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Abstract

The linear stability of a front whose lower layer has a uniform potential vorticity is investigated. The
results are compared with the unstable modes of a frontal model which consists of two homogeneous flows
with an interacting interface. Unstable modes with a phase speed close to the velocity of the basic flow in
the lower layer, which exist in the frontal model of two homogeneous flows, are stabilized in the present
model. This feature is explained by the absence of Rossby waves in the reduced one-layer problem of the
lower layer resulting from the uniformity of its potential vorticity. The results show that the stability
of a front is strongly affected by the potential vorticity distribution. Careful attention is needed for the
application of the frontal model with uniform potential vorticity, which is a critical situation.

1. Introduction

The linear instability of a front which consists of
two homogeneous flows provides a theoretical basis
for understanding the atmospheric disturbances as-
sociated with frontal systems. It was originally for-
mulated by Kotschin (1932) and the unstable modes
that develop upon it were obtained by Orlanski
(1968). The same problem was recently reconsid-
ered and explained in physical terms by Iga (1993).
The analysis of such a simple model should be useful
in understanding the basic characteristics of frontal
instability as it exists in the atmosphere. However,
it is apparent that any real situation has character-
istics that are different from those of the model.

Figure 1 shows a convergent cloud band over the
western part of the Japan Sea in winter as simu-
lated in a forecasting model. This band has a frontal
structure (Fig. 2) like other cases (e.g., Nagata,
1987), where a disturbance develops later to become
a meso-scale low. This frontal surface is not a plane
like the model formulated by Kotschin {1932) shown
in Fig. 3a, but its inclination becomes steeper as it
approaches the ground. Moreover, the velocity in a
layer, in particular in the lower layer, is not constant
but varies depending on the distance from the sur-
face front. In the lower layer, it is not the velocity
but potential vorticity which is almost uniform as
shown in Fig. 2. Considering the formation process
of this front, it is more natural for the lower layer to
have homogeneous potential vorticity, rather than to
have a homogeneous velocity distribution, since the
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origin of the air in the lower layer is a large-scale
cold airmass formed over the continent. However,
when applying a theory to this phenomenon, the re-
sults of the analysis of the frontal model with two
uniform-flow layers, whose basic state is very easy
to describe, were often used (e.g., Yamaguchi and
Magono 1974). Here arises a question: how far can
we apply the results of the analysis of the model
formulated by Kotschin (1932) to such a situation?
Can we derive qualitatively the same conclusion, or
does the situation of almost constant potential vor-
ticity lead to substantial differences? If there is no
essential difference, it may be appropriate to apply
the theory of the frontal model which consists of
two uniform flows to such fronts over the Japan Sea,
but, if the uniformity of the potential vorticity has a
crucial influence on its stability, we must reconsider
carefully the structure of such fronts. In this pa-
per, we will consider frontal waves at a front whose
lower layer has uniform potential vorticity (Fig. 3b),
and investigate how far we can apply the qualitative
features of simplified models like that of Kotchin
(1932).

The frontal model treated in this paper itself is
still quite a simplified one. Recently, analysis of
the stability of fronts with continuous stratification
has been attempted (e.g., Snyder, 1995; Moore and
Peltier, 1990). One could in principle analyze com-
plicated models with various effects in order to in-
vestigate detailed features of each situation. How-
ever, we want to focus here on qualitative discus-
sions: how far we can apply results of a certain sim-
ple model to other situations, or what conditions al-
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Fig. 3. (a) Frontal model investigated by
Kotschin (1932), Orlanski (1968) and
Iga (1993). (b) Frontal model investi-
gated in this paper. (c) Frontal model
Fig. 1. Sea-level pressure and lower- investigated by Killworth et al. (1984).
most-level wind predicted by the Japan
Spectral Model (JSM), after 15 hours us-
ing the initial data at 00 Z, January 22, ter, in a fundamental manner, the stability of fronts.
1990. A convergence zone is formed over Although analysis of frontal models with continuous
the western part of the Japan Sea. stratification have been made, there are still many
restrictions; Snyder (1995), for example, obtained
1990 / 1 / 22, O GMT 15 h the unstable modes indirectly by time integration.
POTENTIAL TEMPERATURE Moore and Peltier’s (1990) work does not suffer from
500 . .
WW — this problem. However, there‘ a.tre questions as to the
600 M e role that the boundary conditions employed had on
W the results obtained. Analysis of a simpler model
700 % will be more appropriate to reveal qualitative con-
= clusions. For example, it allows one to identify the
1" . pie, y
800 F—— \\/ S origins of each mode of instability. Therefore, we
900 E = Sa \\N choose to analyze a simpler model in this paper. The
ﬁ ( N ) computations were done at sufficiently high resolu-
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Fig. 2.

Cross section (potential tempera-
ture) and absolute vorticity in the lower
layer along the thick line in Fig. 1. The
value of absolute vorticity (f — dU/dy)
is normalized by f. A double thick line
indicates the frontal surface defined as
level where the vertical gradient of po-
tential temperature is maximal. Propor-
tionality between the height of frontal
surface and the absolute vorticity in the
lower layer shows the uniformity of the
potential vorticity in the lower layer.

tion so as to resolve the qualitative features of the
simulation (see Appendix).

There are other studies of a frontal model with a
layer of uniform potential vorticity, in particular as a
model of fronts in the ocean. In most models of this
sort such as Paldor (1983 a,b) and Kubokawa (1986),
the lower layer has an infinite depth, so that the
situation is essentially a one-layer problem. On the
other hand, a two-layer model with the configuration
shown in Fig. 3c was investigated by Killworth et al.
(1984). In all these studies, the frontal interface does
not intersect the sea bottom.

Comparing the model formulated by Kotschin
(1932) with that treated by Killworth et al. (1984),
we notice two important differences; the unifor-
mity of the potential vorticity and the configuration
whether the frontal surface intersects both (upper
and lower) boundaries. Thus, we cannot directly
conclude which of the differences is responsible for
the differences between the results of Iga (1993) and
those of Killworth et al. (1984). The model inves-
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Fig. 5. Configuration of the frontal surface
L for various values of Ri. The unit of hor-
izontal scale is Ag.
7 U.(y)
4‘ Apg dij
U, = -=L3 %0 (2.4)
Fig. 4. Frontal surface model The lower pf dy
layer has a uniform potential vorticity. and from (2_3)
1dU,
. . . . . . ﬁ* = H 1 B . (2 '5)
tigated in this paper fills this gap; it differs from f dy.

the model of Kotschin (1932) by the uniformity of
the potential vorticity, and from that of Killworth et
al. (1984) by having an interface intersecting both
boundaries. Hence, by investigating this model, we
will be able to identify how the two conditions affect
the unstable modes.

First, we will derive basic equations in Section
2. In Section 3, the numerical solutions are shown.
We will describe one-layer problems which are nec-
essary to interpret the unstable modes in the two-
layer problem in Section 4, and classify the unstable
modes obtained. We will compare the results ob-
tained with those of Iga (1993) in Section 5.

2. Basic equations

2.1 Basic sate

We consider a front which consists of two layers
of incompressible homogeneous fluid bounded above
and below by rigid horizontal planes at z. = 0 and
2« = H. We assume that the fluid of the lower
layer has a uniform potential vorticity and that up-
per layer has a uniform velocity. We can assume the
fluid in the upper layer is at rest by considering a
coordinate system moving with the velocity of the
upper layer (Fig. 4).

The basic equations for this problem are the same
as (1), (2) and (3) in Iga (1993). First, we will de-
scribe the basic state. The equations for geostrophic
balance, hydrostatic balance and uniform potential
vorticity of the first (lower) layer are

1dPa
0=—-fUy— ———, 2.1
f p dy. (21)
P, — Py = Apgn,, (2.2)
dU,
Fo
dy. _ [
S = (2.3)

If we assume that the fluid in the upper layer is
at rest, we can assume without loss of generality
P, =0. Then, from (2.1) and (2.2), we obtain

Substituting (2.5) into (2.4), we obtain a differential
equation with respect to U,
_ ApgH d?U.
T pf? dy?’
Under the boundary condition of dU,/dy, = 0 at
¥y« = 0, this yields

(2.6)

U, = —~CfAgcosh (;’—R) , (2.7)
7, = H (1+C’sinh (f\’—R)) (2.8)
1/2
where Ag = 1 (Ang) ,
f p

where C is the constant of integration and the only
non-dimensional parameter which characterizes the
basic state. However, in this paper as in Orlanski
(1968) and Iga (1993), we will use Ri defined as
square of the ratio of the frontal-zone width L to
the Rossby’s radius of deformation Ag instead of C
as the non-dimensional parameter characterizing the
basic state. The width L satisfies

' Tu(=L) =7.(~Ri'?)R)
= H (1 - Csinh Ri'/?)
=0,
and thus, the parameter C is expressed by Ri as

C = 1/sinh Ri'/2, (2.9)

Shapes of the frontal surface for various values of Ri
are shown in Fig. 5. If R is small enough, the frontal
surface becomes more plane and the velocity distri-
bution is indistinguishable from that of the frontal
model which consists of two homogeneous flows.
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2.2 Equations for disturbance and boundary condi-
tions
We consider the perturbed motion on this basic
state. The variables are partitioned into the basic
part and the disturbance part as follows:

U1 = Uy —I—u;l y Ux2 =U;2 y Uxj :Uij )
Pej = Pi+ Dl , ne =T + 705 (2.10)

Substitution into the basic equation with the neglect
of higher order terms yields:

Ouyy ouly;  , dU. / 1 9p
Ot. +U. Oz tUa dy. o = p Oz,
6”;2 ’ 1 8p{k2
8t* _fU*Q_;ax*7
vl vy ’ 1 9ply
U, - _ e 1%
at* * 3$* fu*l P ay*
Ovly - . — laplz
Ot *2 ) Oy,
Pht — Paa = Dpgny,
or, o, o _ )
:—U* ¥ 7 (> Y ! ,
8t* 811* 813* (77*“*1) ay* (7’*7)*1)
= (=g + 2 (=) el
- ax* 77* *2 ay* 77* *2/ "

The variables z. and y. are non-dimensionalized
by Ag; ul,, vi; and Ux by fAg; t. by 1/f; 7, and
1l by H; p.; by ApgH. Assuming a sinusoidal form
in the x,-direction (ul;,v,,, P, M ek@=ct))  we
get the non-dimensional equations:

dU
—tkeuy + tkUuq + Bl ikps, (2.11)
Y
—ikcuy = vy — tkpa, (2.12)
d
—ikevy + ikUvy = —ug — 22, (2.13)
dy
ikevs = —uy — P2 (2.14)
dy
P1L—p2 =1, (2.15)
d
—tken = —ikUn — iku, — d—(ﬁvl), (2.16)
Y
. _ d _
— k(1 =z + (=T (217)

As in Section 2.2 in Iga (1993), the boundary con-
ditions for non-dimensional variables are:

up,v; regular at y = —Ril/?, (2.18)
up = —ivy at y =0, (2.19)

Uug = ivg at y = —Ri1/2, (2.20)

ug,vy  regular at y = 0. (2.21)

2.8 Derivation of the eigenvalue problem
We will derive the equations of the form of Az =
cz from equations (2.11) ~ (2.17). Expressing the
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vorticity, divergence and the divergence of the mass
transport in each layer, respectively, as:

du,
¢ = thv; — CZ/’
dv,
D; Eikurl-i,
dy

o d _
FDy = tkflur + d—y(nvl),

FD,

Ii

d
k(1 =m)uz + 5 (1 =vz),
(2.16) is rewritten as
—tken = —ikUn — FD;. (2.22)

Subtracting (2.22) from the vorticity equation in the
lower layer

—ike(y = —ikU¢ — F Dy, (2.23)

which is derived from :k(2.13) — d/dy(2.11), we ob-
tain the potential vorticity equation in the lower
layer

—ike(C1 —n) = —ikU (G — n).

On the other hand, using (2.15), the differences
of the equation of motion between the two layers,
(2.11)—(2.12) and (2.13)—(2.14) become

(2.24)

—ikc(u1 - ’U,Q) = —ikUul -+ ﬁ’l)l — V2 — ikn, (2.25)
d
—ike(vy —ve) = —tkUvy —ug + ug — d—n (2.26)
Since 7 is expressed as
ikUn = —FD; — FDs, (2.27)

which is derived from (2.16)—(2.17), we obtain the
equations of the form of eigenvalue problem by sub-
stituting (2.27) into n in (2.24), (2.25), (2.26) and
(2.17)

kc(§1 _iFDy +zFD2> ku<C1 _WFD, +ZFD2>,

kU kU
(2.28)
ke(up — ug) = kUwuy + vy — ive + @1;_@}7'&7
(2.29)
ke(ivg — dvg) = kUiv; + ug — ug
+i (z'FDl + iFDg)
dy kU ’
(2.30)
ke(iF Dy + iF Dy) = kUiF Ds.
(2.31)
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Fig. 6. The isolines of the imaginary part of . - ]
phase speed of the fastest growing mode C 1 i i
when the parameter Ri and wavenum-
ber are given. We take k/(2 tanh Ri/?) m
as the wavenumber axis and showed the 0.0 bty s T AN A
isolines of 2sinh Ri'/2.¢, for convenience 0.0 1.0 2.0 3.0

of comparison with the Fig. 3 in Iga
(1993). The contour intervals are 0.05.
Hatched areas indicate the regions where
there is no unstable mode (where |c,| of
the first mode is zero).

3. Numerical solutions

The eigenvalue problem of (2.28), (2.29), (2.30)
and (2.31) was solved using finite differences. The
numerical method in detail is described in the Ap-
pendix. Figure 6 shows the imaginary part of the
phase speed of the fastest growing mode for each
combination of parameter Ri and wavenumber k.
For convenience of comparison with Fig. 3 in Iga
(1993), we take k/(2tanh Ri'/?) instead of k as
wavenumber axis, and displayed 2sinh Ri!/2 - ¢, in-
stead of ¢; as the imaginary part of the phase speed.
Dispersion relations in the cases of Ri = 1.0 and 3.0
are shown in Figs. 7 and 8.

As Fig. 6 shows, there are various unstable modes
in this model; in particular, in the region of large
Ri and k, some complicated unstable modes exist.
From the dispersion relation for Ri = 1.0 shown
in Fig. 7, we can see following features. There are
families of unstable modes; all of them have phase
speeds whose real parts are between about —1.0 and
0.0. Neutral waves are roughly classified into four
groups: (i) modes with ¢ ~ 0.0, (ii) modes with
¢ ~ —1.0, (iii) modes whose phase speeds are pos-
itive and decrease as wavenumber increases, (iv)
modes whose phase speeds "are negative and ap-
proach 0 as wavenumber increases. The unstable
modes appear where dispersion curves of these neu-

k/2tanhRi'”?

Fig. 7. The values of ¢, and ¢, as func-
tions of k/(2tanh Ri*/?) at Ri = 1.0.
Unstable modes are shown by thick
lines. Dashed lines indicate the disper-
sion curves of the one-layer problems for
the same Ri (see Section 4).

tral modes intersect, but intersection of a mode in
the group (ii) and a mode in (iv) does not cause
unstable modes.! The fundamental features of dis-
persion relation for Ri = 3.0 are the same as those
for Ri = 1.0, except that many higher modes ap-
pear.

4. Identification of unstable modes by reso-
nances between neutral modes

We can obtain the modes in the two-layer frontal
model by solving the eigenvalue problem in the pre-
vious section. Generally, unstable modes in two
layer problems are clearly classified by comparing
the dispersion curves in the whole two-layer prob-
lem and those in the reduced one-layer problems (see
Sakai, 1989; Iga, 1993). Therefore, in this section,
we will describe the reduced one-layer problems in
each layer for the present case, and classify the ob-
tained unstable modes.

1 We use here the term unstable mode as a mode whose
eigenvalue has a positive imaginary part or a mode which
grows exponentially. However, where two dispersion
curves intersect and two eigenvalues are degenerate, may
exist modes growing linearly, which are also commonly
called unstable modes.
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Fig. 8. Same as Fig. 7, but for Ri = 3.0.

First, we consider the one-layer problem for the
upper layer. Since the fluid in the upper layer is
at rest, the non-dimensionalized equations for each
Fourier component are

—ikeu = v — 1kn, (4.1)
, dn
—ikey = —y — —2 .
ikcv u ot (4.2)
. , _ d —
—iken = ik(1 —q)u + @((1 —M)v). (4.3)
The boundary conditions become
u=ivaty=—Ri'/? (4.4)
u,v regular at y = 0. (4.5)
For the lower layer, the equations are
dau
—tkcu+tikUu + @v = v — ikn, (4.6)
—ikev + ikUv = —u — j—z, (4.7)

—tken = —ikUn — ikmju — %(ﬁv},

(4.8)

and the boundary conditions are
u,v  regular at y= —Ri'/? (4.9)
u=—iw at y=0. (4.10)

k/2tanhRi'?

Fig. 9. Dispersion curves of neutral waves
in the upper one-layer problem for
Ri = 3.0. In this system exist Poincaré
modes propagating in the positive (G,‘: )
and negative (G, ) directions, Rossby
modes whose phase propagates slowly
in the negative direction (R,), and a
Kelvin mode whose feature changes with
wavenumber (Mp).

We solved the eigenvalue problem of (4.1), (4.2)
and (4.3) for the upper layer problem and the prob-
lem of (4.6), (4.7) and (4.8) for the lower layer prob-
lem also using finite differences. The results are
shown in Figs. 9 and 10. In the one-layer problem
for the upper layer, there exists a family of modes
propagating in the positive direction (Fig. 9). These
modes are Poincaré (gravity) modes, whose restor-
ing force is basically the gravity force. We will call
these modes G, GT,GY, - - according to the num-
ber of nodes in y-direction. Gravity modes prop-
agating in the negative direction G7,G5,Gy, -+
also exist in the same way. In addition, there ex-
ist modes whose phase propagates more slowly in
the negative z-direction. These modes are Rossby
modes; they are in geostrophic balance, and propa-
gate based on the gradient of potential vorticity of
the basic state. We call them R;, Ry, R3, - - - accord-
ing to the number of nodes in the y-direction. Fur-
thermore, a Kelvin mode M, exists which behaves
like a Rossby wave when the wavenumber is small
and becomes like a gravity wave as the wavenumber
increases. These qualitative results are evident from
the theory by Iga (1995).2

On the other hand, in the one-layer problem for
the lower layer (Fig. 10), there are the family of
modes Gy ,G7,G5, - -+, the family GH,GF,Gf,---
and the mode My, just like the upper layer although

2 Note the discrepancies between the definition of modes
by Iga (1995) and the name of modes in this paper. R-
mode, G-mode and M-mode in this paper or in Iga (1993)
are called Rossby mode, Poincaré mode and Kelvin mode
in Iga (1995), respectively.
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Fig. 10. Dispersion curves of neutral

waves in the lower one-layer problem for
Ri = 3.0. Poincaré (gravity) modes
propagating in both directions (Gi£) and
Mpy-mode exist, but Rossby modes (R,,)
do not. Discretizations of continuous
modes by finite differences appear in-
stead.

the propagating directions are opposite. However,
there is no Rossby mode in this system because of
the uniformity of the potential vorticity of the ba-
sic state. Continuous modes caused by the shear
of the basic state exist instead, and they appear as
discretization by finite differences corresponding to
each grid point.

The dashed lines in Figs. 7 and 8 show these dis-
persion curves in reduced one-layer problems. Com-
paring these dispersion curves with those in full two-
layer problems, we can identify the modes in the
two-layer problem: The modes in the group (i) are
Rossby modes in the upper layer, the modes in the
group (ii) are continuous modes appearing by finite
differences, and the modes in the groups (iil) and
(iv) correspond to Poincaré modes in each layer.
Moreover, we can classify the unstable modes in
the two-layer problem by the kinds of the resonating
modes. The results are shown in Fig. 11.

5. Discussions

Let us compare the results in this model with
those of earlier studies, mainly with those of Iga
(1993) or of the frontal model with two homogeneous
flows. First, comparing Figs. 6 and 11 with Figs. 3
and 11 in Iga (1993), the results are roughly alike
in this parameter range; in particular, as to the M-
Mp-mode, which occupies the major part in this re-
gion, the imaginary part of phase speed approaches
the half of the difference of the velocities outside the
frontal zone (¢; — 1 in Iga (1993) since c, is non-
dimensionalized by AU/2, and ¢; — 1/(2sinh Ri'/2)
in this paper since c, is non-dimensionalized by
fAR) as either Ri or k decreases (in Iga (1993),

k/2tanh Ri'/2

Fig. 11. The classification of the obtained
unstable modes. R;-Mp, for exam-
ple, indicates that the unstable mode
is caused by a resonance between the
R;-mode in the upper layer and the
Mpo-mode in the lower layer. There is
no unstable mode in the cross-hatched
regions.

the non-dimensionalized wavenumber is expressed as
Ro), and as either Ri or k increases, |c;| diminishes
its value finally to vanish.

Where Ri and k are large (the region of (H) in
Orlanski (1968)), we can find corresponding modes
such as R-G1- or My-G1-mode in both models and
the results seem to be qualitatively the same, al-
though there are some quantitative differences such
as the shift of the regions where individual modes ex-
ist. Nevertheless, there is a mode which completely
disappears in the model in this paper: Ri-Rj;-mode
and Mp-R;-mode (called (E)-mode and (B)-mode
in Orlanski (1968), respectively), which exist in the
region of Ri > 2 and small & in the result by Iga
(1993).

The differences of the unstable modes in the two
models can be seen more clearly in the correspond-
ing dispersion relations. Comparing Fig. 7 with Fig.
4 in Iga (1993) which show the dispersion relation in
case of Ri = 1.0, we notice that the unstable modes
with phase speeds close to the basic velocity of the
upper layer (¢ = 1 for the result in Iga (1993) and
¢ = 0 for the present model) behave in the same way.
(The difference of phase speeds c is not essential, be-
cause it results from a difference in the coordinates
system used.) However, the unstable modes with
phase speeds close to the basic velocity of the lower
layer (¢ ~ —1.0), are quite different. The unstable
modes which exist in the frontal model with two lay-
ers of uniform velocity distribution, are stabilized in
the model in this paper.
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Therefore, although we mentioned earlier that we
can find corresponding modes in the (H)-region in
both models, this is only a superficial correspon-
dence and some unstable modes disappear in the
present model. In the frontal model of two homoge-
neous flows, unstable mode whose phase speed has
non-zero real part (hatched in Fig. 11 in Iga (1993))
must be an overlapped pair of two modes, such as
R-G1- and G1-R-modes, due to the symmetry of the
situation. In the present model where the symme-
try of the upper and lower layers is lost, the two
unstable modes must appear separately. Numeri-
cal calculations, however, show the disappearance,
for example, of the G1-R-mode although the R-G;-
mode still exists.

We can understand this disappearance of unstable
modes, with phase speeds close to the basic velocity
of the lower layer, by the features of the waves in the
reduced one-layer problems. First, as for the upper
layer, there is no substantial difference between the
models; qualitatively the same modes exist in both
models, as expected by the theory by Iga (1995) and
as demonstrated in the numerical results presented
in this paper and Iga (1993). In contrast, there is a
great difference between the two models in the lower
layer. In the symmetrical model, the modes existing
in the lower layer are completely the same as the
upper layer. However, as for the model in this paper,
there is no Rossby mode because of the uniformity
of the potential vorticity in the basic state. The
shear of the basic flow results in continuous modes
instead.

The unstable modes with phase speeds close to
the basic flow of the upper layer are mainly caused
by resonance between a Rossby mode in the up-
per layer and a Poincaré mode in the lower layer.
Since Rossby modes in the upper layer and Poincaré
modes in the lower layer exist qualitatively in the
same way in both models, the unstable modes
caused by resonance between these modes appear in
the same way in both models. On the other hand,
the unstable modes with phase speeds close to the
basic flow of the lower layer would arise from a res-
onance between a Poincaré mode in the upper layer
and a Rossby mode in the lower layer. However, no
Rossby mode exists in the lower layer in the present
model and, as a result, the unstable modes do not
exist. Continuous modes appear in this model in-
stead of Rossby modes. They do not interact with
the modes in the upper layer, since the equation
(2.28) results in either

iFDy +iFD,

— =0 5.1
Cl LU ; ( )
or
iFDy +iFD;
G- TP sy, ()
where U(y:) = ¢,
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and the problem is completely separated into equa-
tions which express continuous modes (5.2), (2.29),
(2.30), (2.31) and those which express other non-
singular modes (5.1), (2.29), (2.30), (2.31). In this
way, the continuous modes in the lower layer which
appear instead of Rossby modes do not interact
with the modes in the upper layer in this model,
and therefore the unstable modes with phase speeds
close to the velocity of basic flow of the lower layer,
which exist in the frontal model with two layers of
uniform velocity distribution, are stabilized.

We can understand the absence of the Ri-R;-
mode ((E)-mode) for the same reason. On the other
hand, we cannot explain the disappearance of the
R;-Mp-mode ((B)-mode) only by the absence of
Rossby modes in the lower layer; the possibility of
resonance between an Rj-mode in the upper layer
and an Mpy-mode in the lower layer still remains.
From the dispersion curves in case of Ri = 3.0 (Fig.
8), it seems that the R;-mode in the upper layer,
though slightly modified, does not cause instability,
since an unstable mode is already generated by two
Mpy-modes before the Rj-mode in the upper layer
and the My-mode in the lower layer intersect, but
the actual reason why R;-My-mode disappears is
still unclear.

Most of the other frontal models referred to in
the introduction are essentially one-layer problems.
Thus, there is no resonance between modes in the
upper and lower layers. Moreover, the Rossby wave
does not exist due to the uniformity of the potential
vorticity. Therefore, there are no unstable modes in
Paldor’s (1983a) model, and there are only unstable
modes caused by resonances between gravity waves
(and Kelvin waves) in the same layer in the model
of Paldor (1983b) or Kubokawa (1986), as pointed
out by Sakai (1989). On the other hand, the model
of Killworth et al. (1984) is also a two-layer problem
with a layer of uniform potential vorticity, although
it has a different configuration of frontal surface. We
will compare the unstable modes obtained in the
model in this paper also with the results in Killworth
et al. (1984).

In the paper of Killworth et al. (1984), only the re-
lation between wavenumber and growth rate (imag-
inary part of the phase speed) for a certain unsta-
ble mode is shown, but not the dispersion relation
of neutral waves causing this unstable mode, which
may be out of their interest. (Neither the disper-
sion relations for the reduced one-layer problems are
shown, since the idea by Sakai (1989) that the unsta-
ble modes in a two-layer problem can be interpreted
by the dispersion relations of one-layer problems was
published later.) Hence, we cannot compare in de-
tail the result in this paper with that of Killworth
et al. (1984), but we can infer the features of the
unstable modes in Killworth et al. (1984) to some
extent, applying the theory by Iga (1995).
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The unstable mode whose dispersion relation are
shown in Killworth et al. (1984) exists between k = 0
to a certain finite wavenumber (Fig. 4 in their pa-
per), and this is the same region as where the Mg-
My-mode exist in this paper. Nevertheless, it is dif-
ficult to think that this mode shown by Killworth et
al. (1984) can be the My-Mg-mode for the following
reason. If we consider the reduced one-layer prob-
lems for the lower layer of this model, one of the
boundary conditions is H = 0 and the My-mode is
expected to exist in the same way as the model in
this paper, but, for the upper layer, neither bound-
ary is a closed boundary and no My-mode exists fol-
lowing the result by Iga (1995).3 It is presumed that
the mode shown in Killworth et al. (1984) is caused
by resonance between the Kelvin mode in the lower
layer and the first Rossby mode in the upper layer
(Ri-Mo-mode). It is interesting that in a certain
parameter range, both in the result by Iga (1993)
and that in the model of Killworth et al. (1984), the
Ry-Mp-mode with a node inside grows fastest, for
which energy conversion into the disturbance occurs
locally, while in the intermediate situation of this pa-
per, the My-My-mode without a node is the fastest
growing mode, for which energy conversion occurs
throughout the disturbance.

6. Conclusions

We investigated the unstable modes in a frontal
model whose lower layer has a uniform potential vor-
ticity. We compared the results with those of other
models, in particular with those of Iga (1993) which
treats the front with two uniform flows formulated
by Kotschin (1932). As a result, unstable modes
with phase speeds close to the velocity of the basic
flow in the lower layer which exist in the model in
Iga (1993), are stabilized in the model in this pa-
per. This is the result of the absence of a Rossby
mode in the lower layer owing to the uniformity of
the potential vorticity. Continuous modes which ex-
ist instead, do not interact with the modes in the
upper layer. In addition, we compare the results
with those obtained by Killworth et al. (1984), and
find that the most dominant growing mode in that
model is different from that in this model.

In such situations, we can understand the un-
stable modes by resonance between neutral modes
in the both layers, and the modes which exist in
each layer, in particular Rossby modes, are defi-
nitely affected the distribution of potential vortic-
ity gradient. Therefore, whether a simplified model

3 Strictly speaking, this situation is beyond the discussion
in Iga (1995). In this problem the region extends to infin-
ity, but both H and f remain finite. However, from the
analogy of the result by Huthnance (1975), we can infer
that this boundary condition behaves in the same way as
neutral boundary conditions except for the existence of
Poincaré continuum.

K. Iga

like Kotschin’s (1932) has qualitatively the same
features as more complicated situations depends on
whether the potential vorticity gradient is similar.

The model with uniform potential vorticity is
worth investigating as a fundamental model where
certain modes are excluded. It is a model describ-
ing the critical situation which is interesting in the
context of geophysical fluid dynamics. On the other
hand, the result obtained in the model with two uni-
form flows, which seems a very special situation at a
glance, is not at all special concerning the potential
vorticity distribution. The obtained result can be
extensively applied to other situations, for example,
situations between the two cases: the case wherein
the potential vorticity is uniform and that wherein
the velocity is uniform.

The situation of almost uniform potential vortic-
ity distribution like the front in the convergent cloud
band over the Japan Sea, is so close to this critical
situation that we must notice that situations which
seem to be similar may have completely different
stability. For the present, it is difficult to judge
which model is more appropriate to apply to such
real fronts, since, unfortunately, there is no dense
observation of the fronts and meso-scale lows over
the Japan Sea, although there are studies which
compared a simple model with observation of real
fronts as for similar fronts in other regions (Paldor
et al. 1994). Data of potential vorticity distribution
of the front as well as the structure of the devel-
oped disturbances would be an important key-point
for applying a simple theory and understanding the
mechanism of this phenomenon.
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Appendix

A. Numerical calculations by finite differences
¢;, D,, and FD, are calculated from u, and v; as
follows (Ay = Ri'/?/N):

. 1
G-y = k1) — Ay (uy@) — uia-1)) > (A1)

1 .
(”;(l+§) - j(l—%)) + ZkUj(l), (A2)

Diw = &y
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FD ! (“ 1 ~7 v ) Ri=1.00 k=1.523
H = \N v 1 — Nijq-1HVq-1 i=1. =1.
1) Ay 2(+3) S tts) =2)"30=3) 1.0 Matrix C = -0.4658+ 0.2820 i
Shooting — — — C = -0.4668 + 0.2816 i

+ ikﬁj(l)uj(l)v (A?))

where 7, and U are defined by

1
Uissy = 5 U +Uun) »

1/ .
Uryy = Ay (le(z+1) - 772(1)) ;

_ 1/ _

M@+3) = 5 (’72(1) + 712<z+1>) :

B 1

Murd) = 5y Ve = UVo),
Tao) =1, vy =0,

and 77, is calculated as

T =1—Ty)-
Using these variables, (2.28)~(2.31) are finite dif-

ferenced as follows
1 (iFDyg_1) +iF Dy )
k —_—
CI:Cl(l_%) 2 < kU(l_,l)
iF Dy + iFDz(l))]
+
B 1 iFDl(l_l) + iFDz(l—l)
=kUq_y) [Cl(l*%) 2 ( kU vy
iF Dy +iF Dy )]
-+ ’

(A.4)
kelury — ua) = kUmyuaqy
1/ . _ .
3 (“1(1—%)2”1(1—%) +771(l+%)“’1(l+%))

1. . tF'Dyy + iF Dy
~5 (0 T ivaap)) + U

(A.5)
ke (ivia-y) — o)) = KUqyivig-y)

1 1
+3 (ma-n) +ue) = 5 (va-1) +uaw)
L (’iFDl(l) + iFDQ(l)

Ay kU
B iFDl(l_l) + iFD2(l_1) )
kU1 ’
(A.6)
kc (iFDl(l) + ’iFDQ(l)) = /CU(Z)’iFDQ(l).
(A7)

Computations in Section 3 were done with N =
20. The results were tested with N = 40 at some
parameters. There was no qualitative difference be-
tween results with V = 20 and those with N =
40. Furthermore, some unstable modes were re-
computed by the shooting method with many more
grid points (N = 20000). As we can see from Fig.

0.0
_Ril/z 0
Ri=1.00 k=3.275
1.0 Matrix C = -0.0680+ 0.0196 i
Shooting =~ = — C = -0.0856+ 0.0344 i
A 7
0.0 [ < N T N TS RS DR Y B R
_Ri1/2 0
Ri=1.00 k=4.570
1.0 Matrix C = -0.2670+ 0.0499 i
Shooting - — — C = -0.2883+ 0,0505 i

0. gRix/z 0

Fig. 12. The amplitude |ui| solved by ma-
trix method with N = 20 and shooting
method with N = 20000, normalized by
the value of |u1| at y = —v/Ri. The re-
sults solved by matrix method are shown
by solid lines, and those by the shoot-
ing method by thick dashed lines. The
panels show the fastest-growing mode for
Ri = 1.0, k = 1.523(= 2.0 x tanh 1.0),
Ri = 1.0, k = 3.275(= 4.3 x tanh 1.0) and
Ri =1.0, k = 4.570(= 6.0 x tanh 1.0), and
they are classified as the Mo-Mop-mode, R-
G1-mode and Mp-G1-mode, respectively.

12, the basic feature of the eigenfunction does not
change, although the eigenvalue shifts a little. Thus,
the relatively coarse resolution does not affect the
discussions on the features of the unstable modes.
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