modes;  al1 of  them  have phase
speeds  whose  real  parts are  between about  -1.0  and

O.O. Neutral waves  are  roughly  classified  into four

groups: (i) modes  with  c  nJ  O.O, (ii) modes  with

c  ew  -1.0, (iii) modes  whose  phase  speeds  are  pos-
itive and  decrease as wavenumber  increases, (iv)
modes  whose  phase  speeds  

'are
 negative  and  ap-

proach O as  wavenumber  increases. The  unstable

modes  appeam  where  dispersion curves  of  these neu-

O.5

o.o

Cr-o.s

Ci

-1.0

-1.5

 O.5

Ri= 1.0O

  
O･%.o

 1.o  2.0

                k/2tanhRiii2

Fig. 7, The  values  of  cT  and  ci as  func-

  tions of  kl(2tanhRii12) at  Ri =  1.o.

  Unstable modes  are  shown  by  thick

  lines. Dashed  lines indicate the disper-
  sion  curves  of  the onelayer  problems  for

  the sarne  Ri  (see Section  4).

3.0

tral modes  intersect, but  intersection of  a  rnode  in

the group  (ii) and  a  mode  in (iv) does not  cause

unstable  modes.i  The  fundamental  features of  dis-

persion relation  for Ri  =  3.0 ame  the same  as  those

for Ri =  1,O, except  that many  higher modes  ap-

pear.4.

 Identification of  unstable  modes  by  reso-

   nances  between  neutral  modes

  We  can  obtain  the modes  in the  two-layer frental

model  by solving  the eigenvalue  problem  in the pre
vious  section,  Generally, unstable  modes  in two
layer problems  are  clearly  classified  by comparing

the dispersion curves  in the whole  two-1ayer prob-
lem and  those in the reduced  one-1ayer  preblems  (see
Sakai, 1989; Iga, 1993). Therefbre, in this section,

we  will  describe the reduced  one-layer  problems  in

each  layer for the  present case,  and  classify  the  ob-

tained  unstable  modes.

1 We  use  here the  term  unstable  mode  as  a  mode  whose

   eigenvalue  has  a  positive imaginary  part or  a  mode  which

   grows  exponentially.  However,  where  two  dispersion

   curves  intersect and  two  eigenvalues  are  degenerate,  may

   exist  modes  growing linearly, which  are  also  commonLy

   calLed  unstable  modes.
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Fig. 8. Same  as  Fig. 7, but for Ri  =  3.0.

3.0

  First, we  consider  the one-Iayer  problem fbr the
upper  layer. Since the fluid in the upper  la"rer is
at  rest,  the non-dimensionalized  equations  for each
Fourier component  are

  
-ikcu=v-ihny,

 (4.1)

  
-zkcv=-u-

 [Zti, (4 2)

                      d

  
-ikcT]

 
=

 
ik(1

 
-h)u+

 aj ((1 
-
 ")v). (4.3)

The  boundary  conditions  become

        u  ==  iv at  y =:  -Rii!2,

  u,v  regular  at  y =:  O.

  For  the  lower layer, the equations  are

             dU-ikcu+ikUu
 
+
 cav 

=

 
v
 
-
 
ikn,

     
-ikcv

 +  ikUv =  -U  - [Zti 7

                                   d
            -ikcn  =:  -ihUny -  ihhu  -  -
                                  dy

(4.4)(4,5)

(4.6)

(4.7)

(i7v)7

  (4.8)

'

O.5

o.o
 N

C -o.s

-1.0

Ri==3.00Gt

}R

Gi-GEGi

and  the boundary conditions  are

  u,v  regular  at  y=:-Ril!2,

       u=-iv  at  y=O.

  
'i-5o.D

 1.o 2.o  3.0

              k/2tanhRi"'2  

'

Fig. 9, Dispersion curves  oE  neutral  waves

  in the upper  one-layer  problem  for
  Ri  =  3,O. In this system  exist  Poincar6

  modes  propagating in the  positive (G.+)
  and  negative  (G.-) directions, Rossby

  modes  whose  phase  propagates  slowly

  in the negative  direction (R.), and  a

  Kelvin mode  whose  feature changes  with

  waMenumber  (Mb).

 (4.9)(4.10)

  Wb  solved  the eigenvalue  problem  of (4,1), (4.2)
and  (4.3) for the  upper  layer problem and  the  prob-
lem  of  (4,6), (4.7) and  (4.8) fbr the lower 1ayer prob-
lem also  using  ffnite differences. The  results  are

shown  in Figs. 9 and  10. In the  one-1ayer  problem
for the upper  Iayer, there exists  a  family of  modes

propagating  in the positive direction (Fig. 9). These
modes  are  Poincare (gravity) modes,  whose  restor-

ing force is basically the gra\ity force. wt  will  cal1

these modes  Go+, Gt,  Gl, ･ ･ ･ according  to the num-

ber of  nodes  in y-direction. Gravity modes  prop-
agating  in the negative  direetion Gi,Gi,G3T7'''

also  exist  in the same  way.  In addition,  there ex-

ist modes  whose  phase  propagates  more  slowly  in
the negative  x-direction.  These modes  are  Rossby
modes;  they  are  in geostrophic  balance, and  propa-

gate based on  the gradient  of  potential vorticity  of

the basic state.  We  call  them  Ri, R2, R3, ･ ･ ･ accord-
ing to the number  of  nodes  in the y-direction. Fur-
thermore,  a  Kelvin mode  Mb  exists  which  behaves
like a  Rossby wave  when  the wavenumber  is small
and  becomes  like a  gravity wave  as  the wavenumber

increases. These qualitative results  are  evident  from
the theory  by Iga (1995).2
  On  the other  hand,  in the onelayer  problem  for
the lower layer (Fig. 10), there are  the family of

modes  Ce-,ar,G2-,･･･, the family at,CiG",･･･
and  the mode  Mb, just like the upper  layer alt･hough

2 Note  the  discrepancies  between the definition of  modes

   by  Iga (1995) and  the  name  of  modes  in this paper. R-

   mode,  G-mode  and  M-mode  in this paper  or  in Iga (1993)
   are  called  Rnssby  mode,  Poincar6  mode  and  Kelvin  rnode

   in Iga (1995), respectively.
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O.5

o.o

C -o.s

-1.0

-1.5
   o,o

･Ri=3.00

1.0  2.0

k/2tanhRi'ii

Gt

Gi3.0

continueus

   medes

Fig. 10. Dispersion curves  of  neutral

  waves  in the  lower onelayer  problem  for

  Ri  =  3.0. Poincar6 (gravity) modes

  propagating  in both directions (Gt) and
  Mb-mode  exist,  but Rossby  rnodes  (R.)
  do  not.  Discretizations of  continuous

  modes  by  finite differences appear  in-
  stead.

'

the  propagating  directions are  opposite.  However,
there  is no  Rossby mode  in this system  because of
the  uniformity  of the potential vorticity  of  the ba-
sic  state.  Continuous modes  caused  by the shear

of  the  basic state  exist  instead, and  they  appear  as

discretization by  finite differences corresponding  te

each  grid point.

  The  dashed lines in Figs. 7 and  8 show  these dis-
persion  curves  in reduced  one-layer  problems.  Com-

paring  these  dispersion curves  with  those  in fuII two-
labrer problems,  we  can  identify the modes  in the

two-Iayer problem:  The  modes  in the group (i) are

Rossby modes  in the  upper  layer, the  modes  in the

group (ii) are  continuous  modes  appearing  by finite
dfferences, and  the  modes  in the groups Ciii) and

Civ) correspond  to Poincare modes  in each  layer.
Moreover, we  can  classify  the unstable  modes  in
the tw}1ayer  problem  by the kinds of  the resonating
modes.  The  results  are  shown  in Fig. 11.

5. Discussions

  Let  us  compare  the results  in this model  with

those of  earlier  studies,  mainly  with  those of  Iga

(1993) or  ofthe  frorrtal model  with  two  homogeneous
fiows. First, comparing  Figs, 6 and  11 with  Figs. 3

and  11 in Iga (1993), the results  are  roughly  alike
in this parallieter range;  in particular, as  to the Mb-
Mb-mode,  which  occupies  the major  part  in this re

gion, the imaginary  part  of  phase  speed  approaches

the  half of  the  difference of  the  velocities  outside  the

froiital zone  (q -  1 in Iga (1993) since  c*  is non-

dimensionalized by AU/2,  and  ci  -  11(2  sinh  Rii!2)

in this paper  sinee  c.  is non-dimensionalized  by

fAR) as  either  Ri  or  k decreases (in Iga (1993),

Ri

3

2

1

o 1

RrGl

2

k12tanh  Rii12

3

G3-Mo

G2'MoGrMo

Mo-Gi

Fig. 11. The  classification  of  the  obtained

  unstable  modes.  Ri-Mo, for exam-

  ple, indicates that the  unstable  mode

  is caused  by a  resonance  between  the

  Ri-mode  in the  upper  1ayer and  the

  Mb-mode  in the  lower layer. There  is
  no  unstable  mode  in the  cross-hatched
     '
  reglons,

the non-dimensionalized  wavenumber  is expressed  as

Ro), and  as either  Ri or k increases, Ici1 diminishes
its value  finally to vanish.

  Where  Ri and  le are  large (the region  of  (H) in
Orlanski (1968)), we  can  find corresponding  modes

such  as  R-Ci-  or  M6-ai-mode  in both models  and

the result･s  seem  to be qualitatively the same,  al-

though  there are  some  quantitative  differences such

as  the shift  of  the regions  where  individual modes  ex-

ist. Nevertheless, there is a  mode  which  completely

disappears in the model  in this paper:  Ri-Ri-mode
and  IL4b-Ri-mode  (called (E)-mode and  (B)-mode
in Orlanski (1968), respectively),  which  exist  in the

region  of  Ri  >  2 and  small  k in the result  by Iga

(1993),
  The  differences of  the  unstable  modes  in the  two

models  can  be seen  more  clearly  in the correspond-

ing dispersion relations,  Comparing  Fig. 7 with  Fig.
4 in Iga (1993) which  show  the dispersion relatien  in

case  of  Ri =  1.0, we  notice  that the unstable  modes

with  phase  speeds  close  to the basic velocity  of  the

upper  1ayer (c =  1 for the  result  in Iga (1993) and

c  =  O fbr the present model)  behave in the  sa[rne  way.

(The difference of  phase  speeds  c  is not  essential,  be-

cause  it results  from  a  difference in the coordinates

system  used.)  However,  the  unstable  modes  with

phase  speeds  close  to the basic velocity  of  the lower
1ayer (c N  -1,O), are  quite different. The  unstable

modes  which  exist  in the frontal model  with  two  lay-
ers  of  uniform  velocity  distribution, are  stabilized  in

the model  in this paper.
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  Therefore, although  we  mentioned  earlier  that  we

can  find corresponding  modes  in the  (H)-region in
both models,  this is only  a  superficial  correspon-

dence and  some  unstable  modes  disappear in the

present model.  In the frontal model  of  two  hemoge
neous  flows, unstable  mode  whose  phase  speed  has
non-zero  real  part (hatched in Fig. 11 in Iga (1993))
must  be an  overlapped  pair of  two  modes,  such  as

R-Gi- and  Gi-R-modes, due to the symmetry  of  the

situation.  In the present model  where  the symme

try  of  the  upper  and  lower layers is lest, the  two

unstable  modes  must  appear  separately.  Numeri-

eal  calculations,  however, show  the disappearance,
for example,  of  the Gi-R-mode  although  the R-Gi-
mode  still  exists.

  We  can  understand  this disappearance  of  unstable

modes,  with  phase speeds  close  to the basic velocity
of the lower la"fer, by the features of  the waves  in the
reduced  one-Iayer  problems.  First, as  for the upper

layer, there is no  substantial  difierence between the

models;  qualitatively the same  modes  exist  in both
models,  as  expected  by the theory  by Iga (1995) and

as  demonstrated in the numerical  results  presented
in this  paper  and  Iga (1993). In contrast,  there is a

great difference between the two  models  in the lower
layer. In the symmetrical  model,  the modes  existing

in the lower layer are  completely  the  same  as  the

upper  1ayer. However, as  fbr the model  in this paper,
there is no  Rossby mode  because of  the  uniformity

of  the potential vorticity  in the basic state.  The
shear  of  the  basic flow results  in continuous  modes

instead.

  The  unstable  modes  with  phase speeds  close  to

the basic fiow of  the upper  layer are  mainly  caused

by resonance  between a  Rossby mode  in the up-

per 1ayer and  a  Poincar6  mode  in the lower layer,

Since Rossby  modes  in the  upper  layer and  Poincar6

modes  in the lower layer exist  qualitatively in the
same  wa"r  in both models,  the unstable  modes

caused  by resonance  between these modes  appear  in

the same  way  in both models.  On  the other  hand,
the unstable  modes  with  phase  speeds  clese  to the

basic flow of  the lower layer would  arise  from a  res-

onance  between a  Poincar6 mode  in the upper  layer
and  a  Rossby mode  in the lower layer. However, no

Rossby  mode  exists  in the  lower layer in the present
model  and,  as  a  result,  the unstable  modes  do not

exist. Continuous modes  appear  in this model  in-
stead  of  Rossby  modes,  They  do  not  interact with

the modes  in the  upper  1ayer, since  the equation

(2.28) results  in either

orCi

 
-iFDi

 +  iFD2

Ci -

kU
==  o,

iFD,  +  iFD2
hU

==  A6(y 
-

 yc),

U(y.) =  c,

(5.1)

where

C5.2)

and  the problem  is completely  separated  into equa-

tions which  express  continuous  modes  (5.2), (2.29),
(2.30), (2,31) and  those which  express  other  non-

singular  modes  (5.1), (2,29), (2.30), (2.31). In this
way,  the continuous  modes  in the lower 1ayer which
appear  instead of  Rossby modes  do not  interact

with  the  modes  in the upper  layer in this model,

and  therefore the unstable  modes  with  phase  speeds

close  to the velocity  of  basic flow of  the lower 1ayer,
which  exist  in the frontal model  with  two  1ayers of
uniform  velocity  distribution, ame  stabilized.

  We  can  understand  the absence  of  the Ri-Ri-
mode  ((E)-mode) for the  same  reason.  On  the other

hand, we  cannot  explain  the disappearance of  the

Ri-Mo-mode  ((B)-mode) only  by the absence  of

Rossby modes  in the lower layer; the possibility of

resonance  between  an  Ri-mode  in the upper  layer
and  an  Mo-mode in the lower 1ayer still  remains.

Flrrom the dispersion curves  in case  of Ri ;  3.0 (Fig.
8), it seems  that  the Ri-mode  in the upper  1ayer,
though  slightly  modified,  does not  cause  instability,
since  an  unstable  mode  is already  generated  by two

Mo-modes  before the Ri-mode  in the upper  laifer
and  the Mo-mode  in the lower  layer intersect, but

the actual  reason  why  Ri-Mo-mode  disappears  is
still  unclear.

  Most  of  the  other  frontal models  referred  to in
the introduction are  essentially  one-lasrer  problerns.

Thus, there is no  resonance  between modes  in the
upper  and  lower 1ayers, Moreover, the Rossby waMe

does not  exist  due to the uniformity  ef the potential
vorticity.  Therefbre, there are  no  unstable  modes  in
Paldor's (1983a) model,  and  there are  only  unstable

modes  caused  by resonances  between gravity waves

(and Kelvin wayes)  in the same  layer in the model

of  Paldor  (1983b) or  Kubokawa  (1986), as  pointed
out  by  Sakai (1989). On  the  other  hand,  the  model

of  Killworth et  al. (1984) is also  a  two-1ayer problem
with  a  1ayer of  uniform  potential vorticity,  although

it has a  different configuration  of  frontal surface.  We
will  compare  the unstable  modes  obtained  in the
model  in this paper  also  with  the  results  in Killworth
et  al. (1984).
  In the paper  of  Killworth et  al. (1984), only  the re

lation between wavenumber  and  growth  rate  (imag-
inary part of  the phase  speed)  for a  certain  unsta-

ble mode  is shown,  but not  the dispersion relation

of neutral  waves  causing  this unstable  mode,  which

may  be  out  of  their interest. (Neither the disper-
sion  relations  for the reduced  one-layer  problems  are

shown,  since  the idea by Sakai (1989) that the unsta-

ble modes  in a  twe-layer  problern can  be  interpreted

by  the  dispersion relations  of  one-layer  problems  was

published  later.) Hence, we  cannot  compare  in de-
tail the resuk  in this paper  with  that  of  Killworth

 et  al. (1984), but we  can  infer the features of  the

unstable  modes  in Killworth  et  al. (1984) to some

exteiit,  applying  the theory  by Iga (1995).
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  The unstable  mode  whose  dispersion relation  are

shown  in Killworth et  al. (1984) exists  between k =  O

to a  certain  finite wavenumber  (Fig. 4 in their pa-

per), and  this is the same  region  as  where  the Mo-

Mo-mode  exist  in this paper, Nevertheless, it is dif

ficult to think  that  this mode  shown  by  Killworth  et

al. (1984) can  be  the  Mo-Mo-mode  for the fo11owing
reason,  If we  consider  the reduced  one-layer  prob-
lems for the lower layer of  this model,  one  of  the

boundary conditions  is H  =  O and  the Mo-mode  is

expected  to exist  in the same  way  as  the model  in

this paper,  but, for the upper  layer, neither  bound-

ary  is a  closed  boundary  and  no  Me-mode  exists  fo1-

lowing the  result  by Iga (1995),3 It is presumed  that

the mode  shown  in Killworth et  al. (1984) is caused
by resonanee  between the Kelvin mode  in the lower
layer and  the first Rossby mode  in the upper  layer

(Ri-Mo-mode). It is interesting that  in a  certain

paraineter range,  both in the result  by Iga (1993)
and  that  in the rnodel  of  Killworth et  al. (1984), the

Ri-Me-mode  with  a  node  inside grows  fastest, for
which  energy  conversion  into the disturbance occurs
locally, while  in the intermediate  situation  of  this pa-

per, the  M/o-Mo-mode  withQut  a  node  is the fastest

growing  mode,  for which  energy  conversion  occurs

throughout  the disturbance.

6. Conclusions

  We  investigated the unstable  modes  in a  frontal
model  whose  lower layer has a  uniform  poteritial vor-

ticity. We  compamed  the results  with  those of  other

models,  in particular with  those of  Iga (1993) which

treats the  front with  two  uniform  flows formulated
by Kotschin  (1932). As a  result,  unstable  modes

with  phase  speeds  close  to the velocity  of  the basic

fiow in the lower layer which  exist  in the model  in

Iga (1993), ame  stabilized  in the model  in this pa-
per. This is the result  of  the absence  of  a  Rossby
mode  in the lower 1ayer owing  to the unifbrmity  of

the potential vorticity.  Continuous modes  which  ex-

ist instead, do not  interact with  the modes  in the
upper  layer. In addition,  we  compare  the results

with  those obtained  by  Killworth  et  al, (1984), and

find that  the  most  dominant  grewing  mode  in that

model  is different from that in this  model.

  In such  situations,  we  can  understand  the un-

stable  modes  by resonance  between neutral  modes

in the both layers, and  the modes  which  exist  in
each  layer, in particular Rossby  modes,  are  defi-

nitely  affected  the distribution of  potential vortic-

ity gradient. Therefore, whether  a simplified  model

Strictly spealcing,  this situation  is beyond  the  discussion

in Iga (1995). In this problem  the  region  extends  te infin-

ity, but  beth  H  and  f remain  finite. However, from the
analogy  of  the  result  by Huthnance  (1975), we  can  infer
that  this boundary  cendition  behaves  in the  same  way  as

neutral  boundary  conditions  except  for the  existence  of

PoincarE  continuum.

like Kotschin's (1932) has qualitatively the same

features as  more  cornplicated  situations  depends on
whether  the  potential vorticity  gradierrt is similar.

  The  model  with  uniform  potential vorticity  is

worth  investigating as  a  fundamental model  where

certain  medes  are  excluded.  It is a  model  describ-
ing the critical  situation  which  is interesting in the

context  of  geophysical fiuid dynamics, On  the other

hand, the re$ult  obtained  in the model  with  two  uni-

form  flows, which  seems  a  very  special  situation  at a

glance, is not  at  all special  concerning  the petential
vorticity  distribution. The  obtained  result  can  be
extensively  applied  to other  situations,  for example,
situations  between the  two  cases:  the case  wherein

the potential vorticity  is uniform  and  that wherein

the velocity  is uniform.

  The  situation  of  almost  uniform  potential vortic-
ity distribution like the front in the convergent  cloud

band  over  the Japan Sea, is so  close  to this critical

situation  that we  must  notice  that situations  which

seem  to be  similar  may  have  completely  different

stability.  Fbr the present, it is diMcult to judge
which  model  is more  appropriate  to apply  to such

real  fronts, since,  unfortunately,  there  is no  dense

observation  of  the fronts and  meso-scale  lows  over

the Japan  Sea, although  there  are  studies  which

compared  a  simple  model  with  observation  of real

fronts as  for similar  fronts in other  regions  (Paldor
et  al. 1994). Data of  potential vorticity  distribution
of  the front as  well  as  the  structure  of  the  deve1-
oped  disturbances would  be an  important  key-point
for applying  a  simple  theory  and  understanding  the

mechanisrn  of this phenomenon.
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Appendix

  A, deTnerical calcutations  by flnite dzfferences

  9, Dj , and  FDJ  are  calculated  from uj  and  vj  as

fo11ows (Ay =- Rii!2/N):

  S(l-}) =zicv,(l-e)  - Aly (u,(,) - u,(l-,))  , (A 1)

    Dj(t) =  Aly (vJ{t+i) 
-
 vj(i-l))  +  zkuo(e,  (A･2)
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  FDj(t)  =  di (",{l+;)vj(t+I, ) 
-
 fij･(l-i)VJ･cl-S))

      +ihT,-{t)u,･(i), (A.3)
where  n2 and  U  are  defined by

  U(i+i) ;  I (U(i) +  U(t+o)  ,

  U(l+i) =  Aly (fi2(t+i) 
-
 fi2(l)) "

  772(l+;) =  ll (fi2(l) + ii2(l+1)) ,

  ii2(i+l) =  2S CU(l+i) 
-
 U(i)) ,

   ff2(o) 
=

 1, fi2(N} 
=

 O,                                  '

and  fii is calculated  as

  iia) !!  1 -  fi2(i)･

 Using these variables,  (2.28)nJ(2,31) are  finite dif
ferenced as  fbllows

 kck,(,ms, 
-
 ; (ZFDi(i-ki.) t:-Z,fD2(i-i)

                 +zFD,(,LilliFD2u))]

  =-  kU(i-s) [g,u-g) 
-
 ; (ZFDi(i-kiu) :-ZSD2o-o

                 +zFDi(iLi(iFD2(i))],

                               (A,4)
 kceti(o 

-
 u2{i)) =  kU(i)uiu)

  +i  (vrICI-S)iVl(t-t) +"i(t+S)iVl(t+i})

  
-g

 (iv2(t-}) +  iv2{i+i)) +  
iFDi(i)u+ki}iFD2a),

                               (A.5)

 kc (ivi(t-I) - iv2(i-i)) =  kUa-;)ivi(i-b

  +ll (ul(t-1) +  ul(l))  - S (u2(ILI) +  u2(l))

  +Aiy  (zFDi(iiisFD2(i)
              -iFDI(l-1)  +iFD2(tm,A

                    hUu-o  1'
                               (A,6)
 hc (iFDi(i) +  iFD2(t)) =  hU(i)iFD2(o･

                               (A.7)

  Computations in Section 3 were  done with  N  =

20. The  results  were  tested with  IV =  40  at  some

parameters,  There was  no  qualitative difference be-
tween  results  with  N  =  20 and  those  with  N  =

40. Fltirthermore, some  unstable  modes  were  re

computed  by the shooting  method  with  many  more

grid points (N =  20000), As  we  can  see  from  Fig,

1.0

o.o
  

-R
±

1.0

1/2

o.o
  

-Ri

1.0

o

Ri=1.00  k=1.523O,

 1･

lt2

             o

Ri==1.00  k=3.2756
 ±

4 i

                    o

       Ri=1.00  k-4.5709i51

･9Ri,,,

Fig. 12. The  amptitude  luil solved  by ma-

  trix method  with  N  =  20 and  shooting

  method  with  N  =  20000, normalized  by

  the  value  of  Fui1 at  y =  -VRi.  The  re

  sults  solved  by  matrix  method  are  shown

  by  solid  lines, and  those  by  the  shoot-

  ing  rnethod  by thick dashed lines, The

  panels  show  the  fastest-growing mode  for

  Ri  =  1.0, k =:,  1,523(=  2.0 ×  tanhl.O),

  Ri =  1.0, k =  3.275(= 4.3 ×  tanh1.0) and

  Ri  ==  1.0, le =  4.570(=  6.0  ×  tanh1.0),  and

  they are  classified  as  the Mb-Mb-mode, R-

  Gi-mode and  Mb-Gi-mode, respectively.

o

12, the basic feature ef  the eigenfunction  does not
change,  although  the eigenvalue  shifts  a  little. Thus,
the relatively  coarse  resolution  does not  affect  the

discussions on  the features of  the unstable  modes.
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一層の 渦位が 一
様 で ある前線の 不安定性

　　 伊賀啓太

（東京大学海洋研 究所）

　　2層 の うちの 下方の層の 渦位が
一
様で あ る ような前線の 線形安定性に つ い て 調べ た 。 得られ た結果を 、

両層 と もに
一

様流 か らな る前線の 不安定モ ードと比較した。両層 と もに
一

様流 で あ る 前線 モ デ ル に お い て

存在し た不安定 モ ードの うち、下層 の 流速に近い 位相速度 を持つ 不安定モ ードは、こ の モ デル で は安定化

して い る こ と が わ か っ た 。
こ の こ とは 下層 1層 だ け の 問題 を 考 えた 時 に 、渦位 の

一
様性の た め ロ ス ビ ー

波

が存在 しな い こ とで説明で きる 。 前線 の 安定性 に は 渦位分布が 強 く影響を与え 、 渦位 が
一

様で あ る と い う

臨界的な状況 の 前線モ デ ル を適用 す る際に は 十分な注意が必要で ある 。
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